fbpx
Wikipedia

Receptor celular

En biología el término receptores designa a las proteínas o glicoproteínas que permiten la interacción de determinadas sustancias con los mecanismos del metabolismo celular. Están presentes en la membrana plasmática, en las membranas de los orgánulos, en el citosol celular o en el núcleo celular, a las que se unen específicamente otras sustancias químicas llamadas moléculas señalizadoras, como las hormonas y los neurotransmisores.

Esquema de receptor transmembrana. E: espacio extracelular; I: espacio intracelular; P: membrana plasmática.

La unión de una molécula señalizadora a sus receptores específicos desencadena una serie de reacciones en el interior de las células (transducción de señal), cuyo resultado final depende no solo del estímulo recibido, sino de muchos otros factores, como el estadio celular, la presencia de patógenos, el estado metabólico de la célula, etc.

Tipos de receptores celulares

Tipos

 
 
 
 
 
 
 
 
 
de rodopsina
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de secretina
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de glutamato
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acoplado a proteína G
 
 
CAP-AMPc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
vomeronasal (feromona)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
frizzled / smoothened
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ionotrópico
 
 
 
 
 
 
 
 
 
 
 
 
 
Receptor celular
 
 
 
de apertura de canal iónico
 
 
glutamato ionotrópico
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ATP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de tirosina quinasa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ligado a enzima
 
 
de guanilil ciclasa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de tirosina fosfatasa
 


Tipos de receptores por mecanismo

Receptores acoplados a proteínas G

Son un conjunto vasto de receptores acoplados a proteínas G que basan su modelo funcional en la transducción de señales: una proteína se une al receptor y genera una cascada de señales (transducción de señales) que deriva en un comportamiento biológico concreto. El 40% de los medicamentos actuales tienen como fin último la activación de estos receptores. Existen 6 subtipos de receptores acoplados a proteínas G que se distinguen por la similitud proteica, su mecanismo o su función.

  1. Similares a la rodopsina. Engloba un conjunto amplio de subfamilias de receptores, como la subfamilia de receptores de dopamina, esenciales para la supervivencia por su implicación primordial en el mecanismo de recompensa, o la subfamilia de receptores de histamina, que tienen implicación en el sistema inmune.
  2. Familia de receptores de secretina. Engloba un conjunto importante de subfamilias de receptores.
  3. Familia de receptores metabotrópicos de glutamato y feromonas. Engloba un conjunto de receptores basados en mensajeros secundarios y otros receptores relacionados con el gusto.
  4. Receptores de feromonas de apareamiento por hongos.
  5. Receptores de AMP Cíclico.
  6. Frizzled / Smoothened.

Receptores basados en la apertura de un canal iónico

Son un conjunto importante de receptores que basan su modelo funcional en la apertura de un canal iónico de sodio (Na+), calcio (Ca2+) o cloro (Cl-). Una proteína se une a un receptor y provoca la apertura de un canal iónico por donde discurren ciertos iones, positivos o negativos, que provocan una respuesta biológica concreta.

  1. GABA
    1. alfa (α)
    2. beta (β)
    3. gamma (γ)
    4. delta (δ)
    5. epsilon (ε)
    6. pi (π)
    7. theta (θ)
    8. rho (ρ)
  2. Glicina
    1. alfa (α)
    2. beta (β)
  3. Serotonina
    1. 5-HT3
  4. Acetilcolina nicotínica
    1. alfa (α)
    2. beta (β)
    3. gamma (γ)
    4. delta (δ)
    5. epsilon (ε)
  5. Zinc activado

Receptores ligados a enzima

Son un conjunto de receptores que basan su modelo funcional en el incremento de la actividad enzimática. Una proteína se une al receptor y provoca una actividad enzimática concreta a nivel intracelular.

  1. Receptor del factor de crecimiento epidérmico (ErbB).
    1. ErbB1
    2. ErbB2
    3. ErbB3
    4. ErbB4
  2. Factor Neurotrófico Derivado de la Línea Celular Glial (GFRa).
    1. GFRa1
    2. GFRa2
    3. GFRa3
    4. GFRa4
  3. Receptor de péptidos natriuréticos (NPR).
    1. NPR1
    2. NPR2
    3. NPR3
    4. NPR4
  4. Receptor de neurotrofinas (TRK).
    1. TrkA
    2. TrkB
    3. TrkC
    4. p75
  5. Receptor de tipo Toll.

Receptores transmembrana

Los receptores transmembrana son proteínas que se extienden por todo el espesor de la membrana plasmática de la célula, proteínas transmembranales, con un extremo del receptor fuera de la célula (dominio extracelular) y otro extremo del receptor dentro (dominio intracelular). Cuando el dominio extracelular reconoce a una hormona, la totalidad del receptor sufre un cambio en su conformación estructural que afecta al dominio intracelular, confiriéndole una nueva acción. En este caso, la hormona (u otro ligando) no atraviesa la membrana plasmática para penetrar en la célula. Aunque un receptor sencillo puede transducir alguna señal tras la unión del ligando, lo más frecuente es que la unión del ligando provoque la asociación de varias moléculas receptoras. Los principales tipos de receptores transmembrana son los siguientes:[1]

Receptores con actividad tirosina quinasa intrínseca

Dentro de este grupo están los receptores de la mayor parte de los factores de crecimiento, como EGF, TGF-alfa, HGF, PDGF, VEGF, FGF, y el receptor de la insulina. Los receptores de esta familia tienen un dominio extracelular de unión al ligando, un dominio transmembrana, y un dominio intracelular con actividad tirosina quinasa intrínseca. Cuando se une el ligando, el receptor se dimeriza, lo que induce la autofosforilación de las tirosinas del dominio intracelular y activa la tirosina quinasa, que fosforila (y por tanto activa) muchas moléculas efectoras en cascada, de forma directa o mediante proteínas adaptadoras. Estos receptores pueden activar cascadas de señalización diferentes, como por ejemplo:

  • la cascada de las MAP kinasas (por mitogen-activated protein), con activación de la proteína de unión a GTP denominada Ras, y síntesis y activación de factores de transcripción como FOS y JUN, que estimulan la producción de nuevos factores de crecimiento, de receptores para dichos factores y de proteínas que controlan la entrada de la célula en el ciclo celular
  • la cascada de la PI3K (fosfoinositol 3-quinasa), que activa la quinasa Akt, implicada en proliferación celular y supervivencia celular por inhibición de apoptosis

En muchos tipos de cáncer se han detectado alteraciones en la actividad tirosina quinasa del receptor y mutaciones, por lo que estas moléculas son dianas terapéuticas muy importantes.

Receptores que carecen de actividad intrínseca y reclutan quinasas

En este grupo se incluyen los receptores de muchas citoquinas, como IL-2, IL-3, interferón α, β y γ, eritropoyetina (EPO), hormona del crecimiento y prolactina. La transmisión de la señal de estos receptores provoca la activación de miembros de la familia de quinasas denominadas JAK (Janus quinasas). Estas quinasas activan factores de transcripción citoplásmicos llamados STATs (por signal transducers and activation of transcription), que se translocan al núcleo y activan la transcripción de genes específicos. En otros casos, estos receptores activan la cascada de las MAP-quinasas.

Receptores acoplados a proteínas G

En este caso, la transducción de la señal se realiza a través de proteínas triméricas de unión a GTP (proteínas G), que constan de 7 hélices transmembrana y constituyen la mayor familia de proteínas receptoras (1% del genoma humano). Hay un gran número de ligandos que utilizan estos receptores, como las quimiokinas, vasopresina, serotonina, histamina, adrenalina, noradrenalina, calcitonina, glucagón y hormona paratiroidea, entre otros. Muchas drogas farmacéuticas comunes tienen como diana estos receptores. La unión del ligando provoca cambio de conformación y activación del receptor, que puede interaccionar con otras muchas proteínas G. La forma inactiva une GDP, mientras que la forma activa une GTP. En algunos casos, esta vía de señalización incluye AMPc como segundo mensajero.

Reconocimiento de la hormona por los receptores transmembrana

El reconocimiento de la estructura química de una hormona por el receptor de la hormona utiliza los mismos mecanismos de enlace no covalente como los puentes de hidrógeno, fuerzas electrostáticas, fuerzas hidrófobas y de Van der Waals. La equivalencia entre la unión hormona-receptor y la hormona libre es igual a: [H] + [R] <-> [HR], con

 
[R]=receptor; [H]=hormona libre; [HR]=receptor unido a la hormona

Lo importante de la fuerza de la señal transmitida por el receptor es la concentración de complejos hormona-receptor, que es definida por la afinidad que existe entre la hormona con su receptor, por la concentración de la hormona y por la concentración del receptor. La concentración de hormona circulante es el punto principal de la fuerza de la señal, siempre que los otros dos valores sean constantes. En reacciones rápidas, la producción de hormonas por las células puede almacenarse en forma de prohormonas, y rápidamente transformarse y liberarse cuando sea necesario.

También la célula puede modificar la sensibilidad del receptor, por ejemplo por la fosforilación. También por la variación del número de receptores que pueden modificar la fuerza total de señalización en el interior de la célula.

Receptores nucleares

Los receptores nucleares o citoplasmáticos son proteínas solubles localizadas en el citoplasma o en el núcleo celular. La hormona que pasa a través de la membrana plasmática, normalmente por difusión pasiva, alcanza el receptor e inicia la cascada de señales. Los receptores nucleares son activadores de la transcripción activados por ligandos, que se transportan con el ligando u hormona, que pasan a través de la membrana nuclear al interior del núcleo celular y activan la transcripción de ciertos genes y por lo tanto la producción de una proteína.

Los ligandos típicos de los receptores nucleares son hormonas lipofílicas como las hormonas esteroideas, por ejemplo la testosterona, la progesterona y el cortisol, derivados de la vitamina A y vitamina D. Estas hormonas desempeñan una función muy importante en la regulación del metabolismo, en las funciones de muchos órganos, en el proceso de desarrollo y crecimiento de los organismos y en la diferenciación celular. La importancia de la fuerza de la señal es la concentración de hormona, que está regulada por:

  • Biosíntesis y secreción de hormonas por los órganos endocrinos: Por ejemplo el hipotálamo recibe información, tanto eléctrica como bioquímica. El hipotálamo produce factores liberadores de hormonas que actúan sobre la hipófisis y activa la producción de hormonas hipofisarias, las cuales activan los órganos endocrinos que finalmente producen las hormonas para los tejidos diana. Este sistema jerarquizado permite la amplificación de la señal original que procede del hipotálamo. La liberación de hormonas enlentece la producción de estas hormonas por medio de una inhibición reactiva (feedback), para evitar una producción aumentada.
  • Disponibilidad de la hormona en el citoplasma: Muchas hormonas pueden ser convertidas en formas de depósito por la célula diana para su posterior uso. Este reduce la cantidad de hormona disponible.
  • Modificación de las hormonas en el tejido diana: Algunas hormonas pueden ser modificadas por la célula diana, de modo que no activan el receptor hormonal y así reducen la cantidad de hormonas disponibles.

Los receptores nucleares que son activados por hormonas activan receptores específicos del ADN llamados elementos sensibles a hormonas (HREs, del inglés Hormone Responsive Elements), que son secuencias de ADN que están situados en la región promotora de los genes que son activados por el complejo hormona receptor. Como este complejo activa la transcripción de determinados genes, estas hormonas también se llaman inductores de la expresión genética. La activación de la transcripción de genes es mucho más lenta que las señales que directamente afectan a proteínas ya existentes. Como consecuencia, los efectos de hormonas que se unen a receptores nucleares se producen a largo plazo. Sin embargo la señal de transducción a través de receptores solubles afecta solo a algunas proteínas. Los detalles de la regulación genética todavía no son del todo conocidos. Todos los receptores nucleares tienen una estructura modular similar:

N-AAAABBBBCCCCDDDDEEEEFFFF-C

donde CCCC es el dominio de unión al ADN que contiene dedos de zinc, EEEE es el dominio de unión al ligando. El último es también responsable de la dimerización de la mayoría de los receptores nucleares más importantes que se unen al ADN. Como tercera función, contienen elementos estructurales que son responsables de la transactivación, usada para la comunicación con el aparato de la traducción o síntesis de proteínas. Los dedos de zinc en el dominio que se une el ADN, estabiliza la unión con el ADN por medio de contactos con fosfatos del esqueleto del ADN. Las secuencias de ADN que hacen juego con el receptor son normalmente repetición hexaméricas, tanto invertidas como evertidas. Las secuencias son bastante parecidas, pero su orientación y distancia son los parámetros por los que los dominios que se unen al ADN de los receptores pueden distinguire de forma diferente.

Receptores esteroideos

Los receptores esteroideos son un subtipo de receptores nucleares localizados permanentemente en el citoplasma. En ausencia de hormona esteroidea, los receptores están unidos en un complejo denominado complejo aporreceptor, que contiene proteínas chaperonas o carabina, también conocidas como proteínas de choque térmico o de calor (HSPs del inglés Heat Shock Proteins). Las HSPs son necesarias en la activación del receptor porque ayuda a cambiar su conformación que le permite unirse a la secuencia de bases del ADN.

Los receptores esteroides también pueden tener un efecto represivo sobre la expresión genética cuando el dominio de transactivación esté escondido, por lo que no se puede activar la transcripción. como resultado de otras formas de señal de transducción, por ejemplo como por un factor de crecimiento. Este comportamiento es llamado crosstalk.

RXS y receptores huérfanos

Estos receptores moleculares pueden ser activados por:

  • Una hormona clásica que entra en la célula por difusión.
  • Una hormona que fue sintetizada en la célula, como por ejemplo retinol, de un precursor o prohormona, que puede ser transportada hacia la célula a través del torrente sanguíneo.
  • Una hormona que fue completamente sintetizada en el interior de la célula por ejemplo, las prostaglandinas.

Estos receptores están localizados en el núcleo y no están acompañados de proteínas carabina. En ausencia de hormona, se une a su secuencia específica de ADN inactivando un gen. Cuando se activan por las hormonas, se activa la transcripción de genes que estaban reprimidos.

Referencias

  1. Kumar, MBBS, MD, FRCPath, V.; Abul K. Abbas, MBBS, Nelson Fausto, MD and Jon Aster, MD (2009). «Ch3-Tissue Renewal, Regeneration and Repair». En Saunders (Elsevier), ed. Robbins & Cotran Pathologic Basis of Disease (8th edición). 

Enlaces externos

  • El contenido de este artículo incorpora material de una entrada de la Enciclopedia Libre Universal, publicada en español bajo la licencia Creative Commons Compartir-Igual 3.0.
  •   Datos: Q208467
  •   Multimedia: Receptors

receptor, celular, biología, término, receptores, designa, proteínas, glicoproteínas, permiten, interacción, determinadas, sustancias, mecanismos, metabolismo, celular, están, presentes, membrana, plasmática, membranas, orgánulos, citosol, celular, núcleo, cel. En biologia el termino receptores designa a las proteinas o glicoproteinas que permiten la interaccion de determinadas sustancias con los mecanismos del metabolismo celular Estan presentes en la membrana plasmatica en las membranas de los organulos en el citosol celular o en el nucleo celular a las que se unen especificamente otras sustancias quimicas llamadas moleculas senalizadoras como las hormonas y los neurotransmisores Esquema de receptor transmembrana E espacio extracelular I espacio intracelular P membrana plasmatica La union de una molecula senalizadora a sus receptores especificos desencadena una serie de reacciones en el interior de las celulas transduccion de senal cuyo resultado final depende no solo del estimulo recibido sino de muchos otros factores como el estadio celular la presencia de patogenos el estado metabolico de la celula etc Indice 1 Tipos de receptores celulares 1 1 Tipos 2 Tipos de receptores por mecanismo 2 1 Receptores acoplados a proteinas G 2 2 Receptores basados en la apertura de un canal ionico 2 3 Receptores ligados a enzima 2 4 Receptores transmembrana 2 4 1 Receptores con actividad tirosina quinasa intrinseca 2 4 2 Receptores que carecen de actividad intrinseca y reclutan quinasas 2 4 3 Receptores acoplados a proteinas G 2 4 4 Reconocimiento de la hormona por los receptores transmembrana 2 5 Receptores nucleares 2 5 1 Receptores esteroideos 2 5 2 RXS y receptores huerfanos 3 Referencias 4 Enlaces externosTipos de receptores celulares EditarTipos Editar de rodopsina de secretina de glutamato acoplado a proteina G CAP AMPc vomeronasal feromona frizzled smoothened ionotropico Receptor celular de apertura de canal ionico glutamato ionotropico ATP de tirosina quinasa ligado a enzima de guanilil ciclasa de tirosina fosfatasa Tipos de receptores por mecanismo EditarReceptores acoplados a proteinas G Editar Articulo principal Receptor acoplado a proteinas G Son un conjunto vasto de receptores acoplados a proteinas G que basan su modelo funcional en la transduccion de senales una proteina se une al receptor y genera una cascada de senales transduccion de senales que deriva en un comportamiento biologico concreto El 40 de los medicamentos actuales tienen como fin ultimo la activacion de estos receptores Existen 6 subtipos de receptores acoplados a proteinas G que se distinguen por la similitud proteica su mecanismo o su funcion Similares a la rodopsina Engloba un conjunto amplio de subfamilias de receptores como la subfamilia de receptores de dopamina esenciales para la supervivencia por su implicacion primordial en el mecanismo de recompensa o la subfamilia de receptores de histamina que tienen implicacion en el sistema inmune Familia de receptores de secretina Engloba un conjunto importante de subfamilias de receptores Familia de receptores metabotropicos de glutamato y feromonas Engloba un conjunto de receptores basados en mensajeros secundarios y otros receptores relacionados con el gusto Receptores de feromonas de apareamiento por hongos Receptores de AMP Ciclico Frizzled Smoothened Receptores basados en la apertura de un canal ionico Editar Son un conjunto importante de receptores que basan su modelo funcional en la apertura de un canal ionico de sodio Na calcio Ca2 o cloro Cl Una proteina se une a un receptor y provoca la apertura de un canal ionico por donde discurren ciertos iones positivos o negativos que provocan una respuesta biologica concreta GABA alfa a beta b gamma g delta d epsilon e pi p theta 8 rho r Glicina alfa a beta b Serotonina 5 HT3 Acetilcolina nicotinica alfa a beta b gamma g delta d epsilon e Zinc activadoReceptores ligados a enzima Editar Son un conjunto de receptores que basan su modelo funcional en el incremento de la actividad enzimatica Una proteina se une al receptor y provoca una actividad enzimatica concreta a nivel intracelular Receptor del factor de crecimiento epidermico ErbB ErbB1 ErbB2 ErbB3 ErbB4 Factor Neurotrofico Derivado de la Linea Celular Glial GFRa GFRa1 GFRa2 GFRa3 GFRa4 Receptor de peptidos natriureticos NPR NPR1 NPR2 NPR3 NPR4 Receptor de neurotrofinas TRK TrkA TrkB TrkC p75 Receptor de tipo Toll Receptores transmembrana Editar Los receptores transmembrana son proteinas que se extienden por todo el espesor de la membrana plasmatica de la celula proteinas transmembranales con un extremo del receptor fuera de la celula dominio extracelular y otro extremo del receptor dentro dominio intracelular Cuando el dominio extracelular reconoce a una hormona la totalidad del receptor sufre un cambio en su conformacion estructural que afecta al dominio intracelular confiriendole una nueva accion En este caso la hormona u otro ligando no atraviesa la membrana plasmatica para penetrar en la celula Aunque un receptor sencillo puede transducir alguna senal tras la union del ligando lo mas frecuente es que la union del ligando provoque la asociacion de varias moleculas receptoras Los principales tipos de receptores transmembrana son los siguientes 1 Receptores con actividad tirosina quinasa intrinseca Editar Dentro de este grupo estan los receptores de la mayor parte de los factores de crecimiento como EGF TGF alfa HGF PDGF VEGF FGF y el receptor de la insulina Los receptores de esta familia tienen un dominio extracelular de union al ligando un dominio transmembrana y un dominio intracelular con actividad tirosina quinasa intrinseca Cuando se une el ligando el receptor se dimeriza lo que induce la autofosforilacion de las tirosinas del dominio intracelular y activa la tirosina quinasa que fosforila y por tanto activa muchas moleculas efectoras en cascada de forma directa o mediante proteinas adaptadoras Estos receptores pueden activar cascadas de senalizacion diferentes como por ejemplo la cascada de las MAP kinasas por mitogen activated protein con activacion de la proteina de union a GTP denominada Ras y sintesis y activacion de factores de transcripcion como FOS y JUN que estimulan la produccion de nuevos factores de crecimiento de receptores para dichos factores y de proteinas que controlan la entrada de la celula en el ciclo celular la cascada de la PI3K fosfoinositol 3 quinasa que activa la quinasa Akt implicada en proliferacion celular y supervivencia celular por inhibicion de apoptosisEn muchos tipos de cancer se han detectado alteraciones en la actividad tirosina quinasa del receptor y mutaciones por lo que estas moleculas son dianas terapeuticas muy importantes Veanse tambien Receptor tirosina quinasay Receptor intracelular Receptores que carecen de actividad intrinseca y reclutan quinasas Editar En este grupo se incluyen los receptores de muchas citoquinas como IL 2 IL 3 interferon a b y g eritropoyetina EPO hormona del crecimiento y prolactina La transmision de la senal de estos receptores provoca la activacion de miembros de la familia de quinasas denominadas JAK Janus quinasas Estas quinasas activan factores de transcripcion citoplasmicos llamados STATs por signal transducers and activation of transcription que se translocan al nucleo y activan la transcripcion de genes especificos En otros casos estos receptores activan la cascada de las MAP quinasas Receptores acoplados a proteinas G Editar Articulo principal Receptores acoplados a proteinas G En este caso la transduccion de la senal se realiza a traves de proteinas trimericas de union a GTP proteinas G que constan de 7 helices transmembrana y constituyen la mayor familia de proteinas receptoras 1 del genoma humano Hay un gran numero de ligandos que utilizan estos receptores como las quimiokinas vasopresina serotonina histamina adrenalina noradrenalina calcitonina glucagon y hormona paratiroidea entre otros Muchas drogas farmaceuticas comunes tienen como diana estos receptores La union del ligando provoca cambio de conformacion y activacion del receptor que puede interaccionar con otras muchas proteinas G La forma inactiva une GDP mientras que la forma activa une GTP En algunos casos esta via de senalizacion incluye AMPc como segundo mensajero Reconocimiento de la hormona por los receptores transmembrana Editar El reconocimiento de la estructura quimica de una hormona por el receptor de la hormona utiliza los mismos mecanismos de enlace no covalente como los puentes de hidrogeno fuerzas electrostaticas fuerzas hidrofobas y de Van der Waals La equivalencia entre la union hormona receptor y la hormona libre es igual a H R lt gt HR conK d H R H R displaystyle K d H R over HR R receptor H hormona libre HR receptor unido a la hormonaLo importante de la fuerza de la senal transmitida por el receptor es la concentracion de complejos hormona receptor que es definida por la afinidad que existe entre la hormona con su receptor por la concentracion de la hormona y por la concentracion del receptor La concentracion de hormona circulante es el punto principal de la fuerza de la senal siempre que los otros dos valores sean constantes En reacciones rapidas la produccion de hormonas por las celulas puede almacenarse en forma de prohormonas y rapidamente transformarse y liberarse cuando sea necesario Tambien la celula puede modificar la sensibilidad del receptor por ejemplo por la fosforilacion Tambien por la variacion del numero de receptores que pueden modificar la fuerza total de senalizacion en el interior de la celula Receptores nucleares Editar Articulo principal Receptor nuclear Los receptores nucleares o citoplasmaticos son proteinas solubles localizadas en el citoplasma o en el nucleo celular La hormona que pasa a traves de la membrana plasmatica normalmente por difusion pasiva alcanza el receptor e inicia la cascada de senales Los receptores nucleares son activadores de la transcripcion activados por ligandos que se transportan con el ligando u hormona que pasan a traves de la membrana nuclear al interior del nucleo celular y activan la transcripcion de ciertos genes y por lo tanto la produccion de una proteina Los ligandos tipicos de los receptores nucleares son hormonas lipofilicas como las hormonas esteroideas por ejemplo la testosterona la progesterona y el cortisol derivados de la vitamina A y vitamina D Estas hormonas desempenan una funcion muy importante en la regulacion del metabolismo en las funciones de muchos organos en el proceso de desarrollo y crecimiento de los organismos y en la diferenciacion celular La importancia de la fuerza de la senal es la concentracion de hormona que esta regulada por Biosintesis y secrecion de hormonas por los organos endocrinos Por ejemplo el hipotalamo recibe informacion tanto electrica como bioquimica El hipotalamo produce factores liberadores de hormonas que actuan sobre la hipofisis y activa la produccion de hormonas hipofisarias las cuales activan los organos endocrinos que finalmente producen las hormonas para los tejidos diana Este sistema jerarquizado permite la amplificacion de la senal original que procede del hipotalamo La liberacion de hormonas enlentece la produccion de estas hormonas por medio de una inhibicion reactiva feedback para evitar una produccion aumentada Disponibilidad de la hormona en el citoplasma Muchas hormonas pueden ser convertidas en formas de deposito por la celula diana para su posterior uso Este reduce la cantidad de hormona disponible Modificacion de las hormonas en el tejido diana Algunas hormonas pueden ser modificadas por la celula diana de modo que no activan el receptor hormonal y asi reducen la cantidad de hormonas disponibles Los receptores nucleares que son activados por hormonas activan receptores especificos del ADN llamados elementos sensibles a hormonas HREs del ingles Hormone Responsive Elements que son secuencias de ADN que estan situados en la region promotora de los genes que son activados por el complejo hormona receptor Como este complejo activa la transcripcion de determinados genes estas hormonas tambien se llaman inductores de la expresion genetica La activacion de la transcripcion de genes es mucho mas lenta que las senales que directamente afectan a proteinas ya existentes Como consecuencia los efectos de hormonas que se unen a receptores nucleares se producen a largo plazo Sin embargo la senal de transduccion a traves de receptores solubles afecta solo a algunas proteinas Los detalles de la regulacion genetica todavia no son del todo conocidos Todos los receptores nucleares tienen una estructura modular similar N AAAABBBBCCCCDDDDEEEEFFFF Cdonde CCCC es el dominio de union al ADN que contiene dedos de zinc EEEE es el dominio de union al ligando El ultimo es tambien responsable de la dimerizacion de la mayoria de los receptores nucleares mas importantes que se unen al ADN Como tercera funcion contienen elementos estructurales que son responsables de la transactivacion usada para la comunicacion con el aparato de la traduccion o sintesis de proteinas Los dedos de zinc en el dominio que se une el ADN estabiliza la union con el ADN por medio de contactos con fosfatos del esqueleto del ADN Las secuencias de ADN que hacen juego con el receptor son normalmente repeticion hexamericas tanto invertidas como evertidas Las secuencias son bastante parecidas pero su orientacion y distancia son los parametros por los que los dominios que se unen al ADN de los receptores pueden distinguire de forma diferente Receptores esteroideos Editar Articulo principal Receptores esteroideos Los receptores esteroideos son un subtipo de receptores nucleares localizados permanentemente en el citoplasma En ausencia de hormona esteroidea los receptores estan unidos en un complejo denominado complejo aporreceptor que contiene proteinas chaperonas o carabina tambien conocidas como proteinas de choque termico o de calor HSPs del ingles Heat Shock Proteins Las HSPs son necesarias en la activacion del receptor porque ayuda a cambiar su conformacion que le permite unirse a la secuencia de bases del ADN Los receptores esteroides tambien pueden tener un efecto represivo sobre la expresion genetica cuando el dominio de transactivacion este escondido por lo que no se puede activar la transcripcion como resultado de otras formas de senal de transduccion por ejemplo como por un factor de crecimiento Este comportamiento es llamado crosstalk RXS y receptores huerfanos Editar Articulo principal Receptor huerfano Estos receptores moleculares pueden ser activados por Una hormona clasica que entra en la celula por difusion Una hormona que fue sintetizada en la celula como por ejemplo retinol de un precursor o prohormona que puede ser transportada hacia la celula a traves del torrente sanguineo Una hormona que fue completamente sintetizada en el interior de la celula por ejemplo las prostaglandinas Estos receptores estan localizados en el nucleo y no estan acompanados de proteinas carabina En ausencia de hormona se une a su secuencia especifica de ADN inactivando un gen Cuando se activan por las hormonas se activa la transcripcion de genes que estaban reprimidos Referencias Editar Kumar MBBS MD FRCPath V Abul K Abbas MBBS Nelson Fausto MD and Jon Aster MD 2009 Ch3 Tissue Renewal Regeneration and Repair En Saunders Elsevier ed Robbins amp Cotran Pathologic Basis of Disease 8th edicion La referencia utiliza el parametro obsoleto coautores ayuda Enlaces externos EditarEl contenido de este articulo incorpora material de una entrada de la Enciclopedia Libre Universal publicada en espanol bajo la licencia Creative Commons Compartir Igual 3 0 Datos Q208467 Multimedia Receptors Obtenido de https es wikipedia org w index php title Receptor celular amp oldid 136115876, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos