fbpx
Wikipedia

Dihidrógeno

El hidrógeno molecular o dihidrógeno[2]​ (antiguamente llamado hidrógeno o hidrógeno gaseoso) es una molécula diatómica compuesta por dos átomos de hidrógeno; a temperatura ambiente es un gas inflamable, incoloro e inodoro.

 
Dihidrógeno
Nombre IUPAC
Dihidrógeno
General
Fórmula estructural
Fórmula molecular H2
Identificadores
Número CAS 1333-74-0[1]
ChEBI 18276
ChemSpider 762
PubChem 783
UNII 7YNJ3PO35Z
KEGG C00282
Propiedades físicas
Masa molar 2,01589(4) g/mol
Termoquímica
S0gas, 1 bar 130,680 ± 0,003 J·mol–1·K
Peligrosidad
NFPA 704
4
0
0
Valores en el SI y en condiciones estándar
(25 y 1 atm), salvo que se indique lo contrario.

En el laboratorio se obtiene mediante la reacción de ácidos con metales como el zinc e industrialmente mediante la electrólisis del agua. El dihidrógeno se emplea en la producción de amoniaco, como combustible alternativo y recientemente para el suministro de energía en las pilas de combustible.

Tiene un punto de ebullición de tan solo 20,27 K (-252,88 °C) y un punto de fusión de 14,02 K (-259,13 °C). A muy alta presión, tal como la que se produce en el núcleo de las estrellas gigantes de gas, las moléculas mudan su naturaleza y el dihidrógeno se convierte en un líquido metálico (ver hidrógeno metálico). A muy baja presión, como la del espacio, el elemento hidrógeno tiende a existir como átomos individuales, simplemente porque es muy baja la probabilidad de que se combinen. Sin embargo, cuando esto sucede pueden llegar a formarse nubes de H2 que se asocian a la génesis de las estrellas.

Aplicaciones

En la industria química y petroquímica se requieren grandes cantidades de H2. La aplicación principal del H2 es para el procesamiento (refinación) de combustibles fósiles y para la síntesis del amoníaco (proceso de Haber). Los procesos fundamentales que consumen H2 en una planta petroquímica son la hidrodesalquilación, la hidrodesulfurización y el hidrocraking.[3]​ El H2 posee otros muchos usos como agente hidrogenante, particularmente en el incremento de la saturación de las grasas y los aceites insaturados (que se encuentran en productos como la margarina), y en la producción de metanol. Se emplea también en la fabricación del ácido clorhídrico y como agente reductor para minerales metálicos.

Aparte de sus usos como reactivo, el H2 posee muchas aplicaciones en Física e Ingeniería. Se usa para el escudo de gas en métodos de soldadura, tales como la soldadura de hidrógeno atómico. El H2 se emplea como refrigerante en generadores eléctricos en las estaciones eléctricas, ya que es el gas con mayor conductividad térmica. El H2 líquido se usa en la investigación criogénica, incluyendo el estudio de la superconductividad. Puesto que el H2 es más ligero que el aire (posee una densidad poco mayor que la quinceava parte de la del aire) fue usado como gas de relleno para globos aerostáticos y aeronaves. Sin embargo, este uso fue abandonado tras el desastre del Hindenburg que evidenció la peligrosidad del hidrógeno cuando es usado para estos fines. No obstante, aún se sigue usando para inflar globos sonda meteorológicos.

Los isótopos del hidrógeno también tienen sus aplicaciones particulares. El deuterio (²H) posee aplicaciones en el campo de la fisión nuclear, como moderador para frenar neutrones, y también tiene aplicaciones en reacciones de fusión nuclear. Los compuestos de deuterio tienen usos en Química y Biología, sobre todo en los estudios de los efectos isotópicos. El tritio (³H), generado en los reactores nucleares, se usa en la producción de bombas de hidrógeno, como radiomarcador en Ciencias Biológicas, y como fuente de radiación en pinturas luminiscentes.

La temperatura de equilibrio del punto triple del dihidrógeno es un punto fijo definido en la escala de temperaturas ITS-90.

El spin o giro de la molécula de dihidrógeno puede ser alineado homogéneamente mediante ondas de radiofrecuencia. Esta propiedad es el fundamento de la resonancia magnética nuclear, dispositivo de obtención de imágenes que es capaz de recoger información en función de la diferente velocidad de recuperación del spin original de las moléculas de hidrógeno (presentes en el agua) de los diferentes tejidos de un ser vivo.

El dihidrógeno como portador de energía

 
Prototipo de vehículo alimentado con hidrógeno.

El dihidrógeno es una fuente de energía tanto por combustión en presencia de oxígeno como en el hipotético contexto de plantas comerciales de fusión nuclear alimentadas por protio, deuterio o tritio (isótopos naturales del hidrógeno), una tecnología que actualmente se encuentra en desarrollo en reactores experimentales ITER. La energía del Sol proviene de la fusión nuclear del hidrógeno, sin embargo, es un proceso complicado de conseguir en la Tierra. El dihidrógeno elemental obtenido de fuentes solares, biológicas o eléctricas cuesta mucha más energía para producirlo de la que se obtiene de su combustión. El dihidrógeno puede generarse a partir de fuentes fósiles (como el metano) gastando menos energía de la que se obtiene, pero se trata de fuentes no renovables que, además son fuentes energéticas por sí mismas.

Dihidrógeno como combustible

Se ha hablado mucho del dihidrógeno molecular como posible portador de energía. El uso del H2 tendría la ventaja de que las fuentes fósiles podrían usarse directamente para la obtención del gas (a partir de metano, por ejemplo). El H2 usado en los medios de transporte produciría una combustión limpia en la que el único producto sería el agua, eliminando por completo las emisiones de CO2.

Sin embargo, los costes para la infraestructura necesaria para llevar a cabo una conversión completa a una economía del dihidrógeno serían sustanciales.[4]​ Además, la densidad energética del dihidrógeno líquido o gaseoso (dentro de unas presiones prácticas) es significativamente menor que los combustibles tradicionales.

Por ejemplo, puede emplearse en motores de combustión interna. Una flota de automóviles con motores de este tipo es mantenida en la actualidad por Chrysler-BMW. Además, las pilas de combustible en desarrollo parece que serán capaces de ofrecer una alternativa limpia y económica a los motores de combustión interna.

Debido a que el hidrógeno es escaso en forma libre y la mayor parte de él se encuentra combinado con otros elementos, no es una fuente de energía primaria, como sí lo son el gas natural, el petróleo y el carbón. En realidad, el dihidrógeno es un vector energético, es decir un portador de energía que se debe producir a partir de fuentes primarias. Aun así, el dihidrógeno como combustible presenta diversas ventajas. El dihidrógeno se quema en el aire libre cuando hay concentraciones entre el 4 y el 75 % de su volumen. En cambio, el gas natural lo hace entre el 5,4 y el 15 %. La temperatura por combustión espontánea es de 585 °C, mientras que para el gas natural es de 540 °C. El gas natural explota en concentraciones del 6,3 al 14 %, mientras que el dihidrógeno requiere concentraciones entre el 13 y el 64 %, por lo que el gas natural es más explosivo que el dihidrógeno.

En la actualidad existen cuatro formas de utilizar el hidrógeno para producir energía:

  • Uniendo sus núcleos dentro de un reactor denominado Tokamak, durante el proceso conocido como fusión nuclear.
  • Combinándolo electroquímicamente con el dioxígeno sin generar llama para producir directamente electricidad dentro de un reactor conocido como pila de combustible.
  • Combinándolo químicamente con el dioxígeno del aire a través de quemadores convencionales y a través de procesos catalíticos, método que cuenta con una amplia aplicación doméstica.
  • Combinándolo químicamente con el oxígeno en medio acuoso dentro de una caldera no convencional para producir vapor motriz, en el ciclo conocido como Chan K'iin .

Uno de los principales problemas que se tienen con el dihidrógeno es su almacenamiento y transporte. Si se confina en forma gaseosa, el contenedor tendría que soportar presiones de hasta 200 atmósferas. Si se desea almacenar en forma líquida, se tiene que enfriar a -253 °C y posteriormente guardarse en un depósito perfectamente aislado. Otra forma de almacenamiento se puede llevar a cabo mediante una reacción química reversible con diversas sustancias para formar hidruros metálicos.

Propiedades físicas y químicas

Las características de solubilidad y de adsorción del dihidrógeno con varios metales son muy importantes en la metalurgia (algunos metales pueden sufrir debilitamiento por hidrógeno) y en el desarrollo de formas seguras de almacenamiento para su uso como combustible. El dihidrógeno es muy soluble en muchos compuestos formados por metales de las tierras raras y metales de transición,[5]​ y puede disolverse tanto en metales cristalinos como en metales amorfos.[6]​ La solubilidad del dihidrógeno en los metales está influenciada por las distorsiones locales y las impurezas de la red cristalina del metal.[7]

Combustión

 
En la imagen se aprecia la diferencia entre la llama de dihidrógeno (en los motores de la lanzadera, casi invisible) y las llamas de otros combustibles (en los cohetes propulsores laterales).

El dihidrógeno gaseoso es muy inflamable y arde en concentraciones muy bajas en aire (4 % de H2). La entalpía de combustión del dihidrógeno es −286 kJ/mol, y la reacción de combustión es la siguiente:

2 H2(g) + O2(g) → 2 H2O(l) + 572 kJ/mol

Cuando se mezcla con dioxígeno en un amplio rango de proporciones el dihidrógeno explota. En el aire, el dihidrógeno arde violentamente. Las llamas de dioxígeno y dihidrógeno puro son casi invisibles al ojo humano, como se constata al ver lo tenues que son las llamas de los motores principales de las lanzaderas espaciales (en contraposición a lo fácilmente visibles que son las llamas de los cohetes impulsores de las lanzaderas). Por este motivo, es difícil detectar visualmente si un escape de dihidrógeno está ardiendo. Las llamas que se aprecian en las fotos del dirigible Hindenburg son llamas de dihidrógeno coloreadas por el material de la cubierta de la aeronave, que contenía carbono y polvo de aluminio pirofórico, así como otros materiales combustibles.[8]​ (Independientemente de la causa de este incendio, es claro que se produjo la ignición del dihidrógeno, ya que en ausencia de este gas la cubierta del dirigible habría tardado horas en quemarse).[9]​ Otra característica de los fuegos alimentados por dihidrógeno es que las llamas tienden a ascender rápidamente con el gas a través del aire (algo que también se puede apreciar en las fotografías del accidente del Hindenburg), causando menos daños que los fuegos alimentados por hidrocarburos. Por ejemplo, dos tercios de los pasajeros del dirigible sobrevivieron al incendio, y muchas de las muertes que se produjeron fueron por caídas al vacío y por la combustión de gasolina.[10]

El H2 reacciona directamente con otros elementos oxidantes. Puede producirse una reacción espontánea y violenta a temperatura ambiente en presencia de dicloro o diflúor, con la formación de los correspondientes halogenuros de hidrógeno: cloruro de hidrógeno y fluoruro de hidrógeno.

Historia

Descubrimiento del H2

El hidrógeno diatómico gaseoso, H2, fue formalmente descrito por primera vez por T. Von Hohenheim (más conocido como Paracelso, 1493 - 1541) que lo obtuvo artificialmente mezclando metales con ácidos fuertes. Paracelso no era consciente de que el gas inflamable generado en estas reacciones químicas estaba formado por un nuevo elemento químico. En 1671, Robert Boyle redescubrió y describió la reacción que se producía entre limaduras de hierro y ácidos diluidos, y que generaba dihidrógeno gaseoso.[11]

En 1766, Henry Cavendish fue el primero en reconocer el dihidrógeno gaseoso como una sustancia discreta, identificando el gas producido en la reacción un metal y un ácido como "aire inflamable" y descubriendo que la combustión del gas generaba agua. Cavendish tropezó con el dihidrógeno cuando experimentaba con ácidos y mercurio. Aunque asumió erróneamente que el dihidrógeno era un componente liberado por el mercurio y no por el ácido, fue capaz de describir con precisión varias propiedades fundamentales del dihidrógeno. Tradicionalmente, se considera a Cavendish el descubridor de este elemento.

En 1783, Antoine Lavoisier dio al elemento el nombre de hidrógeno (en francés Hydrogène, del griego ὕδωρ, ὕδᾰτος, "agua" y γένος-ου, "generador") cuando comprobó (junto a Laplace) el descubrimiento de Cavendish de que la combustión del gas generaba agua.

Primeros usos

Uno de los primeros usos que se dio al dihidrógeno gaseoso fue como gas de relleno para globos aerostáticos y, más tarde, otras aeronaves. El dihidrógeno gaseoso se obtenía por reacción entre el ácido sulfúrico y el hierro metálico. La alta y rápida inflamabilidad del dihidrógeno gaseoso se dejó patente en la tragedia del dirigible Hindenburg en 1937, que se incendió cuando aterrizaba provocando la muerte de 35 personas. Debido a esta peligrosidad que presentaba el dihidrógeno gaseoso, fue reemplazado posteriormente en globos y aeronaves por el helio gaseoso, un gas inerte.

 
El dihidrógeno puede inflamarse rápidamente en el aire. Esto es lo que sucedió en el desastre del Hindenburg, el 6 de mayo de 1937.

Obtención y producción

El H2 se obtiene en laboratorios de Química y de Biología, a menudo como subproducto de otras reacciones; en la industria se obtiene para la hidrogenación de sustratos insaturados; y en la naturaleza como medio para expeler equivalentes reductores en las reacciones bioquímicas.

Síntesis en laboratorio

En el laboratorio, el H2 suele obtenerse por la reacción de ácidos con metales, tales como el zinc.

Zn + 2 H+ → Zn2+ + H2

En el caso del aluminio, no solo se genera H2 cuando es tratado con un ácido, sino que también lo hace cuando se le trata con una base:

2 Al + 6 H2O → 2 Al(OH)3 + 3 H2

La electrolisis del agua es un método simple de producir dihidrógeno, aunque el gas resultante posee necesariamente menos energía de la requerida para producirlo. Una corriente de bajo voltaje atraviesa el agua, formándose dioxígeno gaseoso en el ánodo y dihidrógeno gaseoso en el cátodo. Generalmente, cuando se produce dihidrógeno que va a ser almacenado se emplea un cátodo de platino o de algún otro metal inerte. Por el contrario, si el dihidrógeno va a ser consumido in situ, es necesaria la presencia de dioxígeno para que se produzca la combustión y se procura que ambos electrodos (tanto ánodo como cátodo) sean de metal inerte (si se empleara un metal no inerte, por ejemplo el hierro, este se oxidaría y disminuiría la cantidad de dioxígeno que se desprende). La máxima eficiencia teórica (electricidad empleada frente al valor energético del dihidrógeno generado) es de entre un 80 % y un 94 %.[12]

2H2O(aq) → 2H2(g) + O2(g)

En el año 2007 se descubrió que una aleación de aluminio y galio en forma de pastilla añadida al agua puede emplearse para obtener dihidrógeno.[13]​ El proceso también produce óxido de aluminio, pero el galio (que posee un elevado precio), que previene la formación de una capa de óxido en la superficie de la pastilla, puede reutilizarse. Este descubrimiento tiene importantes implicaciones en la economía del dihidrógeno, ya que este puede sintetizarse in situ fácilmente y no necesita ser transportado.

Síntesis industrial

El dihidrógeno puede obtenerse de distintas maneras, pero las más económicas implican su extracción a partir de hidrocarburos. El dihidrógeno comercial se produce generalmente mediante el reformado con vapor del gas natural.[14]​ Este proceso consiste en la reacción de una corriente de vapor de agua con metano para originar monóxido de carbono y dihidrógeno, a una temperatura de entre 700 °C y 1100 °C.

CH4 + H2O → CO + 3 H2

Esta reacción está favorecida a bajas presiones, sin embargo, se lleva a cabo a altas presiones (20 atm) ya que el H2 de alta presión es el producto más comercializable. La mezcla producida se conoce como "gas de síntesis" porque a menudo se usa directamente para la producción de metanol y otros compuestos relacionados. Aparte del metano, pueden usarse otros hidrocarburos para generar el gas de síntesis con distintas proporciones de los componentes productos. Una de las complicaciones que se presenta en esta tecnología altamente optimizada es la formación de coque o carbón:

CH4 → C + 2 H2

Para evitarlo, el reformado con vapor suele emplear un exceso de H2O.

Puede recuperarse dihidrógeno adicional en este proceso a partir del monóxido de carbono, mediante una reacción de desplazamiento del agua gaseosa, especialmente con un catalizador de óxido de hierro. Esta reacción también se emplea industrialmente como fuente de dióxido de carbono:[14]

CO + H2O → CO2 + H2

Otros métodos importantes para la producción de H2 incluyen la oxidación parcial de hidrocarburos:

CH4 + 0.5 O2 → CO + 2 H2

y la reacción del carbón, que puede servir como preludio a la reacción de desplazamiento mencionada anteriormente:[14]

C + H2O → CO + H2

Muchas veces el dihidrógeno es producido y consumido en el mismo proceso industrial, sin necesidad de ser separado. En el proceso Haber - Bosch para la síntesis de amoníaco (el quinto compuesto más producido industrialmente en el mundo), el dihidrógeno se obtiene a partir del gas natural.

El dihidrógeno también se produce en cantidades significativas como un subproducto en la mayoría de los procesos petroquímicos de cracking con vapor y reformado. La electrólisis de la salmuera para obtener dicloro también genera dihidrógeno como subproducto.

Síntesis biológica

 
Micrografía mostrando los cloroplastos en un tejido vegetal. Las hidrogenasas presentes en estos orgánulos son capaces de generar H2 gaseoso.

El dihidrógeno es un producto de algunos tipos de metabolismo anaeróbico y es generado por muchos microorganismos, generalmente a través de reacciones catalizadas por enzimas que contienen hierro o níquel, llamadas hidrogenasas. Estas enzimas catalizan la reacción redox reversible entre el H2 y sus dos protones y dos electrones. La evolución del dihidrógeno gaseoso tiene lugar en la transferencia de equivalentes reductores (producidos durante el metabolismo del piruvato) al agua.[15]

La separación del agua, en la que esta se descompone en sus protones, electrones y dioxígeno, tiene lugar en las reacciones de la fase luminosa del metabolismo de los organismos fotosintéticos. Algunos de esos organismos -incluyendo el alga Chlamydomonas reinhardtii y las cianobacterias- han evolucionado desarrollando un segundo paso en las reacciones de la fase oscura en el que los protones se reducen para formar H2 gaseoso por la acción de hidrogenasas especializadas en los cloroplastos.[16]​ Se han realizado esfuerzos para modificar genéticamente las hidrogenasas bacterianas para sintetizar H2 gaseoso de manera eficiente incluso en presencia de dioxígeno.[17]

Existen otras rutas poco frecuentes, aunque mecanísticamente interesantes, para la producción de H2 en la naturaleza. La nitrogenasa genera aproximadamente un equivalente de H2 por cada equivalente de N2 reducido a amoníaco. Algunas fosfatasas reducen fosfitos a H2.

Formas

En condiciones normales, el gas dihidrógeno es una mezcla de moléculas de dos tipos de átomos de hidrógeno diferentes en función de la dirección del espín de sus electrones y núcleos. Estas formas se conocen como orto- y para-hidrógeno. El hidrógeno normal está compuesto por un 25 % de la forma para- y un 75 % de la forma orto-, la considerada "normal", aunque no pueda obtenerse en estado puro. Ambas formas tienen energías ligeramente diferentes, lo que provoca que sus propiedades físicas no sean idénticas; así por ejemplo, la forma para- tiene puntos de fusión y ebullición 0,1 K más bajos que la forma orto-.

Precauciones

El dihidrógeno es un gas extremadamente inflamable. Reacciona violentamente con el diflúor y el dicloro, especialmente con el primero, con el que la reacción es tan rápida e imprevisible que no se puede controlar. También es peligrosa su despresurización rápida, ya que a diferencia del resto de gases, al expandirse por encima de -40 °C se calienta, pudiendo inflamarse.

Especificaciones técnicas del dihidrógeno
  • ICSC: 0001
  • CAS:
  • UN:1049
  • CE:001-001-00-9
  • Punto de ebullición: - 252,8 °C
  • Muy poco miscible en agua
  • Temperatura de autoignición 580 °C
  • Punto de congelación: - 252,9 °C
  • Temperatura crítica: - 240,9 °C

Peligros

Físicos

El gas es más ligero que el aire. El gas se mezcla bien con el aire, formándose fácilmente mezclas explosivas.

Químicos

El calentamiento intenso puede originar combustión violenta o explosión. Reacciona violentamente con aire, dioxígeno, dicloro, diflúor y oxidantes fuertes originando peligro de incendio y explosión. Los metales catalizadores tales como el platino o el níquel aumentan la velocidad de este tipo de reacciones.

Incendios

Evitar las llamas, no producir chispas y no fumar. Extremadamente inflamable. Su rango de inflamabilidad es muy grande. Muchas reacciones pueden producir incendio o explosión. Si es posible, cortar el suministro. Si se puede y no existe riesgo para el entorno próximo, dejar que el fuego se extinga por sí mismo. Apagar con agua pulverizada, polvo, dióxido de carbono y halón. El dihidrógeno cuando se produce fuego o explosión se quema con una llama casi invisible.

Explosión

Las mezclas gas/aire son explosivas. Como prevención se debe tener la ventilación adecuada. Las herramientas manuales no deben generar chispas. Los equipos eléctricos y de alumbrado deben estar preparados a prueba de explosión. El incendio debe de combatirse desde un lugar protegido.

Derrames y fugas

Para comprobar si existen escapes, utilizar agua y jabón. Evacuar la zona de peligro. Ventilar las áreas cerradas para prevenir la formación de atmósferas inflamables o deficientes en dioxígeno. La ventilación puede ser manual o mecánica. Eliminar todas las fuentes potenciales de ignición. Para ayuda adicional, consultar a un experto. Llevar equipo autónomo de respiración.

Exposición

El dihidrógeno no es tóxico y está clasificado como un simple asfixiante. La cantidad necesaria para reducir las concentraciones del dioxígeno en un nivel inferior al requerido para soportar la vida causaría mezclas dentro de los rangos de inflamabilidad. Por tanto, se prohíbe la entrada en áreas que contengan mezclas inflamables debido al peligro inmediato de incendio o explosión. El dihidrógeno se puede absorber por inhalación y a través de la piel.

Al ocasionarse pérdidas en zonas confinadas, este líquido se evapora muy rápidamente originando una saturación total del aire, pudiendo producir asfixia, dificultad respiratoria, y pérdida de conocimiento. Como prevención se debe tener la ventilación adecuada introduciendo aire limpio.

En contacto con líquido se produce la congelación. Como prevención se deben utilizar guantes aislantes del frío y traje de protección.

Almacenamiento

Almacenar los cilindros y contenedores en áreas bien ventiladas. Mantener los cilindros alejados de las fuentes de ignición y de material combustible. Evitar poner los cilindros en áreas en las que haya sales y otros productos químicos corrosivos. El almacenamiento del dihidrógeno debe de estar separado de los gases oxidantes, tales como dioxígeno, diflúor, etc. al menos a 6 metros de distancia.

Hidrogeneras

Las hidrogeneras son las estaciones de servicio preparadas para servir dihidrógeno en los coches propulsados por pilas de combustible.

Véase también

Referencias

  1. Número CAS
  2. Connelly, Neil G. (2005). «Nomenclature of inorganic chemistry - IUPAC recommendations». Nomenclature of Inorganic Chemistry. p. 49, ISBN 0-85404-438-8. 
  3. . Archivado desde el original el 31 de agosto de 2005. Consultado el 15 de septiembre de 2005. 
  4. See Romm, Joseph (2004). The Hype about Hydrogen, Fact and Fiction in the Race to Save the Climate. Nueva York: Island Press.  (ISBN 1-55963-704-8)
  5. Takeshita T, Wallace WE, Craig RS. (1974). Hydrogen solubility in 1:5 compounds between yttrium or thorium and nickel or cobalt. Inorg Chem 13(9):2282.
  6. Kirchheim R, Mutschele T, Kieninger W. (1988). Hydrogen in amorphous and nanocrystalline metals Mater. Sci. Eng. 99: 457–462.
  7. Kirchheim R. (1988). Hydrogen solubility and diffusivity in defective and amorphous metals. Prog. Mater. Sci. 32(4):262–325.
  8. Bain A; Van Vorst WD (1999). «The Hindenburg tragedy revisited: the fatal flaw exposed». International Journal of Hydrogen Energy 24 (5): 399-403. 
  9. Dziadecki, John (2005). «Hindenburg Hydrogen Fire». Consultado el 16 de enero de 2007. 
  10. . Swiss Hydrogen Association. Archivado desde el original el 24 de junio de 2007. Consultado el 16 de enero de 2007. 
  11. «Webelements – Hydrogen historical information». Consultado el 15 de septiembre de 2005. 
  12. Informe de la empresa Bellona sobre el hidrógeno.
  13. «New process generates hydrogen from aluminum alloy to run engines, fuel cells». 
  14. Oxtoby DW, Gillis HP, Nachtrieb NH. (2002). Principles of Modern Chemistry 5th ed. Thomson Brooks/Cole
  15. Cammack, R.; Frey, M.; Robson, R. Hydrogen as a Fuel: Learning from Nature; Taylor & Francis: London, 2001
  16. Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B. (2005). Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280(40):34170–7.
  17. United States Department of Energy FY2005 Progress Report. IV.E.6 Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacteria System. HO Smith, Xu Q. http://www.hydrogen.energy.gov/pdfs/progress05/iv_e_6_smith.pdf Visitado el 16 de agosto de 2006.

Enlaces externos

  •   Wikcionario tiene definiciones y otra información sobre hidrógeno.
  •   Wikimedia Commons alberga una galería multimedia sobre Dihidrógeno.
  • WebElements.com
  • EnvironmentalChemistry.com
  • Es Elemental
  • El hidrógeno como combustible
  •   Datos: Q3027893
  •   Multimedia: Dihydrogen

dihidrógeno, este, artículo, trata, sobre, molécula, para, otros, usos, este, término, véase, hidrógeno, desambiguación, para, elemento, químico, véase, hidrógeno, hidrógeno, molecular, dihidrógeno, antiguamente, llamado, hidrógeno, hidrógeno, gaseoso, molécul. Este articulo trata sobre la molecula de H2 Para otros usos de este termino vease Hidrogeno desambiguacion Para el elemento quimico H vease Hidrogeno El hidrogeno molecular o dihidrogeno 2 antiguamente llamado hidrogeno o hidrogeno gaseoso es una molecula diatomica compuesta por dos atomos de hidrogeno a temperatura ambiente es un gas inflamable incoloro e inodoro DihidrogenoNombre IUPACDihidrogenoGeneralFormula estructuralFormula molecularH2IdentificadoresNumero CAS1333 74 0 1 ChEBI18276ChemSpider762PubChem783UNII7YNJ3PO35ZKEGGC00282InChIInChI InChI 1S H2 h1H Key UFHFLCQGNIYNRP UHFFFAOYSA NPropiedades fisicasMasa molar2 01589 4 g molTermoquimicaS0gas 1 bar130 680 0 003 J mol 1 KPeligrosidadNFPA 7044 0 0Valores en el SI y en condiciones estandar 25 y 1 atm salvo que se indique lo contrario editar datos en Wikidata En el laboratorio se obtiene mediante la reaccion de acidos con metales como el zinc e industrialmente mediante la electrolisis del agua El dihidrogeno se emplea en la produccion de amoniaco como combustible alternativo y recientemente para el suministro de energia en las pilas de combustible Tiene un punto de ebullicion de tan solo 20 27 K 252 88 C y un punto de fusion de 14 02 K 259 13 C A muy alta presion tal como la que se produce en el nucleo de las estrellas gigantes de gas las moleculas mudan su naturaleza y el dihidrogeno se convierte en un liquido metalico ver hidrogeno metalico A muy baja presion como la del espacio el elemento hidrogeno tiende a existir como atomos individuales simplemente porque es muy baja la probabilidad de que se combinen Sin embargo cuando esto sucede pueden llegar a formarse nubes de H2 que se asocian a la genesis de las estrellas Indice 1 Aplicaciones 1 1 El dihidrogeno como portador de energia 1 2 Dihidrogeno como combustible 2 Propiedades fisicas y quimicas 2 1 Combustion 3 Historia 3 1 Descubrimiento del H2 3 2 Primeros usos 4 Obtencion y produccion 4 1 Sintesis en laboratorio 4 2 Sintesis industrial 4 3 Sintesis biologica 5 Formas 6 Precauciones 6 1 Peligros 6 1 1 Fisicos 6 1 2 Quimicos 6 1 3 Incendios 6 1 4 Explosion 6 1 5 Derrames y fugas 6 1 6 Exposicion 6 2 Almacenamiento 6 2 1 Hidrogeneras 7 Vease tambien 8 Referencias 9 Enlaces externosAplicaciones EditarEn la industria quimica y petroquimica se requieren grandes cantidades de H2 La aplicacion principal del H2 es para el procesamiento refinacion de combustibles fosiles y para la sintesis del amoniaco proceso de Haber Los procesos fundamentales que consumen H2 en una planta petroquimica son la hidrodesalquilacion la hidrodesulfurizacion y el hidrocraking 3 El H2 posee otros muchos usos como agente hidrogenante particularmente en el incremento de la saturacion de las grasas y los aceites insaturados que se encuentran en productos como la margarina y en la produccion de metanol Se emplea tambien en la fabricacion del acido clorhidrico y como agente reductor para minerales metalicos Produccion de acido clorhidrico combustible para cohetes y reduccion de minerales metalicos El dihidrogeno liquido se emplea en aplicaciones criogenicas incluyendo la investigacion de la superconductividad Empleado antano por su ligereza como gas de relleno en globos y zepelines tras el desastre del Hindenburg se abandono su uso por su gran inflamabilidad Aparte de sus usos como reactivo el H2 posee muchas aplicaciones en Fisica e Ingenieria Se usa para el escudo de gas en metodos de soldadura tales como la soldadura de hidrogeno atomico El H2 se emplea como refrigerante en generadores electricos en las estaciones electricas ya que es el gas con mayor conductividad termica El H2 liquido se usa en la investigacion criogenica incluyendo el estudio de la superconductividad Puesto que el H2 es mas ligero que el aire posee una densidad poco mayor que la quinceava parte de la del aire fue usado como gas de relleno para globos aerostaticos y aeronaves Sin embargo este uso fue abandonado tras el desastre del Hindenburg que evidencio la peligrosidad del hidrogeno cuando es usado para estos fines No obstante aun se sigue usando para inflar globos sonda meteorologicos Los isotopos del hidrogeno tambien tienen sus aplicaciones particulares El deuterio H posee aplicaciones en el campo de la fision nuclear como moderador para frenar neutrones y tambien tiene aplicaciones en reacciones de fusion nuclear Los compuestos de deuterio tienen usos en Quimica y Biologia sobre todo en los estudios de los efectos isotopicos El tritio H generado en los reactores nucleares se usa en la produccion de bombas de hidrogeno como radiomarcador en Ciencias Biologicas y como fuente de radiacion en pinturas luminiscentes La temperatura de equilibrio del punto triple del dihidrogeno es un punto fijo definido en la escala de temperaturas ITS 90 El spin o giro de la molecula de dihidrogeno puede ser alineado homogeneamente mediante ondas de radiofrecuencia Esta propiedad es el fundamento de la resonancia magnetica nuclear dispositivo de obtencion de imagenes que es capaz de recoger informacion en funcion de la diferente velocidad de recuperacion del spin original de las moleculas de hidrogeno presentes en el agua de los diferentes tejidos de un ser vivo El dihidrogeno como portador de energia Editar Prototipo de vehiculo alimentado con hidrogeno El dihidrogeno es una fuente de energia tanto por combustion en presencia de oxigeno como en el hipotetico contexto de plantas comerciales de fusion nuclear alimentadas por protio deuterio o tritio isotopos naturales del hidrogeno una tecnologia que actualmente se encuentra en desarrollo en reactores experimentales ITER La energia del Sol proviene de la fusion nuclear del hidrogeno sin embargo es un proceso complicado de conseguir en la Tierra El dihidrogeno elemental obtenido de fuentes solares biologicas o electricas cuesta mucha mas energia para producirlo de la que se obtiene de su combustion El dihidrogeno puede generarse a partir de fuentes fosiles como el metano gastando menos energia de la que se obtiene pero se trata de fuentes no renovables que ademas son fuentes energeticas por si mismas Dihidrogeno como combustible Editar Se ha hablado mucho del dihidrogeno molecular como posible portador de energia El uso del H2 tendria la ventaja de que las fuentes fosiles podrian usarse directamente para la obtencion del gas a partir de metano por ejemplo El H2 usado en los medios de transporte produciria una combustion limpia en la que el unico producto seria el agua eliminando por completo las emisiones de CO2 Sin embargo los costes para la infraestructura necesaria para llevar a cabo una conversion completa a una economia del dihidrogeno serian sustanciales 4 Ademas la densidad energetica del dihidrogeno liquido o gaseoso dentro de unas presiones practicas es significativamente menor que los combustibles tradicionales Por ejemplo puede emplearse en motores de combustion interna Una flota de automoviles con motores de este tipo es mantenida en la actualidad por Chrysler BMW Ademas las pilas de combustible en desarrollo parece que seran capaces de ofrecer una alternativa limpia y economica a los motores de combustion interna Vease tambien Energias renovables en Alemania Debido a que el hidrogeno es escaso en forma libre y la mayor parte de el se encuentra combinado con otros elementos no es una fuente de energia primaria como si lo son el gas natural el petroleo y el carbon En realidad el dihidrogeno es un vector energetico es decir un portador de energia que se debe producir a partir de fuentes primarias Aun asi el dihidrogeno como combustible presenta diversas ventajas El dihidrogeno se quema en el aire libre cuando hay concentraciones entre el 4 y el 75 de su volumen En cambio el gas natural lo hace entre el 5 4 y el 15 La temperatura por combustion espontanea es de 585 C mientras que para el gas natural es de 540 C El gas natural explota en concentraciones del 6 3 al 14 mientras que el dihidrogeno requiere concentraciones entre el 13 y el 64 por lo que el gas natural es mas explosivo que el dihidrogeno En la actualidad existen cuatro formas de utilizar el hidrogeno para producir energia Uniendo sus nucleos dentro de un reactor denominado Tokamak durante el proceso conocido como fusion nuclear Combinandolo electroquimicamente con el dioxigeno sin generar llama para producir directamente electricidad dentro de un reactor conocido como pila de combustible Combinandolo quimicamente con el dioxigeno del aire a traves de quemadores convencionales y a traves de procesos cataliticos metodo que cuenta con una amplia aplicacion domestica Combinandolo quimicamente con el oxigeno en medio acuoso dentro de una caldera no convencional para producir vapor motriz en el ciclo conocido como Chan K iin 1 Uno de los principales problemas que se tienen con el dihidrogeno es su almacenamiento y transporte Si se confina en forma gaseosa el contenedor tendria que soportar presiones de hasta 200 atmosferas Si se desea almacenar en forma liquida se tiene que enfriar a 253 C y posteriormente guardarse en un deposito perfectamente aislado Otra forma de almacenamiento se puede llevar a cabo mediante una reaccion quimica reversible con diversas sustancias para formar hidruros metalicos Propiedades fisicas y quimicas EditarLas caracteristicas de solubilidad y de adsorcion del dihidrogeno con varios metales son muy importantes en la metalurgia algunos metales pueden sufrir debilitamiento por hidrogeno y en el desarrollo de formas seguras de almacenamiento para su uso como combustible El dihidrogeno es muy soluble en muchos compuestos formados por metales de las tierras raras y metales de transicion 5 y puede disolverse tanto en metales cristalinos como en metales amorfos 6 La solubilidad del dihidrogeno en los metales esta influenciada por las distorsiones locales y las impurezas de la red cristalina del metal 7 Combustion Editar En la imagen se aprecia la diferencia entre la llama de dihidrogeno en los motores de la lanzadera casi invisible y las llamas de otros combustibles en los cohetes propulsores laterales El dihidrogeno gaseoso es muy inflamable y arde en concentraciones muy bajas en aire 4 de H2 La entalpia de combustion del dihidrogeno es 286 kJ mol y la reaccion de combustion es la siguiente 2 H2 g O2 g 2 H2O l 572 kJ molCuando se mezcla con dioxigeno en un amplio rango de proporciones el dihidrogeno explota En el aire el dihidrogeno arde violentamente Las llamas de dioxigeno y dihidrogeno puro son casi invisibles al ojo humano como se constata al ver lo tenues que son las llamas de los motores principales de las lanzaderas espaciales en contraposicion a lo facilmente visibles que son las llamas de los cohetes impulsores de las lanzaderas Por este motivo es dificil detectar visualmente si un escape de dihidrogeno esta ardiendo Las llamas que se aprecian en las fotos del dirigible Hindenburg son llamas de dihidrogeno coloreadas por el material de la cubierta de la aeronave que contenia carbono y polvo de aluminio piroforico asi como otros materiales combustibles 8 Independientemente de la causa de este incendio es claro que se produjo la ignicion del dihidrogeno ya que en ausencia de este gas la cubierta del dirigible habria tardado horas en quemarse 9 Otra caracteristica de los fuegos alimentados por dihidrogeno es que las llamas tienden a ascender rapidamente con el gas a traves del aire algo que tambien se puede apreciar en las fotografias del accidente del Hindenburg causando menos danos que los fuegos alimentados por hidrocarburos Por ejemplo dos tercios de los pasajeros del dirigible sobrevivieron al incendio y muchas de las muertes que se produjeron fueron por caidas al vacio y por la combustion de gasolina 10 El H2 reacciona directamente con otros elementos oxidantes Puede producirse una reaccion espontanea y violenta a temperatura ambiente en presencia de dicloro o difluor con la formacion de los correspondientes halogenuros de hidrogeno cloruro de hidrogeno y fluoruro de hidrogeno Historia EditarDescubrimiento del H2 Editar El hidrogeno diatomico gaseoso H2 fue formalmente descrito por primera vez por T Von Hohenheim mas conocido como Paracelso 1493 1541 que lo obtuvo artificialmente mezclando metales con acidos fuertes Paracelso no era consciente de que el gas inflamable generado en estas reacciones quimicas estaba formado por un nuevo elemento quimico En 1671 Robert Boyle redescubrio y describio la reaccion que se producia entre limaduras de hierro y acidos diluidos y que generaba dihidrogeno gaseoso 11 En 1766 Henry Cavendish fue el primero en reconocer el dihidrogeno gaseoso como una sustancia discreta identificando el gas producido en la reaccion un metal y un acido como aire inflamable y descubriendo que la combustion del gas generaba agua Cavendish tropezo con el dihidrogeno cuando experimentaba con acidos y mercurio Aunque asumio erroneamente que el dihidrogeno era un componente liberado por el mercurio y no por el acido fue capaz de describir con precision varias propiedades fundamentales del dihidrogeno Tradicionalmente se considera a Cavendish el descubridor de este elemento En 1783 Antoine Lavoisier dio al elemento el nombre de hidrogeno en frances Hydrogene del griego ὕdwr ὕdᾰtos agua y genos oy generador cuando comprobo junto a Laplace el descubrimiento de Cavendish de que la combustion del gas generaba agua Primeros usos Editar Uno de los primeros usos que se dio al dihidrogeno gaseoso fue como gas de relleno para globos aerostaticos y mas tarde otras aeronaves El dihidrogeno gaseoso se obtenia por reaccion entre el acido sulfurico y el hierro metalico La alta y rapida inflamabilidad del dihidrogeno gaseoso se dejo patente en la tragedia del dirigible Hindenburg en 1937 que se incendio cuando aterrizaba provocando la muerte de 35 personas Debido a esta peligrosidad que presentaba el dihidrogeno gaseoso fue reemplazado posteriormente en globos y aeronaves por el helio gaseoso un gas inerte El dihidrogeno puede inflamarse rapidamente en el aire Esto es lo que sucedio en el desastre del Hindenburg el 6 de mayo de 1937 Obtencion y produccion EditarEl H2 se obtiene en laboratorios de Quimica y de Biologia a menudo como subproducto de otras reacciones en la industria se obtiene para la hidrogenacion de sustratos insaturados y en la naturaleza como medio para expeler equivalentes reductores en las reacciones bioquimicas Sintesis en laboratorio Editar En el laboratorio el H2 suele obtenerse por la reaccion de acidos con metales tales como el zinc Zn 2 H Zn2 H2En el caso del aluminio no solo se genera H2 cuando es tratado con un acido sino que tambien lo hace cuando se le trata con una base 2 Al 6 H2O 2 Al OH 3 3 H2La electrolisis del agua es un metodo simple de producir dihidrogeno aunque el gas resultante posee necesariamente menos energia de la requerida para producirlo Una corriente de bajo voltaje atraviesa el agua formandose dioxigeno gaseoso en el anodo y dihidrogeno gaseoso en el catodo Generalmente cuando se produce dihidrogeno que va a ser almacenado se emplea un catodo de platino o de algun otro metal inerte Por el contrario si el dihidrogeno va a ser consumido in situ es necesaria la presencia de dioxigeno para que se produzca la combustion y se procura que ambos electrodos tanto anodo como catodo sean de metal inerte si se empleara un metal no inerte por ejemplo el hierro este se oxidaria y disminuiria la cantidad de dioxigeno que se desprende La maxima eficiencia teorica electricidad empleada frente al valor energetico del dihidrogeno generado es de entre un 80 y un 94 12 2H2O aq 2H2 g O2 g En el ano 2007 se descubrio que una aleacion de aluminio y galio en forma de pastilla anadida al agua puede emplearse para obtener dihidrogeno 13 El proceso tambien produce oxido de aluminio pero el galio que posee un elevado precio que previene la formacion de una capa de oxido en la superficie de la pastilla puede reutilizarse Este descubrimiento tiene importantes implicaciones en la economia del dihidrogeno ya que este puede sintetizarse in situ facilmente y no necesita ser transportado Sintesis industrial Editar El dihidrogeno puede obtenerse de distintas maneras pero las mas economicas implican su extraccion a partir de hidrocarburos El dihidrogeno comercial se produce generalmente mediante el reformado con vapor del gas natural 14 Este proceso consiste en la reaccion de una corriente de vapor de agua con metano para originar monoxido de carbono y dihidrogeno a una temperatura de entre 700 C y 1100 C CH4 H2O CO 3 H2Esta reaccion esta favorecida a bajas presiones sin embargo se lleva a cabo a altas presiones 20 atm ya que el H2 de alta presion es el producto mas comercializable La mezcla producida se conoce como gas de sintesis porque a menudo se usa directamente para la produccion de metanol y otros compuestos relacionados Aparte del metano pueden usarse otros hidrocarburos para generar el gas de sintesis con distintas proporciones de los componentes productos Una de las complicaciones que se presenta en esta tecnologia altamente optimizada es la formacion de coque o carbon CH4 C 2 H2Para evitarlo el reformado con vapor suele emplear un exceso de H2O Puede recuperarse dihidrogeno adicional en este proceso a partir del monoxido de carbono mediante una reaccion de desplazamiento del agua gaseosa especialmente con un catalizador de oxido de hierro Esta reaccion tambien se emplea industrialmente como fuente de dioxido de carbono 14 CO H2O CO2 H2Otros metodos importantes para la produccion de H2 incluyen la oxidacion parcial de hidrocarburos CH4 0 5 O2 CO 2 H2y la reaccion del carbon que puede servir como preludio a la reaccion de desplazamiento mencionada anteriormente 14 C H2O CO H2Muchas veces el dihidrogeno es producido y consumido en el mismo proceso industrial sin necesidad de ser separado En el proceso Haber Bosch para la sintesis de amoniaco el quinto compuesto mas producido industrialmente en el mundo el dihidrogeno se obtiene a partir del gas natural El dihidrogeno tambien se produce en cantidades significativas como un subproducto en la mayoria de los procesos petroquimicos de cracking con vapor y reformado La electrolisis de la salmuera para obtener dicloro tambien genera dihidrogeno como subproducto Sintesis biologica Editar Micrografia mostrando los cloroplastos en un tejido vegetal Las hidrogenasas presentes en estos organulos son capaces de generar H2 gaseoso El dihidrogeno es un producto de algunos tipos de metabolismo anaerobico y es generado por muchos microorganismos generalmente a traves de reacciones catalizadas por enzimas que contienen hierro o niquel llamadas hidrogenasas Estas enzimas catalizan la reaccion redox reversible entre el H2 y sus dos protones y dos electrones La evolucion del dihidrogeno gaseoso tiene lugar en la transferencia de equivalentes reductores producidos durante el metabolismo del piruvato al agua 15 La separacion del agua en la que esta se descompone en sus protones electrones y dioxigeno tiene lugar en las reacciones de la fase luminosa del metabolismo de los organismos fotosinteticos Algunos de esos organismos incluyendo el alga Chlamydomonas reinhardtii y las cianobacterias han evolucionado desarrollando un segundo paso en las reacciones de la fase oscura en el que los protones se reducen para formar H2 gaseoso por la accion de hidrogenasas especializadas en los cloroplastos 16 Se han realizado esfuerzos para modificar geneticamente las hidrogenasas bacterianas para sintetizar H2 gaseoso de manera eficiente incluso en presencia de dioxigeno 17 Existen otras rutas poco frecuentes aunque mecanisticamente interesantes para la produccion de H2 en la naturaleza La nitrogenasa genera aproximadamente un equivalente de H2 por cada equivalente de N2 reducido a amoniaco Algunas fosfatasas reducen fosfitos a H2 Formas EditarEn condiciones normales el gas dihidrogeno es una mezcla de moleculas de dos tipos de atomos de hidrogeno diferentes en funcion de la direccion del espin de sus electrones y nucleos Estas formas se conocen como orto y para hidrogeno El hidrogeno normal esta compuesto por un 25 de la forma para y un 75 de la forma orto la considerada normal aunque no pueda obtenerse en estado puro Ambas formas tienen energias ligeramente diferentes lo que provoca que sus propiedades fisicas no sean identicas asi por ejemplo la forma para tiene puntos de fusion y ebullicion 0 1 K mas bajos que la forma orto Precauciones EditarEl dihidrogeno es un gas extremadamente inflamable Reacciona violentamente con el difluor y el dicloro especialmente con el primero con el que la reaccion es tan rapida e imprevisible que no se puede controlar Tambien es peligrosa su despresurizacion rapida ya que a diferencia del resto de gases al expandirse por encima de 40 C se calienta pudiendo inflamarse Especificaciones tecnicas del dihidrogenoICSC 0001 CAS UN 1049 CE 001 001 00 9 Punto de ebullicion 252 8 C Muy poco miscible en agua Temperatura de autoignicion 580 C Punto de congelacion 252 9 C Temperatura critica 240 9 CPeligros Editar Fisicos Editar El gas es mas ligero que el aire El gas se mezcla bien con el aire formandose facilmente mezclas explosivas Quimicos Editar El calentamiento intenso puede originar combustion violenta o explosion Reacciona violentamente con aire dioxigeno dicloro difluor y oxidantes fuertes originando peligro de incendio y explosion Los metales catalizadores tales como el platino o el niquel aumentan la velocidad de este tipo de reacciones Incendios Editar Evitar las llamas no producir chispas y no fumar Extremadamente inflamable Su rango de inflamabilidad es muy grande Muchas reacciones pueden producir incendio o explosion Si es posible cortar el suministro Si se puede y no existe riesgo para el entorno proximo dejar que el fuego se extinga por si mismo Apagar con agua pulverizada polvo dioxido de carbono y halon El dihidrogeno cuando se produce fuego o explosion se quema con una llama casi invisible Explosion Editar Las mezclas gas aire son explosivas Como prevencion se debe tener la ventilacion adecuada Las herramientas manuales no deben generar chispas Los equipos electricos y de alumbrado deben estar preparados a prueba de explosion El incendio debe de combatirse desde un lugar protegido Derrames y fugas Editar Para comprobar si existen escapes utilizar agua y jabon Evacuar la zona de peligro Ventilar las areas cerradas para prevenir la formacion de atmosferas inflamables o deficientes en dioxigeno La ventilacion puede ser manual o mecanica Eliminar todas las fuentes potenciales de ignicion Para ayuda adicional consultar a un experto Llevar equipo autonomo de respiracion Exposicion Editar El dihidrogeno no es toxico y esta clasificado como un simple asfixiante La cantidad necesaria para reducir las concentraciones del dioxigeno en un nivel inferior al requerido para soportar la vida causaria mezclas dentro de los rangos de inflamabilidad Por tanto se prohibe la entrada en areas que contengan mezclas inflamables debido al peligro inmediato de incendio o explosion El dihidrogeno se puede absorber por inhalacion y a traves de la piel Al ocasionarse perdidas en zonas confinadas este liquido se evapora muy rapidamente originando una saturacion total del aire pudiendo producir asfixia dificultad respiratoria y perdida de conocimiento Como prevencion se debe tener la ventilacion adecuada introduciendo aire limpio En contacto con liquido se produce la congelacion Como prevencion se deben utilizar guantes aislantes del frio y traje de proteccion Almacenamiento Editar Almacenar los cilindros y contenedores en areas bien ventiladas Mantener los cilindros alejados de las fuentes de ignicion y de material combustible Evitar poner los cilindros en areas en las que haya sales y otros productos quimicos corrosivos El almacenamiento del dihidrogeno debe de estar separado de los gases oxidantes tales como dioxigeno difluor etc al menos a 6 metros de distancia Hidrogeneras Editar Las hidrogeneras son las estaciones de servicio preparadas para servir dihidrogeno en los coches propulsados por pilas de combustible Vease tambien EditarHidrogeno Economia del hidrogeno Vehiculo de hidrogeno Pila de combustible Tecnologias de hidrogenoReferencias Editar Numero CAS Connelly Neil G 2005 Nomenclature of inorganic chemistry IUPAC recommendations Nomenclature of Inorganic Chemistry p 49 ISBN 0 85404 438 8 Los Alamos National Laboratory Hydrogen Archivado desde el original el 31 de agosto de 2005 Consultado el 15 de septiembre de 2005 See Romm Joseph 2004 The Hype about Hydrogen Fact and Fiction in the Race to Save the Climate Nueva York Island Press ISBN 1 55963 704 8 Takeshita T Wallace WE Craig RS 1974 Hydrogen solubility in 1 5 compounds between yttrium or thorium and nickel or cobalt Inorg Chem 13 9 2282 Kirchheim R Mutschele T Kieninger W 1988 Hydrogen in amorphous and nanocrystalline metals Mater Sci Eng 99 457 462 Kirchheim R 1988 Hydrogen solubility and diffusivity in defective and amorphous metals Prog Mater Sci 32 4 262 325 Bain A Van Vorst WD 1999 The Hindenburg tragedy revisited the fatal flaw exposed International Journal of Hydrogen Energy 24 5 399 403 Dziadecki John 2005 Hindenburg Hydrogen Fire Consultado el 16 de enero de 2007 The Hindenburg Disaster Swiss Hydrogen Association Archivado desde el original el 24 de junio de 2007 Consultado el 16 de enero de 2007 Webelements Hydrogen historical information Consultado el 15 de septiembre de 2005 https web archive org web 20080216050327 http bellona org filearchive fil Hydrogen 6 2002 pdf Informe de la empresa Bellona sobre el hidrogeno New process generates hydrogen from aluminum alloy to run engines fuel cells a b c Oxtoby DW Gillis HP Nachtrieb NH 2002 Principles of Modern Chemistry 5th ed Thomson Brooks Cole Cammack R Frey M Robson R Hydrogen as a Fuel Learning from Nature Taylor amp Francis London 2001 Kruse O Rupprecht J Bader KP Thomas Hall S Schenk PM Finazzi G Hankamer B 2005 Improved photobiological H2 production in engineered green algal cells J Biol Chem 280 40 34170 7 United States Department of Energy FY2005 Progress Report IV E 6 Hydrogen from Water in a Novel Recombinant Oxygen Tolerant Cyanobacteria System HO Smith Xu Q http www hydrogen energy gov pdfs progress05 iv e 6 smith pdf Visitado el 16 de agosto de 2006 Enlaces externos Editar Wikcionario tiene definiciones y otra informacion sobre hidrogeno Wikimedia Commons alberga una galeria multimedia sobre Dihidrogeno WebElements com EnvironmentalChemistry com Es Elemental El hidrogeno como combustible Datos Q3027893 Multimedia DihydrogenObtenido de https es wikipedia org w index php title Dihidrogeno amp oldid 135017402, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos