fbpx
Wikipedia

Cloroplasto

Los cloroplastos son los orgánulos celulares que en los organismos eucariotas fotosintetizadores, se encargan de realizar la fotosíntesis. Están limitados por una envoltura formada por las dos membranas concéntricas y contienen muchas vesículas, los tilacoides, donde se encuentran organizados los pigmentos y demás moléculas que convierten la energía lumínica en energía química, como la clorofila.

Estructura de un cloroplasto.

El término cloroplastos sirve alternativamente para designar a cualquier plasto dedicado a la fotosíntesis, o específicamente a los plastos verdes propios de las algas verdes y las plantas. Aunque el reciente descubrimiento adiciona a más individuos en la lista, como lo es en el caso de Elysia chlorotica, que al digerir al alga Vaucheria litorea, adquiere los cloroplastos a sus tejidos, y gracias a esto, puede realizar la fotosíntesis.

Estructura

 
Células vegetales en las que son visibles los cloroplastos.

El cloroplasto está rodeado de dos membranas, con una estructura continua que delimita completamente el cloroplasto. Entre ambas queda un espacio intermembranario llamado a veces indebidamente espacio periplastidial. La membrana externa es muy permeable gracias a la presencia de porinas, en mayor medida que la membrana interna, que contiene proteínas específicas para el transporte. La cavidad interna llamada estroma, en la que se llevan a cabo reacciones de fijación de CO2, contiene ADN circular bicatenario, ribosomas (de tipo 70S, como los bacterianos), gránulos de almidón, lípidos y otras sustancias.

También hay una serie de sáculos delimitados por una membrana llamados tilacoides, que en los cloroplastos de las plantas terrestres se organizan en apilamientos llamados grana (plural de granum, grano). Las membranas de los tilacoides contienen sustancias como los pigmentos fotosintéticos (clorofila, carotenoides, xantófilas), diversos lípidos, proteínas de la cadena de transporte de electrones fotosintética y enzimas, como la ATP sintasa.

Al observar la estructura del cloroplasto y compararlo con la mitocondria, se nota que ésta tiene dos sistemas de membrana, delimitando un compartimento interno (matriz) y otro externo, el espacio perimitocondrial, mientras que el cloroplasto tiene tres membranas que forman tres compartimentos: el espacio intermembranario, el estroma y el espacio intratilacoidal.

Plastoglóbulos

Como parte de la estructura del cloroplasto, también se pueden encontrar plastoglóbulos, que se desprenden de los tilacoides y están rodeados de una membrana similar a la de los tilacoides,[1]​ y en su interior son gotas compuestas por moléculas orgánicas entre las que preponderan ciertos lípidos. La función de las moléculas de los plastoglóbulos todavía se está estudiando.

Funciones

 
Cloroplasto obtenido mediante microscopía electrónica.

El cloroplasto es el orgánulo donde se realiza la fotosíntesis en las células eucariotas vegetales. El conjunto de reacciones de la fotosíntesis es realizada gracias a todo un complejo de moléculas presentes en el cloroplasto, una en particular, presente en la membrana de los tilacoides, es la responsable de tomar la energía del Sol, es llamada clorofila.

Existen dos fases, que se desarrollan en compartimentos distintos:

La división de contenido de la célula en varios compartimentos representa un desafío de organización en cuanto a tráfico de proteínas. El tráfico de proteínas en una célula eucariota está regulado por:

1.    Señales de clasificación (péptido señal de proteínas secretadas con el grupo manosa-fosfato de enzimas lisosómicas)

2.    Receptores que reconocen estas señales y trasladan a las proteínas que las contienen a los compartimientos apropiados.

Cuatro principales organelos de la célula (mitocondria, peroxisomas, núcleo y cloroplasto), importan proteínas a través de una o varias membranas limitantes externas.  Por ejemplo: en el retículo endoplasmático rugoso, las proteínas que importan estos organelos contienen secuencias de aminoácidos que sirven como "domicilios" que reconocen los receptores en la membrana externa del organelo.

A diferencia del Retículo endoplasmático rugoso que casi importa sus proteínas al mismo tiempo de la traducción, las proteínas de estos otros organelos se importan después de la traducción, es decir, después de completar la síntesis en los ribosomas libres en el citosol. 

Los cloroplastos poseen los siguientes subcompartimentos a los que pueden llegar las proteínas:

1)      Membranas de envoltura interna y externa

2)      espacio intermembranoso

3)      estroma

4)      membrana tilacoidal

5)      luz tilacoide

Los mecanismos de importación del cloroplasto son muy similares a los de la mitocondria, aunque sus translocaciones evolucionaron de manera independiente.

Como sucede en la mitocondria:

1.    La gran mayoría de las proteínas de los cloroplastos se importan en el citosol.

2.    Las membranas de la envoltura externa e interna contienen diferentes complejos de translocación (TOC y TIC) que funcionan juntos durante la importación.

3.    Las moléculas chaperonas ayudan a desplegar los polipéptidos en el citosol y plegar las proteínas en el cloroplasto.

4.    Las proteínas destinadas al cloroplasto se sintetizan con una secuencia terminal N removible (péptido de tránsito).

El péptido de tránsito además de dirigir al polipéptido también le proporciona un “domicilio” que lo localiza al polipéptido en uno de los varios compartimentos dentro del organelo. Todas las proteínas que pasan por la envoltura del cloroplasto tienen un dominio de dirección estromal como parte de su péptido de tránsito que garantiza que el polipéptido entre al estroma. Una vez en el estroma, se retira al dominio de la directriz del estroma mediante una peptidasa procesadora que se encuentra en ese compartimento. Los polipéptidos que pertenecen a la membrana tilacoidal a la luz del tilacoide poseen un segmento adicional en el polipéptido de tránsito, el dominio de transferencia del tilacoide que determina su entrada al tilacoide.

Se han identificado distintas vías y a través de ellas las proteínas se insertan en la membrana tilacoidal o se trasladan a la luz del tilacoide.

Muchas de las proteínas que residen dentro de la membrana tilacoidal se codifican en genes del cloroplasto y se sintetizan en ribosomas unidos a la membrana del cloroplasto.[2]

Pigmentos

 
Un cromóforo es un material que absorbe la luz de ciertos colores, reflejando la luz de otros.[nota 1]​ La luz absorbida por los cromóforos de la membrana tilacoide de los cloroplastos es utilizada como fuente de energía que impulsa la fotosíntesis.

La clorofila a es un cromóforo presente en todos los cloroplastos (y en las cianobacterias de las que se originaron). Las moléculas capaces de absorber luz de algunos colores y reflejar luz de otros se llaman cromóforos, en plantas, los cromóforos están unidos a otras moléculas (proteínas) que les modifican un poco el color de luz absorbido, al complejo formado por cromóforo + proteína se lo llama pigmento, a los fines de este texto trataremos a los cromóforos con el nombre de "pigmentos"[nota 2]​). La clorofila a absorbe luz de colores rojo y azul, reflejando principalmente el verde (de la luz visible). Pero no es el único pigmento, en la membrana de los tilacoides se encuentran diferentes pigmentos que absorben luz de algunos colores con el fin último de impulsar la fotosíntesis. De aquellos, los que no son clorofila a se llaman pigmentos accesorios. Los pigmentos accesorios permiten captar la energía de la luz de colores diferentes de los captados por la clorofila a. Por ejemplo, se han presentado pequeñas variaciones en la estructura química de la clorofila a debidas a la evolución, estas variaciones son pigmentos accesorios llamados clorofila b, clorofila c1, etc., y captan luz de colores ligeramente diferentes de los que capta la clorofila a, reflejando siempre, principalmente, en la gama del verde. Las demás clorofilas no se encuentran en todos los eucariotas fotosintéticos sino en algunos grupos cuyo cloroplasto desciende de un ancestro común, y comparten casi la vía biosintética con la clorofila a, con un pequeño cambio en la vía que da una clorofila diferente. Hay otros pigmentos accesorios, que no necesariamente se sintetizan por las mismas vías que las clorofilas y por lo tanto su estructura química no es similar a la de ellas, que absorben luz de otros colores, y pueden presentar también sus variaciones debidas a la evolución.[3]​ Son pigmentos accesorios muy comunes, por ejemplo, los diferentes carotenoides (que captan luz de las gamas verde-azuladas,[nota 3]​ y reflejan la luz roja, naranja y amarilla). En la membrana de los tilacoides, en cada complejo que realiza fotosíntesis sólo un par de moléculas de clorofila a (un dímero) son las responsables de impulsar el proceso de fotosíntesis, el resto de la clorofila a y de los pigmentos accesorios se encuentra alrededor de ese par formando "complejos antena" que captan, de la luz que les llega, los colores que les están permitidos, y le transfieren esa energía al par central. Luego transcurre la fotosíntesis por la fase lumínica y luego la fase oscura.

Cada pigmento le da un color diferente a la planta, y a veces llegan a enmascarar el color verde que refleja la clorofila a, siempre presente. Por ejemplo las "algas verdes" tienen principalmente clorofilas, mientras que las algas pardas tienen además fucoxantina que les da su color característico. Debido a que hay hábitats donde la intensidad de luz es muy baja en los colores que capta la clorofila a y más alta en otros colores, los pigmentos accesorios permiten que la planta explore hábitats que de otra forma serían difíciles de alcanzar: así por ejemplo, como la luz azul es la que tiene la mayor penetración en el agua, las algas rojas, que contienen varios pigmentos que absorben los colores azulados (y reflejan los rojos), pueden permitirse vivir en el mar a mayores profundidades que las demás algas. En el mar, la concentración de pigmentos fotosintéticos (en particular de clorofila a) está relacionada con la densidad de algas, por lo que su estimación es muy utilizada para estimar la densidad de algas en relación a la profundidad y al área, y se utilizan técnicas de sensores satelitales (que pueden reconocer los colores absorbidos por los pigmentos) para este propósito.

En animales

 
Elysia chlorotica se ve de color verde luego de haber adquirido la capacidad de realizar fotosíntesis.

Hay animales que pueden adquirir cloroplastos por un proceso diferente de la endosimbiosis y que no se heredan. Por un proceso llamado cleptoplastia los organismos heterótrofos consumen y retienen los cloroplastos de un organismo fotosintético. Por ejemplo en el "caracol de mar" sarcoglosso Elysia chlorotica, que es el organismo donde más se estudió este suceso, los cloroplastos se consumen junto con las algas que forman parte del alimento del organismo, el resto del alga se degrada y los cloroplastos se secuestran (se mantienen dentro del citoplasma de las células que debían degradarlos, pasando a ser "cleptoplastos"), de esta manera forman parte de los tejidos del organismo que gana la habilidad de realizar fotosíntesis por un tiempo que puede llegar a ser de varios meses. La eficiencia de la fotosíntesis de estos cleptoplastos es tan alta que si la intensidad de luz es buena, estos moluscos no necesitan alimentarse. Las bases de la longevidad del cleptoplasto y la forma en que son integrados al metabolismo del hospedador son áreas de intensa investigación.[4]

Otros tipos de plastos

 
Tipos de plástidos, o plastos.

Origen

Los cloroplastos se originan por un proceso denominado simbiogénesis, en donde se produce la unión quimérica entre un huésped protista heterótrofo biflagelado, probablemente fagótrofo, y una bacteria fotosintética oxigénica endosimbionte, esto significa que el primer plasto desciende directamente de una cianobacteria. Esto pudo ser un evento único en la historia de la vida y daría un respaldo a la monofilia del clado Primoplantae (primera planta) o Archaeplastida (el antiguo plasto), además equivale al origen de la primera célula vegetal, cuyos cloroplastos son los ancestros de todos los plastos existentes, incluyendo aquellos de otros grupos como los cromistas, dinoflagelados y alveolados.

La filogenia de las cianobacterias aún no está consensuada. Una versión sobre las relaciones filogenéticas sobre la base de secuencias moleculares es la siguiente[5]​ (grupos en comillas son parafiléticos):

Cyanobacteria 

 Gloeobacter

 

 Synechococcales

 

 cloroplastos

 

 "Chroococcales"

 

 "Oscillatoriales"

 

 "Nostocales"

 

 Stigonematales

Evolución y filogenia

La aparición de los cloroplastos parece ser un evento único, de tal manera que todos los tipos de plastos actuales, tanto de plantas como de todas las algas, descienden en última instancia del este primero cloroplasto (Archaeplastida) en un proceso denominado endosimbiosis primaria. Sin embargo, los plastos tienen una compleja historia evolutiva, con múltiples eventos endosimbióticos, originándose grupos de algas por endosimbiosis secundaria a partir de la simbiogénesis entre un protista biflagelado con un alga clorofita o rodofita, y eventos de endosimbiosis terciaria en varios dinoflagelados.[6]

No hay consenso sobre el número de eventos endosimbióticos, ni las exactas relaciones filogenéticas entre todos los eucariontes fotosintéticos; pero en líneas generales las principales líneas evolutivas son las siguientes:[7]

primer plasto <br />(Archaeplastida)
 cianelas

 Glaucophyta

 rodoplastos (Rhodophyta)

 Cyanidiophytina

 

 Rhodophytina (algas rojas)

 

Cryptophyta

Haptophyta

Heterokonta (inc. algas pardas)

Chromerida (Alveolata)

 cloroplasto(Chloroplastida)  

 Streptophyta (incluye las plantas terrestres)

 

"Chlorophyta"

 

Euglenales

Chlorarachniophyta

La endosimbiosis secundaria más importante ocurre con un alga roja relacionada con Rhodophytina[8]​ y sus plastos suelen llamarse rodoplastos. Este proceso puede ser clave en el origen de las llamadas algas cromofitas (Chromalveolata y/o Chromista), aunque la relación entre subgrupos aún no está consensuada. En dinoflagelados hay varios casos de endosimbiosis terciaria, de tal forma que hay géneros que llevan plastos criptófitos, haptófitos, heterokontófitos o clorófitos. En euglénidos y cloraracniofitas se produjo una endosimbiosis secundaria con un alga clorofita.[9]

Véase también

Referencias

  1. Austin et al. 20 are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylacoid membranes and contain biosynthetic enzime. Plant Cell 18.
  2. Karp, Gerald. "Biología Celular y Molecular: Conceptos y Experimentos". Mc Graw Hill. 2011. Pp 309-311
  3. Por ejemplo en Vershinin 1999. Biological functions of carotenoids - diversity and evolution.
  4. Wise, Hoober. The Structure and Function of Plastids.
  5. Enrique Flores AH (2008). The Cyanobacteria: Molecular Biology, Genomics and Evolution. Horizon. p. 3. ISBN 1-904455-15-8. 
  6. Keeling PJ. 2004. Diversity and evolutionary history of plastids and their hosts. Am J Bot. 2004 Oct;91(10):1481-93. doi: 10.3732/ajb.91.10.1481.
  7. Keeling PJ. 2004. Fig.3. Endosymbiosis in the history of plastid evolution.
  8. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids
  9. Endosymbiosis and Origin of Eukaryotic Algae de Biocyclopeia.com

Notas

  1. Un cromóforo también puede emitir luz por fluorescencia, fenómeno que será ignorado en este texto.
  2. El mismo cromóforo puede encontrarse en dos pigmentos diferentes, absorbiendo luz de colores ligeramente diferentes. Como en los pigmentos P700 y P680, también llamados centros de reacción, que describen un complejo de cromóforo-proteína que absorbe luz en un pico de 700 y de 680 nm respectivamente (y forman parte de los fotosistemas I y II respectivamente), a pesar de que los dos pigmentos poseen el mismo cromóforo, la clorofila a: Heldt, Piechulla. Plant Biochemistry. Fourth edition 2011. p.50
  3. El espectro de colores que captan los carotenoides, en la literatura se llama verde-azul, por ejemplo en Berera et al. 2012 The Photophysics of the Orange Carotenoid Protein, a Light-Powered Molecular Switch

Enlaces externos

  •   Wikcionario tiene definiciones y otra información sobre cloroplasto.
  •   Datos: Q47263
  •   Multimedia: Chloroplasts

cloroplasto, cloroplastos, orgánulos, celulares, organismos, eucariotas, fotosintetizadores, encargan, realizar, fotosíntesis, están, limitados, envoltura, formada, membranas, concéntricas, contienen, muchas, vesículas, tilacoides, donde, encuentran, organizad. Los cloroplastos son los organulos celulares que en los organismos eucariotas fotosintetizadores se encargan de realizar la fotosintesis Estan limitados por una envoltura formada por las dos membranas concentricas y contienen muchas vesiculas los tilacoides donde se encuentran organizados los pigmentos y demas moleculas que convierten la energia luminica en energia quimica como la clorofila Estructura de un cloroplasto El termino cloroplastos sirve alternativamente para designar a cualquier plasto dedicado a la fotosintesis o especificamente a los plastos verdes propios de las algas verdes y las plantas Aunque el reciente descubrimiento adiciona a mas individuos en la lista como lo es en el caso de Elysia chlorotica que al digerir al alga Vaucheria litorea adquiere los cloroplastos a sus tejidos y gracias a esto puede realizar la fotosintesis Indice 1 Estructura 1 1 Plastoglobulos 2 Funciones 3 Pigmentos 4 En animales 5 Otros tipos de plastos 6 Origen 7 Evolucion y filogenia 8 Vease tambien 9 Referencias 10 Notas 11 Enlaces externosEstructura Editar Celulas vegetales en las que son visibles los cloroplastos El cloroplasto esta rodeado de dos membranas con una estructura continua que delimita completamente el cloroplasto Entre ambas queda un espacio intermembranario llamado a veces indebidamente espacio periplastidial La membrana externa es muy permeable gracias a la presencia de porinas en mayor medida que la membrana interna que contiene proteinas especificas para el transporte La cavidad interna llamada estroma en la que se llevan a cabo reacciones de fijacion de CO2 contiene ADN circular bicatenario ribosomas de tipo 70S como los bacterianos granulos de almidon lipidos y otras sustancias Tambien hay una serie de saculos delimitados por una membrana llamados tilacoides que en los cloroplastos de las plantas terrestres se organizan en apilamientos llamados grana plural de granum grano Las membranas de los tilacoides contienen sustancias como los pigmentos fotosinteticos clorofila carotenoides xantofilas diversos lipidos proteinas de la cadena de transporte de electrones fotosintetica y enzimas como la ATP sintasa Al observar la estructura del cloroplasto y compararlo con la mitocondria se nota que esta tiene dos sistemas de membrana delimitando un compartimento interno matriz y otro externo el espacio perimitocondrial mientras que el cloroplasto tiene tres membranas que forman tres compartimentos el espacio intermembranario el estroma y el espacio intratilacoidal Plastoglobulos Editar Como parte de la estructura del cloroplasto tambien se pueden encontrar plastoglobulos que se desprenden de los tilacoides y estan rodeados de una membrana similar a la de los tilacoides 1 y en su interior son gotas compuestas por moleculas organicas entre las que preponderan ciertos lipidos La funcion de las moleculas de los plastoglobulos todavia se esta estudiando Funciones EditarArticulo principal Fotosintesis Cloroplasto obtenido mediante microscopia electronica El cloroplasto es el organulo donde se realiza la fotosintesis en las celulas eucariotas vegetales El conjunto de reacciones de la fotosintesis es realizada gracias a todo un complejo de moleculas presentes en el cloroplasto una en particular presente en la membrana de los tilacoides es la responsable de tomar la energia del Sol es llamada clorofila Existen dos fases que se desarrollan en compartimentos distintos Fase luminosa Se realiza en la membrana celular de los tilacoides donde se halla la cadena de transporte de electrones y la ATP sintasa responsables de la conversion de la energia luminica en energia quimica ATP y de la generacion poder reductor NADPH Fase oscura Se produce en el estroma donde se halla el enzima RuBisCO responsable de la fijacion del CO2 mediante el ciclo de Calvin La division de contenido de la celula en varios compartimentos representa un desafio de organizacion en cuanto a trafico de proteinas El trafico de proteinas en una celula eucariota esta regulado por 1 Senales de clasificacion peptido senal de proteinas secretadas con el grupo manosa fosfato de enzimas lisosomicas 2 Receptores que reconocen estas senales y trasladan a las proteinas que las contienen a los compartimientos apropiados Cuatro principales organelos de la celula mitocondria peroxisomas nucleo y cloroplasto importan proteinas a traves de una o varias membranas limitantes externas Por ejemplo en el reticulo endoplasmatico rugoso las proteinas que importan estos organelos contienen secuencias de aminoacidos que sirven como domicilios que reconocen los receptores en la membrana externa del organelo A diferencia del Reticulo endoplasmatico rugoso que casi importa sus proteinas al mismo tiempo de la traduccion las proteinas de estos otros organelos se importan despues de la traduccion es decir despues de completar la sintesis en los ribosomas libres en el citosol Los cloroplastos poseen los siguientes subcompartimentos a los que pueden llegar las proteinas 1 Membranas de envoltura interna y externa2 espacio intermembranoso3 estroma4 membrana tilacoidal5 luz tilacoideLos mecanismos de importacion del cloroplasto son muy similares a los de la mitocondria aunque sus translocaciones evolucionaron de manera independiente Como sucede en la mitocondria 1 La gran mayoria de las proteinas de los cloroplastos se importan en el citosol 2 Las membranas de la envoltura externa e interna contienen diferentes complejos de translocacion TOC y TIC que funcionan juntos durante la importacion 3 Las moleculas chaperonas ayudan a desplegar los polipeptidos en el citosol y plegar las proteinas en el cloroplasto 4 Las proteinas destinadas al cloroplasto se sintetizan con una secuencia terminal N removible peptido de transito El peptido de transito ademas de dirigir al polipeptido tambien le proporciona un domicilio que lo localiza al polipeptido en uno de los varios compartimentos dentro del organelo Todas las proteinas que pasan por la envoltura del cloroplasto tienen un dominio de direccion estromal como parte de su peptido de transito que garantiza que el polipeptido entre al estroma Una vez en el estroma se retira al dominio de la directriz del estroma mediante una peptidasa procesadora que se encuentra en ese compartimento Los polipeptidos que pertenecen a la membrana tilacoidal a la luz del tilacoide poseen un segmento adicional en el polipeptido de transito el dominio de transferencia del tilacoide que determina su entrada al tilacoide Se han identificado distintas vias y a traves de ellas las proteinas se insertan en la membrana tilacoidal o se trasladan a la luz del tilacoide Muchas de las proteinas que residen dentro de la membrana tilacoidal se codifican en genes del cloroplasto y se sintetizan en ribosomas unidos a la membrana del cloroplasto 2 Pigmentos Editar Un cromoforo es un material que absorbe la luz de ciertos colores reflejando la luz de otros nota 1 La luz absorbida por los cromoforos de la membrana tilacoide de los cloroplastos es utilizada como fuente de energia que impulsa la fotosintesis La clorofila a es un cromoforo presente en todos los cloroplastos y en las cianobacterias de las que se originaron Las moleculas capaces de absorber luz de algunos colores y reflejar luz de otros se llaman cromoforos en plantas los cromoforos estan unidos a otras moleculas proteinas que les modifican un poco el color de luz absorbido al complejo formado por cromoforo proteina se lo llama pigmento a los fines de este texto trataremos a los cromoforos con el nombre de pigmentos nota 2 La clorofila a absorbe luz de colores rojo y azul reflejando principalmente el verde de la luz visible Pero no es el unico pigmento en la membrana de los tilacoides se encuentran diferentes pigmentos que absorben luz de algunos colores con el fin ultimo de impulsar la fotosintesis De aquellos los que no son clorofila a se llaman pigmentos accesorios Los pigmentos accesorios permiten captar la energia de la luz de colores diferentes de los captados por la clorofila a Por ejemplo se han presentado pequenas variaciones en la estructura quimica de la clorofila a debidas a la evolucion estas variaciones son pigmentos accesorios llamados clorofila b clorofila c1 etc y captan luz de colores ligeramente diferentes de los que capta la clorofila a reflejando siempre principalmente en la gama del verde Las demas clorofilas no se encuentran en todos los eucariotas fotosinteticos sino en algunos grupos cuyo cloroplasto desciende de un ancestro comun y comparten casi la via biosintetica con la clorofila a con un pequeno cambio en la via que da una clorofila diferente Hay otros pigmentos accesorios que no necesariamente se sintetizan por las mismas vias que las clorofilas y por lo tanto su estructura quimica no es similar a la de ellas que absorben luz de otros colores y pueden presentar tambien sus variaciones debidas a la evolucion 3 Son pigmentos accesorios muy comunes por ejemplo los diferentes carotenoides que captan luz de las gamas verde azuladas nota 3 y reflejan la luz roja naranja y amarilla En la membrana de los tilacoides en cada complejo que realiza fotosintesis solo un par de moleculas de clorofila a un dimero son las responsables de impulsar el proceso de fotosintesis el resto de la clorofila a y de los pigmentos accesorios se encuentra alrededor de ese par formando complejos antena que captan de la luz que les llega los colores que les estan permitidos y le transfieren esa energia al par central Luego transcurre la fotosintesis por la fase luminica y luego la fase oscura Cada pigmento le da un color diferente a la planta y a veces llegan a enmascarar el color verde que refleja la clorofila a siempre presente Por ejemplo las algas verdes tienen principalmente clorofilas mientras que las algas pardas tienen ademas fucoxantina que les da su color caracteristico Debido a que hay habitats donde la intensidad de luz es muy baja en los colores que capta la clorofila a y mas alta en otros colores los pigmentos accesorios permiten que la planta explore habitats que de otra forma serian dificiles de alcanzar asi por ejemplo como la luz azul es la que tiene la mayor penetracion en el agua las algas rojas que contienen varios pigmentos que absorben los colores azulados y reflejan los rojos pueden permitirse vivir en el mar a mayores profundidades que las demas algas En el mar la concentracion de pigmentos fotosinteticos en particular de clorofila a esta relacionada con la densidad de algas por lo que su estimacion es muy utilizada para estimar la densidad de algas en relacion a la profundidad y al area y se utilizan tecnicas de sensores satelitales que pueden reconocer los colores absorbidos por los pigmentos para este proposito Alga verde Su color es dado principalmente por las clorofilas que poseen en los tilacoides de sus cloroplastos Alga parda Su color es dado principalmente por el pigmento accesorio llamado fucoxantina presente en sus cloroplastos Alga roja Su color es dado por varios pigmentos accesorios que captan principalmente los colores azulados En animales Editar Elysia chlorotica se ve de color verde luego de haber adquirido la capacidad de realizar fotosintesis Hay animales que pueden adquirir cloroplastos por un proceso diferente de la endosimbiosis y que no se heredan Por un proceso llamado cleptoplastia los organismos heterotrofos consumen y retienen los cloroplastos de un organismo fotosintetico Por ejemplo en el caracol de mar sarcoglosso Elysia chlorotica que es el organismo donde mas se estudio este suceso los cloroplastos se consumen junto con las algas que forman parte del alimento del organismo el resto del alga se degrada y los cloroplastos se secuestran se mantienen dentro del citoplasma de las celulas que debian degradarlos pasando a ser cleptoplastos de esta manera forman parte de los tejidos del organismo que gana la habilidad de realizar fotosintesis por un tiempo que puede llegar a ser de varios meses La eficiencia de la fotosintesis de estos cleptoplastos es tan alta que si la intensidad de luz es buena estos moluscos no necesitan alimentarse Las bases de la longevidad del cleptoplasto y la forma en que son integrados al metabolismo del hospedador son areas de intensa investigacion 4 Otros tipos de plastos Editar Tipos de plastidos o plastos Plasto Proplasto Etioplasto Cromoplasto Leucoplasto Amiloplasto Estatolito Oleoplasto Apicoplasto GerontoplastoOrigen EditarVease tambien Origen de todas las plantas Los cloroplastos se originan por un proceso denominado simbiogenesis en donde se produce la union quimerica entre un huesped protista heterotrofo biflagelado probablemente fagotrofo y una bacteria fotosintetica oxigenica endosimbionte esto significa que el primer plasto desciende directamente de una cianobacteria Esto pudo ser un evento unico en la historia de la vida y daria un respaldo a la monofilia del clado Primoplantae primera planta o Archaeplastida el antiguo plasto ademas equivale al origen de la primera celula vegetal cuyos cloroplastos son los ancestros de todos los plastos existentes incluyendo aquellos de otros grupos como los cromistas dinoflagelados y alveolados La filogenia de las cianobacterias aun no esta consensuada Una version sobre las relaciones filogeneticas sobre la base de secuencias moleculares es la siguiente 5 grupos en comillas son parafileticos Cyanobacteria Gloeobacter Synechococcales cloroplastos Chroococcales Oscillatoriales Nostocales Stigonematales Evolucion y filogenia EditarLa aparicion de los cloroplastos parece ser un evento unico de tal manera que todos los tipos de plastos actuales tanto de plantas como de todas las algas descienden en ultima instancia del este primero cloroplasto Archaeplastida en un proceso denominado endosimbiosis primaria Sin embargo los plastos tienen una compleja historia evolutiva con multiples eventos endosimbioticos originandose grupos de algas por endosimbiosis secundaria a partir de la simbiogenesis entre un protista biflagelado con un alga clorofita o rodofita y eventos de endosimbiosis terciaria en varios dinoflagelados 6 No hay consenso sobre el numero de eventos endosimbioticos ni las exactas relaciones filogeneticas entre todos los eucariontes fotosinteticos pero en lineas generales las principales lineas evolutivas son las siguientes 7 primer plasto lt br gt Archaeplastida cianelas Glaucophyta rodoplastos Rhodophyta Cyanidiophytina Rhodophytina algas rojas Cryptophyta Haptophyta Heterokonta inc algas pardas Chromerida Alveolata cloroplastos Chloroplastida Streptophyta incluye las plantas terrestres Chlorophyta Euglenales Chlorarachniophyta La endosimbiosis secundaria mas importante ocurre con un alga roja relacionada con Rhodophytina 8 y sus plastos suelen llamarse rodoplastos Este proceso puede ser clave en el origen de las llamadas algas cromofitas Chromalveolata y o Chromista aunque la relacion entre subgrupos aun no esta consensuada En dinoflagelados hay varios casos de endosimbiosis terciaria de tal forma que hay generos que llevan plastos criptofitos haptofitos heterokontofitos o clorofitos En euglenidos y cloraracniofitas se produjo una endosimbiosis secundaria con un alga clorofita 9 Vease tambien EditarPlasto Mitocondrias SimbiogenesisReferencias Editar Austin et al 20 are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylacoid membranes and contain biosynthetic enzime Plant Cell 18 Karp Gerald Biologia Celular y Molecular Conceptos y Experimentos Mc Graw Hill 2011 Pp 309 311 Por ejemplo en Vershinin 1999 Biological functions of carotenoids diversity and evolution Wise Hoober The Structure and Function of Plastids Enrique Flores AH 2008 The Cyanobacteria Molecular Biology Genomics and Evolution Horizon p 3 ISBN 1 904455 15 8 Keeling PJ 2004 Diversity and evolutionary history of plastids and their hosts Am J Bot 2004 Oct 91 10 1481 93 doi 10 3732 ajb 91 10 1481 Keeling PJ 2004 Fig 3 Endosymbiosis in the history of plastid evolution A common red algal origin of the apicomplexan dinoflagellate and heterokont plastids Endosymbiosis and Origin of Eukaryotic Algae de Biocyclopeia comNotas Editar Un cromoforo tambien puede emitir luz por fluorescencia fenomeno que sera ignorado en este texto El mismo cromoforo puede encontrarse en dos pigmentos diferentes absorbiendo luz de colores ligeramente diferentes Como en los pigmentos P700 y P680 tambien llamados centros de reaccion que describen un complejo de cromoforo proteina que absorbe luz en un pico de 700 y de 680 nm respectivamente y forman parte de los fotosistemas I y II respectivamente a pesar de que los dos pigmentos poseen el mismo cromoforo la clorofila a Heldt Piechulla Plant Biochemistry Fourth edition 2011 p 50 El espectro de colores que captan los carotenoides en la literatura se llama verde azul por ejemplo en Berera et al 2012 The Photophysics of the Orange Carotenoid Protein a Light Powered Molecular SwitchEnlaces externos Editar Wikcionario tiene definiciones y otra informacion sobre cloroplasto Datos Q47263 Multimedia Chloroplasts Obtenido de https es wikipedia org w index php title Cloroplasto amp oldid 139463363, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos