fbpx
Wikipedia

Diseño de armas nucleares

Los diseños de armas nucleares son los arreglos físicos, químicos e ingenieriles que causan que el paquete físico[1]​ de un arma nuclear detone. Existen tres tipos básicos de diseño. En los tres, la energía explosiva de los dispositivos desplegados se ha derivado principalmente de la fisión nuclear y no de la fusión.

  • Las armas de fisión nuclear fueron las primeras armas nucleares construidas y hasta el momento han sido las únicas usadas en combate. El material activo es el uranio fisible (U-235) o el plutonio (Pu-239), ensamblados explosivamente en una masa crítica reaccionando en cadena por uno de dos métodos:
    • Armas de fisión con detonación por disparo: una pieza de uranio fisible se dispara hacia un blanco de uranio fisible en el otro extremo del arma, de forma similar a disparar una bala por un cañón, logrando una masa crítica cuando se combinan.
    • Armas de fisión con detonación por implosión: una masa fisible de cualquier material (U-235, Pu-239 o una combinación) es rodeada por explosivos de gran potencia que al explotar comprimen la masa, resultando en una masa crítica. El método de implosión puede usar uranio o plutonio como combustible. El método de cañón solo usa uranio. El plutonio se considera como poco práctico para el método de cañón a causa del disparo prematuro debido a la contaminación con Pu-240 ya que su constante de tiempo para la fisión casi crítica es mucho más pequeña que la del U-235.
Las primeras armas nucleares, aunque grandes, pesadas e ineficientes, proporcionaron las bases de diseño básico para todas las futuras armas. Aquí el dispositivo Gadget es preparado para la primera prueba nuclear: Trinity.
  • Las armas de fisión intensificada son una mejora sobre el diseño de implosión. La alta presión y temperatura ambiental en el centro de un arma de fisión explotando comprime y calienta una mezcla de tritio y gas de deuterio (isótopos pesados de hidrógeno). El hidrógeno se fusiona para formar helio y neutrones libres. La energía liberada de esta reacción de fusión es relativamente despreciable, pero cada neutrón comienza una nueva cadena de reacción de fisión, acelerando la fisión y reduciendo en forma importante la cantidad de material fisible que de otra forma sería desperdiciada cuando la expansión del material fisible detiene la reacción en cadena. La mejora puede más que doblar la liberación de energía de fisión del arma.
  • Las armas termonucleares o bombas de hidrógeno son esencialmente una cadena de armas de fisión intensificadas por fusión (no confundir con las armas de fisión mejoradas por fusión mencionadas en el punto anterior), normalmente con dos etapas en la cadena. La segunda etapa, llamada la "secundaria", es implosionada por la energía de los rayos-x de la primera etapa, llamada la "primaria". Consecuentemente, la secundaria puede ser mucho más poderosa que la primaria, sin ser más grande. La secundaria puede ser diseñada para maximizar la liberación de energía de la fusión, pero en la mayor parte de los diseños de fusión es solo empleada para sostener o mejorar la fisión, como lo es en la primaria. Se podrían agregar más etapas, pero el resultado sería un arma de gran potencia pero demasiado poderosa para servir a algún propósito plausible.[2]​ Estados Unidos desplegó brevemente una bomba de tres etapas de 25 megatones, la B41, a comienzos de 1961. También en 1961, la Unión Soviética probó, pero no desplegó, un dispositivo de tres etapas de 50 a 100 megatones, la Bomba del Zar.

Las armas de fisión pura históricamente han sido el primer tipo en ser construida por un país. Los países industrializados más grandes con arsenales nucleares bien desarrollados tienen armas termonucleares de dos etapas, que son más compactas, escalables y una opción más costo efectiva una vez que la infraestructura industrial necesaria es construida.

Las innovaciones más conocidas en el diseño de armas nucleares se originaron en Estados Unidos, aunque más tarde fueron desarrolladas independientemente por otros estados;[3]​ las siguientes descripciones presentan los diseños estadounidenses.

En las primeras explicaciones, las armas de fisión pura eran llamadas bombas atómicas o bombas-A, un error dado que la energía proviene solo del núcleo del átomo. Las armas que usan la fusión fueron llamadas bombas de hidrógeno o bombas-H, también un error dado que la energía destructiva proviene principalmente de la fisión. Los expertos favorecen los términos nuclear y termonuclear respectivamente.

El término termonuclear se refiere a las altas temperatura requeridas para iniciar la fusión. Ignora el igualmente importante factor de la presión, que era considerado secreto en la época en que el término se hizo popular. Muchos términos sobre armas nucleares son inexactos debido a su origen clasificado.

Reacciones nucleares

La fisión nuclear divide los átomos más pesados para formar átomos más ligeros. La fusión nuclear enlaza átomos más ligeros para formar átomos más pesados. Ambas reacciones generan aproximadamente un millón de veces más energía que reacciones químicas comparables, haciendo las bombas nucleares un millón de veces más poderosas que las bombas no nucleares, tal como lo dijo una patente francesa en mayo de 1939.[4]

En algunas formas, la fisión y la fusión son reacciones opuestas y complementarias, pero los detalles son únicos para cada una de ellas. Para comprender cómo son diseñadas las armas nucleares, es útil conocer las similitudes y diferencias importantes entre ellas. La siguiente explicación usa redondeos y aproximaciones.[5]

Fisión

 
Representación esquemática de los dos métodos para ensamblar una bomba de fisión nuclear.

Cuando un neutrón libre golpea el núcleo de un átomo fisionable tal como el uranio-235 (235U), el uranio se divide en dos átomos más pequeños, llamados fragmentos de fisión, y neutrones adicionales. La fisión se puede autosostener, ya que produce más neutrones de la velocidad requerida para causar nuevas fisiones.

El átomo de uranio se puede dividir en cualquiera de una docena de alternativas diferentes, mientras el peso atómico sume 236 (uranio más el neutrón extra). La siguiente ecuación muestra una posible división, en estroncio-95 ( 95Sr), xenón-139 (139Xe) y dos neutrones (n), más energía:[6]

 

La inmediata liberación de energía por átomo es de 180 millones de electronvoltios (MeV), por ejemplo 74 TJ/kg, de los cuales el 90% es energía cinética (o movimiento) de los fragmentos de fisión, alejándose unos de otros mutuamente repelidos por la carga positiva de sus protones (38 para el estroncio, 54 para el xenón). Así, su energía cinética inicial es de 67 TJ/kg, lo que significa que su velocidad inicial es de 12.000 kilómetros por segundo, pero su carga eléctrica causa muchas colisiones inelásticas con los núcleos cercanos. Los fragmentos permanecen atrapados en el interior del pozo de uranio de la bomba hasta que su movimiento es convertido en calor de rayos-x, un proceso que toma aproximadamente una millonésima de segundo (un microsegundo).

Esta energía de rayos-x produce una explosión y fuego que son normalmente el propósito de una explosión nuclear.

Después que los productos de la fisión disminuyen su velocidad, permanecen radiactivos. Siendo nuevos elementos con demasiados neutrones, estos elementos se vuelven estables por medio del decaimiento beta, convirtiendo los neutrones en protones lanzando electrones y rayos gamma. Cada núcleo de los productos de la fisión decae entre una y seis veces, con un promedio de tres veces, produciendo una variedad de isótopos de diferentes elementos, algunos estables, algunos altamente radiactivos, y otros radiactivos con vidas medias de hasta 200.000 años.[7]​ En los reactores, los productos radiactivos son los desechos nucleares en el combustible gastado. En las bombas, se convierten en la lluvia radiactiva, tanto a nivel local como global.

Mientras tanto, en el interior de la bomba que está explotando, los neutrones libres liberados por la fisión golpean los núcleos de U-235 cercanos causando que se fisionen en una reacción en cadena creciente exponencial (1, 2, 4, 8, 16, etc.). Comenzando desde uno, la cantidad de fisiones teóricamente se puede doblar cien veces en un microsegundo, lo que podría consumir todo el uranio hasta centenares de toneladas al alcanzar el eslabón número cien en la cadena. En la práctica, las bombas no contienen tanto uranio y, de cualquier forma, solo unos pocos kilos se fisionan antes de que el núcleo vuele en pedazos.

Lograr mantener unida una bomba que explota es el mayor desafío del diseño de armas de fisión. El calor de la fisión expande rápidamente el pozo del uranio, separando el núcleo blanco y haciendo espacio para que los neutrones escapen sin ser capturados, y al suceder eso, la reacción en cadena se detiene.

Los materiales que pueden sostener una reacción en cadena son llamados fisibles. Los dos materiales fisibles usados en las armas nucleares son: el U-235, también conocido como uranio altamente enriquecido (en inglés: Highly Enriched Uranium, HEU), el oralloy (Oy) que significa Oak Ridge Alloy (en español: Aleación Oak Ridge), o 25 (los últimos dígitos del número atómico, que es 92 para el uranio, y el peso atómico, para este caso 235, respectivamente); y el Pu-239, también conocido como plutonio o 49 (de 94 y 239, respectivamente).

El isótopo más común del uranio, el U-238, es fisionable pero no fisible (esto significa que no puede sostener una reacción en cadena por sí mismo pero sí se puede fisionar, específicamente por neutrones de una reacción de fusión). Sus alias incluyen uranio natural y enriquecido, uranio empobrecido (en inglés: Depleted Uranium, DU), tubealloy (Tu), y 28. No puede sostener una reacción en cadena, ya que sus propios neutrones de fisión no son lo suficientemente poderosos para causar que más U-238 se fisione. Sin embargo, los neutrones liberados por fusión fisionarán el U-238. Esta reacción de fisión del U-238 produce la mayor parte de la energía destructiva de una típica arma termonuclear de dos etapas.

Fusión

La fusión produce neutrones que disipan energía de la reacción.[8]​ En las armas, la reacción de fusión más importante es llamada reacción D-T. Usando el calor y la presión de la fisión, hidrógeno-2, o deuterio ( 2D), se fusiona con hidrógeno-3, o tritio ( 3T), para formar helio-4 ( 4He) más un neutrón (n) y energía:[9]

 
 

Nótese que la energía total producida, 17,6 MeV, es una décima de la que se produce con la fisión, pero la masa de los ingredientes es casi la cincuentava parte de la de los de fisión, así que la energía producida por unidad de masa es unas 5 veces mayor. Sin embargo, en esta reacción de fusión el 80% de la energía, o 14 MeV, está en el movimiento del neutrón que, no teniendo carga eléctrica y siendo casi tan masivo como el núcleo de hidrógeno que lo creó, puede escapar de la escena sin dejar su energía atrás para ayudar a sostener la reacción – o generar rayos-x para explosión o fuego.

La única forma práctica de capturar la mayor parte de la energía de fusión es atrapar los neutrones dentro de una masiva botella de material pesado, tal como el plomo, el uranio o el plutonio. Si el neutrón de 14 MeV es capturado por uranio (ya sea 235 o 238) o plutonio, el resultado es la fisión y la liberación de 180 MeV de energía de fisión, multiplicando la obtención de energía diez veces.

Así, la fisión es necesaria para comenzar la fusión, ayuda a sostener la fusión y captura y multiplica la energía liberada en los neutrones de la fusión. En el caso de una bomba de neutrones (ver más adelante) lo mencionado anteriormente no se aplica, ya que el escape de los neutrones es el objetivo.

Producción de tritio

Una importante tercera reacción nuclear es la que crea el tritio, esencial en el tipo de fusión usada en las armas y, casualmente, el ingrediente más caro en cualquier arma nuclear. El tritio, o hidrógeno-3, es fabricado bombardeando litio-6 (6Li) con un neutrón (n) para producir helio-4 (4He) más tritio (3T) y energía:[9]

 

Se necesita un reactor nuclear para proporcionar los neutrones. La conversión a escala industrial de litio-6 a tritio es muy similar a la conversión de uranio-238 en plutonio-239. En ambos casos el material alimentado es colocado en el interior del reactor nuclear y después de un periodo de tiempo es extraído para ser procesado. En la década de 1950, cuando la capacidad de los reactores era limitada, la producción de tritio y plutonio entraban en directa competencia. Cada átomo de tritio en un arma reemplazaba a un átomo de plutonio que podría haber sido producido en su lugar.

La fisión de un átomo de plutonio libera diez veces más energía total que la fusión de un átomo de tritio, y genera cincuenta veces más explosión y fuego. Por esta razón, el tritio es incluido en los componentes de armas nucleares solo cuando causa más fisión de lo que su producción sacrifica, como en el caso de la fisión mejorada por fusión.

Sin embargo, una bomba nuclear explotando es un reactor nuclear. Y la reacción descrita anteriormente puede tener lugar simultáneamente a través de la secundaria en un arma termonuclear de dos etapas, produciendo tritio en el mismo momento y lugar en el que el dispositivo está explotando.

De los tres tipos básicos de arma nuclear, la primera, fisión pura, usa la primera de las tres reacciones nucleares descritas. La segunda, la fisión mejorada por fusión, usa las dos primeras. La tercera, la termonuclear de dos etapas, usa las tres.

Armas de fisión pura

La primera tarea del diseño de un arma nuclear es armar rápidamente una masa supercrítica de uranio o plutonio fisible. Una masa supercrítica es una en que el porcentaje de neutrones, producidos por la fisión, capturados por otro núcleo fisible, es lo suficientemente grande para que cada evento de fisión, en promedio, cause más de un evento de fisión adicional.

Una vez que la masa crítica es armada, a densidad máxima, una ráfaga de neutrones es proporcionada para iniciar tantas reacciones en cadena como sea posible. Las primeras armas usaban un "iniciador de neutrones modulado" en el interior del pozo que contenía polonio-210 y berilio separados por una delgada barrera. La implosión del pozo aplastaba el iniciador, mezclando los dos metales, y permitiendo así que las partícula alfa del polonio interactuaran con el berilio para producir neutrones libres. En las armas más modernas, el generador de neutrones es un tubo de vacío de alto voltaje que contiene un acelerador de partículas que bombardea un blanco hidruro de metal deuterio/tritio con iones de deuterio y tritio. La fusión a pequeña escala resultante produce neutrones en un lugar protegido fuera del paquete físico, desde donde penetran al pozo. Este método permite un mejor control de los tiempos de iniciación de la reacción en cadena.

La masa crítica de una esfera no comprimida de metal desnudo es de 50 kg (110 libras) para el uranio-235 y de 16 kg (35 lb) para la fase delta del plutonio-239. En aplicaciones prácticas, la cantidad de material requerido para la criticidad es modificada por la forma, pureza, densidad y proximidad al material reflectante de neutrones, todos los cuales afectan el escape o la captura de neutrones.

Para evitar una reacción en cadena durante el manejo, el material fisible en el arma debe ser subcrítico antes de la detonación. Puede consistir en uno o más componentes que contengan menos de una masa crítica no comprimida cada uno. Una delgada armazón hueca puede tener más masa crítica que una esfera desnuda, como por ejemplo un cilindro, que puede ser arbitrariamente larga y nunca alcanzar la criticidad.

Una traba es una capa opcional de material denso que rodea al material fisible. Debido a su inercia retrasa la expansión del material que reacciona, incrementando la eficiencia del arma. A menudo la misma capa sirve como traba y como reflector de neutrones.

Arma de armazón tipo cañón

 
Diagrama de un arma de fisión de tipo cañón. 1) Explosivo convencional, 2) Tubo del cañón, 3) "Bala" hueca de uranio, 4) Cilindro blanco

La Little Boy, la bomba lanzada sobre Hiroshima, usó 64 kg (141 libras) de uranio con un enriquecimiento promedio de alrededor de 80% o 51 kg (112 libras) de U-235, apenas sobre la masa crítica de metal desnudo (véase el artículo Little Boy para un diagrama detallado). Cuando estuvo ensamblada en el interior de su reflector/traba de carburo de tungsteno, los 64 kg (141 libras) eran más del doble de una masa crítica. Antes de la detonación, el uranio-235 estaba formado por dos pedazos subcríticos, uno de los cuales fue disparado posteriormente por un cañón para unirse al otro, comenzando la explosión atómica. Aproximadamente el 1% del uranio se fisionó;[10]​ el resto, que representaba la mayor parte de la producción en tiempo de guerra de las gigantes fábricas de Oak Ridge, se dispersaron inútilmente.[11]​ La vida media del uranio-235 es de 704 millones de años.

La ineficiencia fue causada por la velocidad con la que el uranio no comprimido fisionándose se expandió convirtiéndose en sub-crítico por virtud de la disminución de la densidad. A pesar de su ineficiencia, este diseño, a causa de su forma, fue adoptado para su uso en proyectiles de artillería cilíndricos de pequeño diámetro (una cabeza de guerra para artillería disparada desde un tubo de un cañón mucho más grande). Tales cabezas de guerra fueron desplegadas por Estados Unidos hasta 1992, dando cuenta de una fracción significativa del U-235 del arsenal, y fueron una de las primeras armas en ser desmanteladas para cumplir con los tratados que limitaban la cantidad de cabezas de guerra. La razón detrás de esta decisión fue indudablemente una combinación de baja potencia y graves temas de seguridad asociados con el diseño del tipo cañón.

Armas del tipo implosión

 
Diagrama de un arma nuclear de implosión. 1) Explosivo rápido, 2) Explosivo lento, 3) Traba/Empujador, 4) Iniciador de neutrones, 5) Núcleo de plutonio, 6) Onda de choque esférica comprime al núcleo
 

La Fat Man, la bomba lanzada sobre Nagasaki, usó 6,2 kg (13,6 libras), aproximadamente 350 ml en volumen, de Pu-239, que es solo un 39% de la masa crítica de esfera desnuda (véase el artículo sobre la Fat Man para un diagrama detallado). Rodeada por un reflector/traba de U-238, el pozo fue llevado cerca de una masa crítica por las propiedades de reflexión de neutrones del U-238. Durante la detonación, la criticidad fue lograda por una implosión. El pozo de plutonio fue apretado para incrementar su densidad por la detonación simultánea de explosivos convencionales colocados uniformemente alrededor del pozo. Los explosivos fueron detonados por múltiples detonadores de cable explosivo. Se estimó que solo aproximadamente un 20% del plutonio se fisionó, el resto, aproximadamente 11 lb (5 kg), se dispersó.

Una onda de choque de una implosión sería de tan corta duración que solo una fracción del pozo es comprimido en cualquier instante a medida que la onda pasa a través de este.

 
Imágenes instantáneas de rayos-X de las ondas de choque convergentes formadas durante una prueba de un sistema de lentes explosivos.

Puede ser necesaria una carcasa empujadora fabricada de un metal de baja densidad -como el aluminio, berilio o una aleación de dos metales (siendo el aluminio el más fácil y seguro de dar forma, y es dos órdenes de magnitud más barato; pero el berilio tiene una capacidad de reflexión de neutrones más alta)-. El empujador está localizado entre las lentes explosivas y la traba. Trabaja reflejando algo de la onda de choque hacia atrás, teniendo el efecto de alargar su duración. La Fat Man usó un empujador de aluminio.

La clave de la mayor eficiencia de la Fat Man fue el momentum hacia el interior de la masiva traba de U-238 (que no se fisionó). Una vez que la reacción en cadena comenzó en el plutonio, el momentum de la implosión tenía que ser revertido antes de que la expansión detuviera la fisión. Manteniendo todo junto por al menos unos pocos centenares de nanosegundos más, se pudo incrementar la eficiencia.

Pozo de plutonio

El núcleo de un arma de implosión -el material fisible y cualquier reflector o traba adosado a ella- se conoce como el pozo. Algunas armas probadas durante la década de 1950 usaron pozos fabricados solo con U-235, o en materiales compuestos con plutonio,[12]​ pero los pozos fabricados solo con plutonio son los más pequeños en diámetro y han sido los estándares desde principios de la década de 1960.

El fundido y luego el mecanizado del plutonio es difícil no solo por causa de su toxicidad, sino también porque el plutonio tiene muchas diferentes fases metálicas, también conocidas como alótropos. A medida que el plutonio se enfría, los cambios en la fase resultan en distorsión y agrietamiento. Esta distorsión normalmente se supera mediante su aleación con 3–3,5 molar% (0,9–1,0% por peso) de galio, formando una aleación de plutonio-galio, que causa que se conserve su fase delta sobre un mayor rango de temperaturas.[13]​ Cuando se enfría desde el fundido solo pasa por un cambio de fase, de epsilon a delta, en vez de los cuatro que normalmente ocurrirían. Otros metales trivalentes también funcionarían , pero el galio tiene una pequeña área de sección de absorción de neutrones y ayuda a proteger el plutonio contra la corrosión. Una desventaja de los compuestos de galio es que ellos por sí mismos son corrosivos y si el plutonio se recupera de armas desmanteladas para convertirlo en dióxido de plutonio para ser usado en reactores de energía nuclear, es necesario retirar el galio, lo que es difícil de hacer.

Ya que el plutonio es químicamente reactivo es común forrar completamente el pozo con una delgada capa de metal inerte, que también ayuda a reducir los riesgos de toxicidad.[14]The Gadget usó un forro de plata galvánica, después se utilizó níquel depositado a partir de vapor de níquel tetracarbonilo,[14]​ pero ahora se prefiere el oro.

Implosión de pozo levitado

La primera mejora del diseño de la Fat Man fue poner un espacio de aire entre la traba y el pozo para crear un impacto de martillo sobre clavo. El pozo, apoyado en un cono hueco en el interior de la cavidad de la traba, se decía que levitaba. En las tres pruebas de la Operation Sandstone, en 1948, se usaron diseños Fat Man con pozos levitados. La potencia más grande fue de 49 kilotones, más del doble de potencia que una Fat Man sin dicha modificación.[15]

Se vio claramente que la implosión era el mejor diseño para un arma de fisión. Su única desventaja parecía ser su diámetro. La Fat Man tenía 1,5 m de ancho, frente los 60 cm de la Little Boy.

Once años más tarde los diseños de implosión habían avanzado lo suficiente y se había pasado de los 1,52 m de diámetro de la esfera de Fat Man a 0,3 m de diámetro de un cilindro de 0,61 m de largo, del dispositivo Swan.

El pozo de Pu-239 de la Fat Man era de solo 9 cm de diámetro, el tamaño de una pelota de softball. El grueso de la circunferencia de la Fat Man era el mecanismo de implosión; más en detalle eran las capas concéntricas de U-238, aluminio y alto explosivo. La clave en la reducción de la circunferencia fue el diseño de implosión de dos puntos.

Implosión lineal de dos puntos

 
Implosión lineal: 1) Pozo de Pu-239 fisible, 2) Alto explosivo, 3) Formador de onda inerte, 4) Detonador, 5) Frentes de detonación emergiendo desde los formadores de onda

Un diseño de implosión muy ineficiente es uno que simplemente cambia la forma de un ovoide a una esfera, con compresión mínima. En la implosión lineal, una masa de Pu-239 sin apisonar, sólida, elongada, más grande que la masa crítica de una esfera, es puesta en el interior de un cilindro de alto explosivo con un detonador en cada extremo.[16]

La detonación convierte el pozo en crítico al llevar los extremos hacia el interior, creando una forma esférica. La onda de choque también puede cambiar el plutonio de la fase delta a la fase alfa, incrementando su densidad en un 23%, pero sin el momentum hacia el interior de una verdadera implosión. La carencia de compresión la convierte en ineficiente, pero la simplicidad y pequeño diámetro la hacen utilizable en proyectiles de artillería y municiones atómicas de demolición (en inglés: Atomic Demolition Munitions, ADM) también conocidas como bombas atómicas de mochila o de maletín.

Todas las armas de campo de batalla de baja potencia, sean del tipo cañón de U-235 o de implosión lineal de Pu-239, pagan un alto precio en material fisible con el propósito de lograr diámetros de alrededor de 254 mm.

Implosión de pozo hueco de dos puntos

Un sistema de implosión de dos puntos más eficiente usa dos lentes de alto explosivo y un pozo hueco.

Un pozo de plutonio hueco fue el plan original para la bomba Fat Man en 1945, pero no hubo suficiente tiempo para desarrollar y probar el sistema de implosión para eso. Un diseño de pozo sólido más simple fue considerado más confiable, dada la restricción de tiempo, pero requirió de una pesada traba de U-238, un grueso empujador de aluminio y tres toneladas de alto explosivo.

Después de la guerra, el interés en el pozo hueco se reavivó. Su ventaja obvia es que una carcasa hueca de plutonio, deformada por la onda de choque y conducida hacia el interior de sus centro vacío, tendría momentum producto de su violenta transformación en una esfera sólida. Se aplastaría por sí misma, requiriendo una traba de U-238 más pequeña, ningún empujador de aluminio y menos alto explosivo.

La bomba Fat Man tenía dos carcasas concéntricas, esféricas de alto explosivo, cada una de 25 cm de grosor. La carcasa interior consistía en un patrón como la cubierta de una pelota de fútbol de 32 lentes de alto explosivo, cada una de las cuales convertía la onda convexa de su detonador en una onda cóncava alineada al contorno de la superficie exterior de la carcasa interna. Si estas 32 lentes pudieran ser reemplazadas con solo dos, la esfera de alto explosivo podría convertirse en un elipsoide (esferoide alargado) con un diámetro mucho más pequeño.

Una buena ilustración de estas dos características es un diagrama de 1956 del programa de la bomba nuclear de Suecia (él cual fue cancelado antes de producir una explosión de prueba). El diagrama muestra los elementos esenciales del diseño de pozo hueco de dos puntos.

 

Existen diagramas similares en la literatura abierta que provienen del programa de la bomba nuclear alemana de post-guerra, que también fue cancelado, y del programa francés, que produjo un arsenal nuclear.

El mecanismo de las lentes de alto explosivo (diagrama item #6) no es mostrado en el diagrama sueco, pero una lente estándar fabricada de altos explosivos lentos y rápidos, como en la Fat Man, sería mucho más larga que lo que muestra la forma. Para que una lente única de alto explosivo genere una onda cóncava que abarque un hemisferio completo, o debe ser muy larga, o la parte de la onda en línea directa entre el detonador y el pozo debe ser demorada drásticamente.

Un alto explosivo lento es demasiado rápido, pero la lámina volante de una "lente de aire" no lo es. Una lámina metálica, deformada por la onda de choque, y empujada a través de un espacio vacío puede ser diseñada para moverse lo suficientemente lento.[17][18]​ Un sistema de implosión de dos puntos usando tecnología de lentes de aire puede tener un largo de no más del doble de su diámetro, como se ve en el diagrama sueco.

Armas de fisión intensificada por fusión

El siguiente paso en la miniaturización fue acelerar el fisionamiento del pozo para reducir el tiempo de confinamiento inercial mínimo. El pozo hueco proporcionó un lugar ideal para introducir fusión que mejorara la fisión. Una mezcla 50-50 de gramos de tritio y deuterio, bombeado en el pozo durante el armado, se fusionará en helio y liberará neutrones libres después de que comience la fisión. Los neutrones comenzarán una gran cantidad de nuevas reacciones en cadena mientras el pozo es aún crítico o casi crítico.

El concepto de fisión mejorada por fusión fue probado por primera vez el 25 de mayo de 1951, en la prueba Item de la Operación Greenhouse, Eniwetok, con una potencia de 45,5 kilotones.

Este diseño reduce el diámetro de tres formas, que se complementan entre sí, todo lo que resulta en una fisión más rápida:

  • Dado que el pozo comprimido no necesita ser mantenido unido tanto tiempo, la masiva traba de U-238 puede ser reemplazada por una carcasa de berilio más liviana (para reflejar los neutrones que se escapan del pozo).
  • La masa del pozo puede ser reducida a la mitad, sin disminuir la potencia.
  • Dado que la masa del metal siendo implosionado (traba más el pozo) es reducida, se necesita una cantidad de alto explosivo más pequeña, reduciendo aún más el diámetro.

Dado que el estímulo es requerido para lograr la potencia total de diseño, cualquier reducción en este también disminuye la potencia. Así, las armas mejoradas son armas de potencia variable. La potencia puede ser reducida en cualquier momento antes de la detonación, simplemente poniendo menos tritio en el pozo durante el procedimiento de armado.

 

El primer dispositivo cuyas dimensiones sugieren el empleo de todas estas características (dos puntos, pozo hueco, implosión mejorada por fusión) fue el dispositivo 'Swan', probado el 22 de junio de 1956, como el ensayo 'Inca' de la Operación Redwing, en Eniwetok. Su potencia fue de 15 kilotones, aproximadamente la misma que la Little Boy, la bomba lanzada sobre Hiroshima. Pesaba 47,6 kg (105 libras) y tenía forma cilíndrica, con 29,5 cm (11,6 pulgadas) de diámetro y 58 cm (22,9 pulgadas) de largo. El esquema anterior ilustra lo que probablemente serían sus características esenciales.

Once días más tarde, el 3 de julio de 1956, el 'Swan' fue probado nuevamente en Eniwetok, como el ensayo Mohawk de Redwing. Esta vez sirvió como primaria, o primera etapa, de un dispositivo termonuclear de dos etapas, un rol que protagonizó en una docena de ensayos similares durante la década de los años 1950. El 'Swan' fue el primer dispositivo multiuso, listo para usar utilizado como primaria para otras armas, y sirvió como prototipo para todas los desarrollos de primaria que lo siguieron.

Después del éxito del Swan, 11 pulgadas (279 mm) o 12 pulgadas (305 mm) pareció convertirse en el diámetro estándar de los dispositivos de una sola etapa mejorados probados durante la década de los años 1950. El largo usualmente era el doble del diámetro, pero en un dispositivo, que se convirtió en la cabeza de guerra nuclea W54, estaba más cercano a una esfera, con solo 15 pulgadas (381 mm) de largo. Fue probado una docena de veces en el período de 1957 a 1962 antes de ser desplegado. Ningún otro diseño tuvo una cadena tan larga de fracasos. Dado que los dispositivos más largos tendían a trabajar correctamente a la primera prueba, debió haber existido algunas dificultades en aplastar lo suficiente los dos lentes de altos explosivos para lograr la proporción alto-ancho deseada.

Una de las aplicaciones de la W54 fue en el proyectil XM-388 del cañón sin retroceso Davy Crockett, mostrado aquí en comparación a la bomba Fat Man, con las dimensiones en pulgadas.

 

Otro beneficio de este diseño, además de hacer las armas más pequeñas, ligeras y con menos material fisible para una misma potencia, es que hace a las armas inmunes a la interferencia por radiación (en inglés: Radiation Interference, RI). Se descubrió a mediados de la década de los años 1950 que los pozos de plutonio eran particularmente susceptibles a la predetonación parcial si eran expuestos a la intensa radiación generada por una explosión nuclear cercana (la electrónica también podía ser dañada, pero esto es otro tema). La RI era un problema antes de la aparición de sistemas de radar de alerta temprana efectivos dado que un primer ataque podría inutilizar a las armas nucleares de desquite. El mejorado reduce la cantidad de plutonio necesario en el arma a una cantidad inferior a la necesaria para ser vulnerable a este efecto.

Armas termonucleares de dos etapas

Las armas de fisión pura o de fisión mejorada por fusión pueden ser construidas para alcanzar una potencia de centenares de kilotones, con un gran gasto de material fisible y tritio, pero para incrementar la potencia más allá de la decena de kilotones es mucho más eficiente instalar una segunda etapa independiente, llamada secundaria.

 
Ivy Mike, la primera detonación termonuclear de dos etapas, 10,4 megatones, 1 de noviembre de 1952.

En la década de 1940, los diseñadores de bombas en Los Álamos pensaron que la secundaria sería un contenedor de deuterio en forma líquida o hidruro. La reacción de fusión sería D-D, más difícil de lograr que una D-T, pero más asequible. Una bomba de fisión en un extremo comprimiría por onda de choque y calor al extremo más lejano, y la fusión se propagaría a través del contenedor al extremo lejano. Las simulaciones matemáticas mostraron que no funcionaría, incluso agregando grandes cantidades del prohibitivamente caro tritio.

Todo el contenedor del combustible de fusión necesitaría estar rodeado por la energía de la fisión, para comprimirla y calentarla, como con la carga de impulso en una primaria mejorada. El avance en diseño se obtuvo en enero de 1951, cuando Edward Teller y Stanisław Ulam inventaron la radiación por implosión, conocida públicamente por cerca de tres décadas como el secreto de la bomba H Teller-Ulam.

El concepto de la radiación por implosión fue probado por primera vez el 9 de mayo de 1951, en el ensayo George de la Operación Greenhouse, Eniwetok, con una potencia de 225 kilotones. La primera prueba completa se realizó el 1 de noviembre de 1952, el ensayo Mike de la Operación Ivy, Eniwetok, con una potencia de 10,4 megatones.

En la radiación por implosión, la ráfaga de rayos-X que proviene de una primaria explotando es capturada y contenida dentro un canal de radiación con murallas opacas que rodea a los componentes de energía nuclear de la secundaria. La radiación rápidamente convierte a la espuma plástica, que estaba llenando el canal, en un plasma que es en gran parte transparente a los rayos-X, y la radiación es absorbida en las capas más exteriores del empujador/traba que rodea al secundario, que se ablasiona y aplica una masiva fuerza[19]​ (parecido al interior de un motor de cohete) causando que la cápsula de combustible de fusión implosione en forma similar al pozo de la primaria. A la medida que el secundario implosiona, un "tapón de ignición" (en inglés: spark plug) fisible en su centro se incendia y proporciona calor que permite que el combustible de fusión también se encienda. Las reacciones en cadena de la fisión y de la fusión intercambian neutrones entre sí y mejoran la eficiencia de ambas reacciones. La mayor fuerza implosiva mejora la eficiencia del "tapón de ignición" fisible debido al aumento a través de los neutrones de la fusión, y la explosión de la fusión en sí misma proporciona significativamente mayor potencia explosiva a partir de la secundaria a pesar de que a menudo no es mucho más grande que la primaria.

 

Por ejemplo, para la prueba Redwing Mohawk del 3 de julio de 1956, una secundaria llamada Flauta fue adosada a la primaria Swan. Flauta era de 38 cm (15 pulgadas) de diámetro y 59 cm (23,4 pulgadas) de largo, aproximadamente el tamaño de Swan. Pero pesada diez veces más y tenía una potencia 24 veces superior (355 kilotones contra 15 kilotones).

Igualmente importante, los ingredientes activos en Flauta probablemente no costaban más que los usados en Swan. La mayor parte de la fisión provenía del barato U-238, y el tritio era fabricado en el mismo lugar durante la explosión. Únicamente el tapón de ignición en el eje de la secundaria necesitaba ser fisible.

Una secundaria esférica puede lograr densidades de implosión más altas que una secundaria cilíndrica, ya que una implosión esférica empuja desde todas las direcciones hacia el mismo punto. Sin embargo, en las cabezas de guerra con potencias superiores a un megatón, el diámetro de una secundaria esférica sería demasiado grande para la mayor parte de las aplicaciones. Una secundaria cilíndrica es necesaria en tales casos. Los vehículos de reentrada pequeños y en forma de cono usados en los misiles balísticos de cabezas de guerra múltiples después de la década de los 1970 tienden a tener cabezas de guerra con secundarias esféricas, y potencias de un pocos centenares de kilotones.

Como con la estimulación, las ventajas del diseño termonuclear de dos etapas son tan grandes que existe poco incentivo a no usarlo, una vez que una nación ha dominado dicha tecnología.

En términos de ingeniería, la radiación por implosión permite la explotación de varias características conocidas de los materiales de las bombas nucleares que hasta ese momento había eludido una aplicación práctica. Por ejemplo:

  • La mejor forma de almacenar deuterio en un estado de densidad razonable es enlazarlo químicamente con el litio, como litio deuterizado. Pero el isótopo de litio-6 es también la materia prima para la producción de tritio, y una bomba que está explotando es un reactor nuclear. La radiación por implosión sostendrá todo armado el suficiente tiempo como para permitir la completa conversión del litio-6 en tritio, mientras la bomba explota. Así que el agente de enlace para el deuterio permite usar una reacción de fusión D-T sin necesidad de tritio previamente fabricado esté almacenado en la secundaria. La restricción de producción de tritio desaparece.
  • Para que la secundaria sea implosionada por el plasma caliente inducido por la radiación que la rodea, debe permanecer fría por el primer microsegundo, por ejemplo, debe estar rodeada por un masivo escudo contra la radiación (calor). La masividad del escudo le permite actuar como traba, agregando momentum y duración a la implosión. Ningún material está mejor adaptado a estos propósitos que el ordinario y barato U-238, que también sucede que se fisiona cuando es golpeado por los neutrones producidos por la fusión D-T. Esta carcasa, llamada empujador, así tiene tres tareas: mantener a la secundaria fría, mantenerla completa, inercialmente, en un estado altamente comprimido, y finalmente, servir como la principal fuente de energía para toda la bomba. El empujador consumible convierte a la bomba más en una bomba de fisión de uranio que en una bomba de fusión de hidrógeno. Es notorio que los expertos nunca usaron el término bomba de hidrógeno.[20]
  • Finalmente, el calor para ignición de la fusión proviene no de la primaria sino que de la segunda bomba de fisión llamada el tapón de ignición, incrustada en el corazón de la secundaria. La implosión de la secundaria implosa este tapón de ignición, detonándolo y provocando la ignición de la fusión en el material que la rodea, pero el tapón de ignición continua fisionando en el ambiente rico en neutrones hasta que se consume totalmente, agregando significativa potencia al dispositivo.[21]

El empuje inicial detrás del arma de dos etapas fue la promesa de 1950 del presidente Truman de construir una superbomba de hidrógeno de 10 megatones como la respuesta estadounidense a la prueba en 1949 de la primera bomba de fisión soviética. Pero la invención resultante se convirtió en la forma más barata y compacta de construir bombas nucleares pequeñas así como grandes, borrando cualquier distinción entre bombas A y bombas H, y entre impulsores y super. Todas las mejores técnicas para explosiones por fisión y por fusión están incorporadas en un principio de diseño que lo abarca todo y que es totalmente escalable. Incluso los proyectiles nucleares de artillería de 6 pulgadas (152 mm) pueden ser termonucleares de dos etapas.

En los siguientes cincuenta años, nadie ha logrado una mejor forma de construir una bomba nuclear. Es el diseño de elección para Estados Unidos, Rusia, Reino Unido, China y Francia, las cinco naciones termonucleares. Las otras naciones con armas nucleares, Israel, India, Pakistán y Corea del Norte, probablemente tienen armas de una etapa, o posiblemente mejoradas.[21]

Interetapa

En un arma termonuclear de dos etapas la energía de la primaria impacta a la secundaria. Un modulador esencial de energía llamado interetapa, entre la primaria y la secundaria, protege el combustible de fusión de la secundaria de calentarse demasiado rápido, lo que podría causar una explosión de calor convencional (y por lo tanto de menor magnitud) antes de que las reacciones de fisión y de fusión tengan una oportunidad de comenzar.

Existe muy poca información en la literatura abierta acerca del mecanismo de la interetapa. La primera mención en documentos del gobierno estadounidense formalmente liberados al público general aparece en la leyenda de una gráfica promoviendo el Programa de Reemplazo Confiable de Cabeza de Guerra. Si se construye, este nuevo diseño reemplazaría al "material 'especial' tóxico, frágil y caro" en la interetapa.[22]​ Esta declaración sugiere que la interetapa puede contener berilio para moderar el flujo de neutrones de la primaria, y quizás algo para absorber y reirradiar los rayos-X de alguna forma en particular.[23]​ Se especula que el material para la interetapa, que puede ser llamado en código como FOGBANK podría ser un aerogel, posiblemente dopado con berilio y/o otras substancias.[24]

La interetapa y la secundaria son puestos juntos al interior de una membrana de acero inoxidable para formar el subensamble enlatado (en inglés: Canned Subassembly, CSA), un armazón que nunca había sido mostrado en ningún diagrama público.[25]​ La ilustración más detallada de un interetapa muestra a un arma termonuclear británica con un grupo de artefactos entre su primaria y su secundaria cilíndrica. Ellas están etiquetadas como "tapón final y lente de enfoque de neutrones", "portador de cañón de neutrón/reflector" y "embalaje del reflector". El origen del diagrama, subido a internet por Greenpeace, no está claro y no existe una explicación que lo acompañe.[26]

Diseños específicos

Mientras cada diseño de arma nuclear cae en alguna de las categorías descritas, diseños específicos se han convertido ocasionalmente en materia de noticias y discusión pública, a menudo con descripciones incorrectas acerca de cómo ellos trabajan y qué es lo que hacen. Ejemplos:

Bombas de hidrógeno

Todas las armas nucleares modernas hacen algún uso de la fusión D-T. Incluso las armas de fisión pura incluyen generadores de neutrones que son tubos de vacío de alto voltaje que contienen pequeñísimas cantidades de tritio y deuterio.

Sin embargo, en la percepción pública, las bombas de hidrógeno, o bombas H, son dispositivos de multimegatones mil veces más poderosos que la Little Boy de Hiroshima. Tales bombas son realmente termonucleares de dos etapas, escaladas a la potencia deseada, con la fisión del uranio, como es usual, proporcionando la mayor parte de su energía.

La idea de la bomba de hidrógeno apareció en la atención pública por primera vez en 1949, cuando prominentes científicos recomendaron abiertamente no construir bombas nucleares más poderosas que el modelo de fisión pura estándar, tanto en razones morales como prácticas. Sus supuestos eran que las consideraciones acerca de la masa crítica limitarían el tamaño potencial de las explosiones de fisión, pero que en una explosión de fusión podría ser tan grande como su abastecimiento de combustible, que no posee el límite de masa crítica. En 1949, los soviéticos hicieron explotar su primera bomba de fisión, y en 1950 el presidente Truman finalizó el debate acerca de la bomba H ordenando a los diseñadores de Los Álamos que construyeran una.

En 1952, la explosión de 10,4 megatones de Ivy Mike fue anunciada como la primera prueba de una bomba de hidrógeno, reforzando la idea de que las bombas de hidrógeno son mil veces más poderosas que las bombas de fisión.

En 1954, J. Robert Oppenheimer fue etiquetado como un oponente a la bomba de hidrógeno. El público no sabía que hay dos clases de bombas de hidrógeno (ninguna de las cuales se puede describir como una bomba de hidrógeno). El 23 de mayo, cuando su nivel de secreto fue revocado, el ítem 3 de las cuatro investigaciones públicas contra él era "su conducta en el programa de la bomba de hidrógeno". En 1949, Oppenheimer había apoyado las bombas de fisión mejoradas por fusión de una etapa, para maximizar el poder explosivo del arsenal dado el compromiso entre la producción de plutonio y de tritio. Él se opuso a las bombas termonucleares de dos etapas hasta 1951, cuando la radiación por implosión, que él llamó "técnicamente dulce", por primera vez las hizo prácticas. La complejidad de su posición no fue revelada al público hasta 1976, nueve años después de su muerte.[27]

Cuando los misiles balísticos reemplazaron a los bombarderos en la década de 1960, la mayor parte de las bombas de potencia multimegatonaje fueron reemplazadas por cabezas de guerra para los misiles (también termonucleares de dos etapas) disminuidas a un megatón o menos.

Reloj de Alarma/Sloika

El primer esfuerzo para explotar la relación simbiótica entre la fisión y la fusión fue un diseño de 1940 que mezclaba combustible de fisión y de fusión en delgadas capas alternantes. Como un dispositivo de una etapa, habría sido una aplicación torpe de la fisión mejorada. Se volvió práctico por primera vez cuando se incorporó en la secundaria de un arma termonuclear de dos etapas.[28]

El nombre estadounidense, Reloj Alarma (en inglés: Alarm Clock), era un nombre código sin relación. El nombre ruso para el mismo diseño era más descriptivo: Sloika (en ruso: Слойка), una torta de capas. Un Sloika de soviético de una etapa fue probado en 12 de agosto de 1953. Ninguna versión estadounidense fue probada, pero el ensayo Union de la Operación Castle, 26 de abril de 1954, fue de un dispositivo termonuclear de dos etapas con nombre código Reloj Alarma. Su potencia, fue de 6,2 megatones.

Debido a que la prueba soviética Sloika usó litio-6 deuterizado seco ocho meses antes de la primera prueba estadounidense en usarlo (Castle Bravo, 1 de marzo de 1954), algunas veces se declara que la Unión Soviética ganó la carrera por la bomba H. La prueba estadounidense Ivy Mike de 1952 usó deuterio líquido enfriado criogénicamente como combustible para la fusión en la secundaria, y empleó la fusión de reacción D-D. Además, Sloika fue el primer diseño desplegable desde un avión, incluso aunque no fue desplegada de esa forma durante la prueba. Sin embargo, la primera prueba soviética en usar una secundaria implosionada por radiación, la característica esencial de una verdadera bomba H, se realizó el 23 de noviembre de 1955, tres años después de Ivy Mike. De hecho, en la Unión Soviética el real trabajo sobre el esquema de implosión solo se inició muy a principios de 1953, varios meses después de la exitosa prueba de Sloika.

Bombas limpias

 
Bassoon, el prototipo de una bomba limpia de 3,5 megatones o una bomba sucia de 25 megatones. Las versiones sucias mostradas aquí, antes de su prueba en el año 1956.

El 1 de marzo de 1954, la más grande explosión nuclear de prueba estadounidense, el ensayo Bravo de 15 megatones de la Operación Castle en el Bikini, produjo una dosis letal de lluvia de productos de fisión en más de 6000 millas cuadradas (15 540 km²) de la superficie del Océano Pacífico.[29]​ Las heridas por radiación a los habitantes de las Islas Marshall y a los pescadores japoneses volvió público este hecho y reveló el rol de la fisión en las bombas de hidrógeno.

En respuesta a la alarma pública por la lluvia radiactiva, se realizó un esfuerzo para diseñar un arma limpia de nivel de multimegatonaje, basada casi enteramente en la fusión. Dado que la energía producida por el fisionamiento del uranio natural no enriquecido cuando era utilizado como material para la traba en la secundaria y las subsecuentes etapas en el diseño Teller-Ulam, evidentemente puede empequeñecer la potencia obtenida de la fusión, como fue en el caso de la prueba Castle Bravo, y dándose cuenta de que un material de traba no fisionable es un requerimiento esencial en una bomba 'limpia', estaba claro que tal bomba 'limpia' existiría una relativamente gran cantidad de material que no se ve afectado por el proceso de conversión masa-a-energía. Así que para un peso dado, las armas 'sucias' con trabas fisionables son mucho más ligeras que una bomba 'limpia' de igual potencia. La más temprana incidencia conocida de un dispositivo de tres etapas siendo probado, con la tercera etapa (llamada la terciaria) siendo ignicionada por la secundaria, fue el 27 de mayo de 1956 en el dispositivo Bassoon. Este dispositivo fue probado en el ensayo Zuni de la Operation Redwing. Este ensayo utilizó trabas no fisionables, usando un material substituto relativamente inerte nuclearmente tal como el tungsteno o plomo, su potencia fue de 3,5 megatones, 85% por fusión y solo 15% por fisión. Los registros públicos de dispositivos que produjeron la más alta proporción de su potencia vía solo reacciones de fusión es de 57 megatones, la Bomba del Zar con un 97% por fusión,[30]​ la prueba Hardtack Poplar de 9,3 megatones fue de un 95,2%,[31]​ y la prueba Redwing Navajo de 4,5 megatones con un 95% por fusión.[32]

El 19 de julio de 1956, el presidente de la AEC Lewis Strauss dijo que el ensayo Redwing Zuni de una prueba de una bomba limpia "resultó de mucha importancia ... desde el aspecto humanitario". Sin embargo, menos de dos días después de este anuncio la versión sucia de Bassoon, llamada Bassoon Prime, que usaba una traba de uranio-238, fue probada desde una barcaza en las afueras de la costa del Atolón de Bikini como el ensayo Redwing Tewa. La Bassoon Prime produjo una potencia de 5 megatones, de la cual el 87% provino de la fisión. Los datos obtenidos de esta prueba, y de otras culminaron en el eventual despliegue del arma nuclear estadounidense de más alta potencia conocida, y de paso la más alta proporción de potencia-a-peso de un arma jamás fabricada, un arma termonuclear de tres etapas, con una potencia 'sucia' máxima de 25 megatones designada como la bomba nuclear Mark 41, que fue transportada por los bombarderos de la Fuerza Aérea de Estados Unidos hasta su descomisión, esta arma nunca fue totalmente probada.

Como tal, las bombas limpias de alta potencia parecen haber sido un ejercicio de relaciones públicas. Las armas realmente desplegadas eran versiones sucias, que maximizaban la potencia para un mismo tamaño de dispositivo. Sin embargo, nuevos diseños de armas nucleares más nuevos de cuarta y quinta generación incluyen tecnología como armas de fusión pura y propulsión de pulso nuclear de antimateria catalizada[33]​ que están siendo estudiados extensivamente por las cinco naciones nucleares más grandes.[34][35]

Bombas de cobalto

Una bomba ficticia del día del juicio final, hecha popular por la novela de Nevil Shute publicada en 1957, y la subsecuente película de 1959, On the Beach (traducida en español como La Hora Final), la bomba de cobalto era una bomba de hidrógeno con una chaqueta de metal de cobalto. El cobalto activado por los neutrones supuestamente maximizaría el daño ambiental de la lluvia radiactiva resultante. Estas bombas fueron popularizadas en la película de 1964 Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb. El elemento agregado a las bombas es denominado en la película como 'cobalto-torio G'.

Tales armas fueron solicitadas por la fuerza aérea de Estados Unidos y seriamente investigadas, posiblemente construidas y probadas, pero nunca desplegadas. En la edición de 1964 del libro de la DOD/AEC The Effects of Nuclear Weapons (en español: Los Efectos de las Armas Nucleares), una nueva sección llamada Guerra Radiológica clarificó el tema.[36]​ Los productos de la fisión son tan mortales como el cobalto activo por neutrones. El arma termonuclear de alta fisión estándar es automáticamente un arma de guerra radiológica, y tan sucia como una bomba de cobalto.

Inicialmente, la radiación gamma de los productos de la fisión de una bomba de fisión-fusión-fisión de tamaño equivalente son mucho más intensas de la del Co-60: 15.000 veces más intensa en 1 hora; 35 veces más intensas en 1 semana; 5 veces más intensas en 1 mes; y aproximadamente iguales en 6 meses. A partir de allí la fisión cae rápidamente de tal forma que la lluvia radiactiva del Co-60 es 8 veces más intensa que la fisión en 1 año y 150 veces más intensa en 5 años. Los isótopos de muy larga vida producidos por la fisión serían mayores de los del 60Co nuevamente después de los 75 años.[37]

Bombas de fisión-fusión-fisión

En 1954, para explicar la sorprendente cantidad de lluvia radiactiva resultante de la fisión producidas por las bombas de hidrógeno, Ralph Lapp acuñó el término fisión-fusión-fisión para describir un proceso al interior de lo que él llamaba un arma termonuclear de tres etapas. Su proceso de explicación era correcto, pero su elección de términos causó confusión en la literatura abierta. Las etapas de un arma nuclear no son fisión, fusión y fisión. Ellas son primaria, secundaria y, en una excepcionalmente poderosa arma, la terciaria. Cada una de estas etapas emplea fisión, fusión y fisión.

Bomba de neutrones

Una bomba de neutrones, técnicamente referida como un arma de radiación aumentada (en inglés: Enhanced Radiation Weapon, ERW), es un tipo de arma nuclear táctica diseñada específicamente para liberar una gran proporción de sus energía como radiación de neutrones energéticos. Esto contrasta con las armas termonucleares estándares, que está diseñadas para capturar esta intensa radiación de neutrones para incrementar su potencia explosiva total. En términos de potencia, las ERW típicamente producen aproximadamente una décima parte de lo que hace un arma atómica de fisión. Incluso con su significativamente más bajo poder explosivo, las ERW aún son capaces de mucha mayor destrucción que cualquier bomba convencional. Mientras que, relativo a otras armas nucleares, el daño está más enfocado en el material biológico que en el material o la infraestructura (aunque la extrema explosión y los efectos del calor no son eliminados).

Oficialmente conocidas como armas de radiación aumentada, ERW por sus siglas en inglés, ellas son más exactamente descritas como armas de potencia restringida. Cuando la potencia de un arma nuclear es menos de un kilotón, el radio letal de su explosión, 700 m (2300 ft), es menor que el de su radiación de neutrones. Sin embargo, la explosión es lo suficientemente potente para destruir la mayor parte de las estructuras, las cuales son menos resistentes a los efectos de la explosión que incluso seres humanos no protegidos. Se puede sobrevivir a las presiones por explosión de hasta 20 PSI, mientras que la mayor parte de los edificios colapsarán con solo 5 PSI.

Comúnmente mal percibidas como un arma diseñada para matar poblaciones y dejar la infraestructura intacta, estas bombas (como se menciona en el párrafo anterior) son aún muy capaces de destruir edificios en un gran radio. El propósito de su diseño era matar a las tripulaciones de los tanques -estos tienen una excelente protección contra las explosiones y el calor, sobreviviendo (relativamente) muy cerca de una detonación. Y con las vastas cantidades de tanques de los soviéticos durante la Guerra Fría, está el arma perfecta para contrarrestarlos.

La radiación por neutrones puede incapacitar instantáneamente a la tripulación de un tanque a aproximadamente a la misma distancia que el calor y explosión incapacitaría a un ser humano desprotegido (dependiendo del diseño). Los chasis de los tanques también se volverían altamente radiactivos (temporalmente) impidiendo su uso por una nueva tripulación.

Las armas de neutrones también fueron pensadas para ser usadas en otras aplicaciones. Por ejemplo, ellas son efectivas defensas antinucleares -el flujo de neutrones es capaz de neutralizar a la cabeza de guerra que se acerca a una mayor distancia que el calor o la explosión. Las cabezas de guerra nucleares son muy resistentes al daño físico, pero es muy difícil protegerlas contra un flujo extremo de neutrones.

Distribución de energía del arma
Estándar Mejorada
Explosión 50% 40%
Energía termal 35% 25%
Radiación instantánea 5% 30%
Radiación residual 10% 5%

Las ERW eran bombas termonucleares de dos etapas con todo el uranio no esencial retirado para minimizar la potencia de la fisión. La fusión proporcionaba los neutrones. Desarrollada en la década de 1950, ellas fueron desplegadas por primera vez en la década de 1970, por las fuerzas estadounidenses en Europa. Las últimas fueron retiradas en la década de 1990.

Una bomba de neutrones es solo factible si la potencia es lo suficientemente alta que una eficiente ignición de fusión es posible, y si la potencia es lo suficientemente baja que el grosor de la carcasa no absorberá demasiados neutrones. Esto significa que las bombas de neutrones tienen una potencia de entre 1 a 10 kilotones, con la proporción de la fisión variando del 50% en 1 kilotón a 25% en una de 10 kilotones (toda la cual proviene de la etapa primaria). La producción de neutrones por kilotón es 10 a 15 veces más grande que un arma de implosión de fisión pura o para una cabeza de guerra estratégica tal como la W87 o la W88.[38]

Cabezas de guerra termonucleares de Oralloy

En 1999, el diseño de armas nucleares estuvo nuevamente en las noticias, por primera vez en décadas. En enero, la Cámara de Representantes de Estados Unidos entregó el Informe Cox (Christopher Cox representante republicano de California) que acusaba que China de alguna forma había adquirido la información clasificada acerca la cabeza de guerra estadounidense W88. Nueve meses antes, Wen Ho Lee, un inmigrante taiwanés trabajando para Los Álamos, fue públicamente acusado de espiar, arrestado y estuvo nueve meses en prisión preventiva, antes de que el caso contra él fuera desechado. No está claro de que hubiera, de hecho, algún acto de espionaje.

En el curso de 18 meses de cubierta de noticias, la cabeza de guerra W88 fue descrita con inusual detalle. El The New York Times imprimió un diagrama esquemático en su portada.[39]​ El diagrama más detallado aparece en A Convenient Spy, un libro del año 2001 sobre el caso de Wen Ho Lee escrito por Dan Stober e Ian Hoffman, adaptado y mostrado aquí con permiso.

 

Diseñada para su uso en los misiles balísticos lanzados desde submarinos Trident II D5 (D-5), la W88 entró en servicio en el año 1990 y fue la última cabeza de guerra en ser diseñada para el arsenal nuclear estadounidense. Ha sido descrita como la más avanzada, aunque la literatura abierta no indica ninguna característica de diseño importante que no estuviera disponible a los diseñadores estadounidenses en 1958.

El diagrama anterior muestra todas las características estándares de las cabezas de guerra para misiles balísticos desde la década de 1960, con dos excepciones que le dan una mayor potencia para su tamaño.

  • La capa externa de la secundaria, llamada el "empujador" (en inglés: "pusher"), que sirve para tres funciones: escudo térmico, traba y combustible para la fisión, está fabricada de U-235 en vez de U-238, de ahí el nombre de Oralloy (U-235) termonuclear. Siendo fisible, más que solamente fisionable, permite al empujador fisionarse más rápido y más completamente, incrementando la potencia. Esta característica está disponible solo a aquellas naciones con disponibilidad de uranio fisible. Se estima que Estados Unidos posee 500 toneladas de este material.
  • La secundaria está localizada en el extremo ancho del cono de reentrada, donde puede ser más grande, y así más poderosa. La disposición usual es poner la secundaria más pesada y densa en el extremo angosto para mayor estabilidad aerodinámica durante la reentrada desde el espacio exterior, y permitir más espacio para la voluminosa primaria en la parte más amplia del cono (El diagrama de la W87 en la sección previa muestra la disposición usual). Debido a esta nueva geometría, la primaria de la W88 usa alto explosivos convencionales compactos (en inglés: Conventional High Explosives, CHE) para ahorrar espacio,[40]​ más que el más usual, y voluminoso pero más seguro, alto explosivo insensitivo (en inglés: Insensitive High Explosives, IHE). El cono de reentrada probablemente tiene un lastre en la nariz para darle estabilidad aerodinámica.[41]

Las capas alternantes de material de fisión y de fusión en la secundaria son una aplicación del principio de Alarm Clock/Sloika.

Cabeza de guerra de reemplazo fiable

Estados Unidos no ha producido ninguna cabeza de guerra nuclear desde al año 1989, cuando la planta de producción de pozos de Rocky Flats, cerca de Boulder, Colorado, fue cerrada por razones ambientales. Con el final de la Guerra Fría dos años más tarde, la línea de producción ha estado parada excepto para funciones de inspección o de mantenimiento.

La Administración Nacional de Seguridad Nuclear (en inglés: National Nuclear Security Administration), la última sucesora para las armas nucleares para la Comisión de Energía Atómica y el Departamento de Energía, ha propuesto construir una nueva instalación de pozos y comenzar la línea de producción de una nueva cabeza de guerra llamada cabeza de guerra de reemplazo fiable (en inglés: Reliable Replacement Warhead, RRW).[42]​ Dos mejoras de seguridad anunciadas de la RRW serían el retorno al uso de "altos explosivos insensibles que mucho menos susceptibles a la detonación accidental", y la eliminación de "ciertos materiales peligrosos, tal como el berilio, que son dañinos a las personas y al ambiente".[43]​ Dado que la nueva cabeza de guerra no debe requerir ninguna prueba nuclear, no se podría usar un nuevo diseño con conceptos no probados.

Laboratorios de diseño de armas

Todas las innovaciones de diseño de armas nucleares discutidas en este artículo se originaron de los siguientes tres laboratorios en la manera que se describe. Otros laboratorios de diseño de armas nucleares en otros países duplicaron estas innovaciones de diseño en forma independiente, haciendo ingeniería inversa a partir del análisis de la lluvia radiactiva u obtenidas a través del espionaje.[44]

Berkeley

La primera exploración sistemática de los conceptos del diseño de armas nucleares ocurrió a mediados de 1942 en la University of California, Berkeley. Importantes primeros descubrimientos habían sido hechos en el Lawrence Berkeley Laboratory adyacente, tales como la producción y aislación de plutonio usando un ciclotrón en 1940. Un profesor de Berkeley, J. Robert Oppenheimer, había sido recién contratado para liderar el esfuerzo de diseño de una bomba secreta para la nación. Su primera acción fue convocar la conferencia de verano de 1942.

Para el momento en que él trasladó su operación al nuevo pueblo secreto de Los Álamos (Nuevo México), en la primavera de 1943, el conocimiento acumulado sobre el diseño de armas nucleares consistía en cinco charlas por el profesor de Berkeley Robert Serber, transcritas y distribuidas como el Los Alamos Primer. La cartilla trataba sobre la energía de la fisión, la producción de neutrones y su captura, las reacciones en cadena nucleares, masa crítica, trabas, predetonación y tres métodos para construir una bomba: estructura tipo cañón, implosión y "métodos autocatalíticos", la única posibilidad que resultó un callejón sin salida.

Los Álamos

En Los Álamos, en abril de 1944 Emilio G. Segrè descubrió que la estructura tipo cañón propuesta para la Thin Man no funcionaría con plutonio debido a los problemas de predetonación causados por las impurezas del Pu-240. De esa forma a la Fat Man, la bomba tipo implosión, le fue dada una alta prioridad como la única opción para el plutonio. Las discusiones de Berkeley habían generado estimaciones teóricas de masa crítica, pero nada preciso. El principal trabajo en tiempo de guerra en Los Álamos fue la determinación experimental de la masa crítica, lo que tuvo que esperar hasta que suficientes cantidades de material fisible llegarán desde las plantas de producción: uranio desde Oak Ridge, Tennessee, y plutonio desde Hanford Site en Washington.

En 1945, usando los resultados de los experimentos de masa crítica, los técnicos de Los Álamos fabricaron y armaron los componentes para cuatro bombas: Trinity Gadget, Little Boy, Fat Man, y una Fat Man de repuesto sin usar. Después de la guerra, aquellos que podían, incluyendo a Oppenheimer, regresaron a posiciones de enseñanza universitaria. Aquellos que permanecieron trabajaron en pozos huercos y levitados y condujeron las pruebas de efectos de las armas nucleares tales como Crossroads Able y Baker en el Atolón Bikini en 1946.

Todas las ideas esenciales para incorporar la fusión en armas nucleares se originaron en Los Álamos entre 1946 y 1952. Después del hallazgo de la radiación por implosión de Teller-Ulam en 1951, las implicaciones y posibilidades técnicas fueron totalmente exploradas, pero las ideas que no eran directamente relevantes para fabricar bombas lo más grandes posibles para los bombarderos de largo alcance de la fuerza aérea fueron archivadas.

Debido a la posición inicial de Oppenheimer en el debate de la bomba H, en oposición a las grandes armas termonucleares, y el supuesto de que él aún tenía influencia en Los Álamos a pesar de su partida, los aliados políticos de Edward Teller decidieron que él necesitaba su propio laboratorio para seguir desarrollando las bombas H. Por el tiempo en que se inauguró en 1952, en Livermore, California, Los Álamos había finalizado el trabajo para el cual Livermore había sido diseñado.

Livermore

Ya que la misión original del laboratorio de Livermore había sido alcanzada, este probó nuevos diseños radicales, que fallaron. Sus tres primeras pruebas nucleares fueron bullicios (en inglés: fizzles): en 1953, dos dispositivos de fisión con pozos de hidruro de uranio de etapa única, y en 1954, un dispositivo termonuclear de dos etapas en el que la secundaria se calentó prematuramente, demasiado rápido para que la radiación por implosión trabajara apropiadamente.

Cambiando su orientación, Livermore comenzó a tomar las ideas que en Los Álamos habían archivado y las desarrolló para el ejército y la armada. Esto llevó a que Livermore se especializará en armas tácticas de diámetro pequeño, particularmente las que usan sistemas de implosión de dos puntos, tal como el dispositivo Swan. Las armas tácticas de diámetro pequeño se convirtieron en primarias para secundarias de pequeño diámetro. Alrededor de 1960, cuando la carrera de armas entre las superpotencias se convirtió en una carrera de misiles balísticos, las cabezas de guerra de Livermore eran más útiles que las cabezas de guerra grandes y pesadas de Los Álamos. Las cabezas de guerra de Los Álamos fueron usadas en los primeros misiles balísticos de alcance intermedio (en inglés: Intermediate-Range Ballistic Missiles, IRBM), pero las cabezas de guerra más pequeñas de Livermore fueron las usadas en los primeros misiles balísticos intercontinentales (en inglés: InterContinental Ballistic Missile, ICBM) y en los misiles balísticos lanzados desde submarinos (en inglés: Submarine-Launched Ballistic Missile, SLBM), así como en los primeros sistemas de cabezas de guerra múltiples montados en estos misiles.[45]

En 1957 y 1958 ambos laboratorios construyeron y probaron tantos diseños como era posible, en anticipación de que la planificada prohibición de ensayos nucleares de 1958 se convirtiera en permanente. Para la época en que las pruebas se retomaron en 1961, los dos laboratorios se habían convertido en un duplicado uno del otro, y los trabajos de diseño eran asignados más por consideraciones de carga de trabajo que por la especialidad de los laboratorios. Algunos diseños fueron intercambiados. Por ejemplo, la cabeza de guerra W38 para el misil Titan I comenzó como un proyecto de Livermore y fue transferida a Los Álamos donde se convirtió la cabeza de guerra para el misil Atlas, y en 1959 fue devuelta a Livermore a cambio de la cabeza de guerra W54 del Davy Crockett, que se traspasó de Livermore a Los Álamos.

De todas formas el período de real innovación estaba finalizado para ese entonces. Los diseños de cabezas de guerra después de 1960 tomaron el carácter de cambios de modelo, con cada nuevo misil recibiendo una nueva cabeza de guerra por razones de marketing. El cambio principal más sustantivo fue colocar más uranio fisible en la secundaria, en la medida en que había más disponible con el continuo enriquecimiento de uranio y el desmantelamiento de las grandes bombas de alta potencia.

Pruebas explosivas

Las armas nucleares son en gran parte diseñadas por prueba y error. Las pruebas a menudo envuelve la explosión de prueba de un prototipo.

En una explosión de nuclear, una gran cantidad de eventos discretos, con varias probabilidades, agregados en flujos de energía de corta vida y caóticos al interior de la carcasa del dispositivo. Complejos modelos matemáticos son requeridos para hacer aproximaciones a los procesos, y en la década de 1950 no existían computadores lo suficientemente poderosos para correrlos apropiadamente. Incluso los computadores y programas de simulación actuales no son adecuados.[46]

Era relativamente fácil diseñar armas confiables para los arsenales. Si el prototipo funcionaba adecuadamente, podía ser industrializado y producido en masa.

Era mucho más difícil comprender cómo funcionaba o por qué había fallado. Los diseñadores recuperaban tantos datos como fuera posible durante la explosión, antes de que el dispositivo en sí mismo se destruyera, y los usaban para calibrar sus modelos, a menudo insertando un factor de ajuste en las ecuaciones para hacer que las simulaciones coincidieran con los resultados del experimento. Ellos también analizaban los desechos del arma en la lluvia radioactiva para ver cuánto se había producido del potencial de la reacción nuclear.

Tuberías de luz

Una importante herramienta para los análisis de las pruebas eran las tuberías de luz para diagnóstico. Una sonda en el interior de un dispositivo de prueba podía transmitir información calentando una placa de metal hasta la incandescencia, un evento que podía ser registrado en el extremo lejano de una tubería larga y muy recta.

La foto de abajo muestra el dispositivo Shrimp, detonado el 1 de marzo de 1954, en Bikini, como parte de la prueba Castle Bravo. Su explosión de 15 megatones fue la más grande realizada por Estados Unidos. Se muestra la silueta de un hombre para apreciar la escala. El dispositivo está apoyado por debajo, en ambos extremos. Las tuberías que desaparecen en el techo de la cabina de disparo, que parecen ser vigas de apoyo, son las tuberías de luz para diagnóstico. Las ocho tuberías del extremo derecho (1) enviaban información sobre la detonación de la primaria. Las dos del medio (2) registraban el tiempo cuando los rayos-X de la primaria alcanzaban el canal de radiación alrededor de la secundaria. Las dos últimas tuberías (3) registraban el momento en que la radiación alcanzaba el extremo lejano del canal de radiación, siendo la diferencia entre (2) y (3) el tiempo de tránsito de la radiación por el canal.[47]

 

Desde la cabina de disparo (en inglés: Shot Cab), las tuberías rotaban y eran horizontales, e iban 2.300 m (7.500 pies) a lo largo de una pasarela construida sobre el arrecife de Bikini, hasta un búnker (en inglés: Data Bunker) de recolección de datos controlado remotamente en la isla de Namu.

Mientras los rayos-X normalmente viajan a la velocidad de la luz a través de un material de baja densidad tal como la espuma plástica de relleno entre (2) y (3), la intensidad de la radiación de la primaria explotando creaba un frente de radiación relativamente opaco en el relleno del canal que actuaba como cuello de botella para retardar el paso de la energía radiante. Mientras la secundaria estaba siendo comprimida vía la ablación inducida por la radiación, los neutrones de la primaria alcanzaban a los rayos-X, penetrando en la secundaria y comenzando a generar tritio con la tercera reacción indicada en la primera sección anterior. Esta reacción Li-6 + n es exotérmica, produciendo 5 MeV por evento. El tapón de ignición aún no está comprimido y por lo tanto no es crítico, con lo que no habrá fisión o fusión significativa. Pero si suficientes neutrones llegan antes de que la implosión de la secundaria esté completa, la crucial diferencia de temperatura se degradará. Esta es la causa que se reportó como razón del fallo del primer diseño termonuclear de Livermore, el dispositivo Morgenstern, probado como Castle Koon, el 7 de abril de 1954.

Los problemas de coordinación de tiempos se miden a partir de los datos entregados por las tuberías de luz. Las simulaciones matemáticas que calibran se llaman códigos hidrodinámicos del flujo de radiación. Estos son usados para predecir el efecto de las futuras modificaciones de diseño.

No está claro, usando los registros públicos, cuán exitosos fueron las tuberías de luz de Shrimp. El búnker de datos estaba lo suficientemente lejos para permanecer fuera del cráter de una milla de ancho. Pero la onda expansiva producto de la explosión de 15 megatones, dos veces y media mayor de lo esperado, destruyó el búnker sacando la puerta de veinte toneladas de sus goznes y lanzándola a través del interior de este. Las personas más cercanas estaban a 32 km (20 millas), en un búnker que sobrevivió intacto.[48]

Análisis de la lluvia radioactiva

El dato más interesante de Castle Bravo provino del análisis radioquímico de los restos del arma encontrados en la lluvia radioactiva posterior. Debido a la escasez de litio-6, el 60% del litio en la secundaria de Shrimp era litio-7 ordinario, que no produce tritio tan fácilmente como lo hace el litio-6. Pero produce litio-6 como el producto de la reacción (n, 2n) (un neutrón entran, dos neutrones salen), un hecho conocido, pero con probabilidad desconocida. La probabilidad resultó ser alta.

El análisis de la lluvia radioactiva reveló a los diseñadores que, con la reacción (n, 2n), la secundaria Shrimp efectivamente tuvo dos y media veces más del litio-6 que se esperaba. El tritio, la potencia de fusión, los neutrones y la potencia de la fisión se incrementaron en forma proporcional a ese valor.[49]

Como se indica anteriormente, el análisis de la lluvia radioactiva de Bravo también le dijo al mundo exterior, que las bombas termonucleares son más dispositivos de fisión que dispositivos de fusión. Un buque pesquero japonés, el Lucky Dragon (en español: Dragón Afortunado), llegó a puerto con suficiente lluvia radioactiva en sus cubiertas como para permitirle a los científicos en Japón y en cualquier otra parte determinar, y anunciar, que la mayor parte de la lluvia radioactiva había provenido de la fisión del U-238 por 14 MeV neutrones producidos por fisión.

Pruebas subterráneas

 
Cráteres de subsidencia en Yucca Flat, Sitio de Pruebas de Nevada.

La alarma mundial causada por la lluvia radioactiva, que comenzó con la prueba Castle Bravo, eventualmente obligó a realizar pruebas nucleares subterráneas. La última prueba atmosférica estadounidense se produjo en Atolón Johnston el 4 de noviembre de 1962. Durante las tres próximas décadas, hasta el 23 de septiembre de 1992, Estados Unidos condujo un promedio de 2,4 explosiones nucleares subterráneas por mes, todas excepto algunas pocas en el Nevada Test Site (NTS) (en español: Sitio de Pruebas de Nevada) al noroeste de Las Vegas.

La sección de Yucca Flat del NTS está cubierto con cráteres de subsidencia resultantes del colapso del terreno sobre las cavernas subterráneas radioactivas creadas por las explosiones nucleares (ver la foto).

Después del Threshold Test Ban Treaty (TTBT) de 1974, que limitó las explosiones subterráneas a 150 kilotones o menos, las cabeza de guerra como la W88 de medio megatón tuvieron que ser probadas a menos que su potencia total. Dado que la primaria debe ser detonada a potencia total para que se puedan generar los datos acerca de la implosión de la secundaria, la reducción en potencia tenía que hacerse en la secundaria. Reemplazando la mayor parte del combustible de fisión de litio-6 deuterizado con hidruro de litio-7 se limitaba el tritio disponible para fusión, y de esa forma la potencia total, sin cambiar las dinámicas de la implosión. El funcionamiento del dispositivo podía ser evaluado usando tuberías de luz, otros dispositivos de medición y el análisis de los escombros atrapados del arma. La potencia total del arma almacenada podía ser calculada por extrapolación.

Instalaciones de producción

Cuando las armas de dos etapas se convirtieron en estándares a principios de la década de 1950, el diseño del arma determinó la distribución de las nuevas, y ampliamente dispersadas, instalaciones de producción estadounidenses, y viceversa.

Debido a que las primarias tienden a ser voluminosas, especialmente en diámetro, el plutonio con reflectores de berilio es el material de elección para los pozos. Tiene una masa crítica más pequeña que el uranio. La planta de Rocky Flats cerca de Boulder, Colorado, fue construida en 1952 para la producción de pozos y consecuentemente las instalaciones de fabricación de plutonio y berilio.

La planta Y-12 en Oak Ridge, Tennessee, donde los espectrómetros de masa llamados Calutrones producían uranio enriquecido para el Proyecto Manhattan, fue rediseñada para fabricar secundarias. El U-235 fisible es el mejor material para los tapones de ignición debido a que su masa crítica es más grande, especialmente en la forma cilíndrica de las primeras secundarias termonucleares. Los primeros experimentos usaban los dos materiales fisibles en combinación, como los pozos y tapones de ignición compuestos de Pu-Oy, pero para la producción en masa, era más fácil dejar que las fábricas se especializaran: pozos de plutonio en las primarias, tapones de ignición y empujadores de uranio en las secundarias.

La Y-12 fabricaba combustible de fusión litio-6 deuterizado y partes de U-238, las otras dos fabricaba ingredientes de secundarias.

La planta del Río Savannah en Aiken, Carolina del Sur, también construida en 1952, operaba reactores nucleares que convertían U-238 en Pu-239 para los pozos, y convertía litio-6 (producido en Y-12) en tritio para el gas de amplificación. Dado que sus reactores eran moderados con agua pesada, óxido de deuterio, también fabricaba deuterio para gas de amplificación y para la Y-12, que lo usaba en fabricar litio-6 deuterizado.

Diseño de seguridad de las cabezas de guerra

Debido a que incluso las cabezas de guerra de baja potencia tienen sorprendente poder destructivo, los diseñadores de armas siempre han reconocido la necesidad de incorporar mecanismos y procedimientos asociados ideados para prevenir la detonación accidental.

 
Un diagrama del dispositivo bola de acero de la cabeza de guerra Green Grass, se muestra a la izquierda, lleno (seguro) y a la derecha, vacío (armado). Las bolas de acero eran vaciadas en una tolva bajo el avión antes de despegar, y podían ser reinsertadas usando un túnel haciendo rotar a la bomba en su carro y elevando la tolva.
Armas tipo cañón

Es inherentemente peligroso tener un arma conteniendo una cantidad y forma de material fisible que puede llegar a formar una masa crítica a través de un accidente relativamente simple. Debido a este peligro, el propelente en la Little Boy (cuatro sacos de cordita) fue insertado en la bomba en pleno vuelo, poco después de despegar el 6 de agosto de 1945. Esa fue la primera vez que un arma nuclear tipo cañón fue totalmente ensamblada.

Si el arma cae al agua, el efecto moderador del agua también puede causar un accidente de criticidad, incluso aunque el arma no se haya dañado físicamente. Similarmente, un incendio causado por un avión que se estrelle podría fácilmente ignigtar el propelente, con resultados catastróficos. Las armas tipo cañón han sido siempre inherentemente inseguras.

Inserción del pozo en vuelo

Ninguno de estos efectos es probable con las armas de implosión dado que normalmente hay insuficiente material fisible para formar una masa crítica sin la correcta detonación de los lentes. Sin embargo, las primeras armas de implosión tenían pozos tan cercanos a la criticidad que la detonación accidental con algunas potencias nucleares era una preocupación.

El 9 de agosto de 1945, la Fat Man fue cargada en su avión totalmente ensamblada, pero posteriormente, cuando los pozos levitados hicieron un espacio entre el pozo y la traba, fue factible usar el método de inserción del pozo en pleno vuelo. El bombardero despegaría sin material fisible al interior de la bomba. Algunas armas del tipo implosión más antiguas, tales como la Mark 4 y la Mark 5 estadounidenses, usaban este sistema de seguridad.

La inserción del pozo durante el vuelo no trabaja con un pozo hueco en contacto con su traba.

Método de la bola de acero de seguridad

Como se muestra en el diagrama superior, un método usado para disminuir la posibilidad de una detonación accidental empleaba bolas metálicas. Las bolas eran vertidas en el pozo, esto prevenía la detonación al incrementar la densidad del pozo hueco, y de ese modo prevenían la implosión simétrica en caso de accidente. Este diseño fue usado en el arma Green Grass, también conocida como el Arma de Megatón Interina (en inglés: Interim Megaton Weapon), que fue usada en las bombas Violet Club y Yellow Sun Mk. 1.

 
Método de la cadena de seguridad

Alternativamente, el pozo puede ser "asegurado" llenando su normalmente vacío núcleo con un material inerte tal como una fina cadena de metal, posiblemente fabricada de cadmio para absorber los neutrones. Mientras que la cadena esté en el centro del pozo, el pozo no puede ser comprimido en una forma apropiada para la fisión; cuando el arma está armada, la cadena es retirada. Similarmente, aunque un incendio serio podría detonar los explosivos, destruyendo el pozo y dispersando el plutonio para contaminar los alrededores como ha sucedido en varios accidentes de armas, no causaría una explosión nuclear.

Método del cable de seguridad

La cabeza de guerra W47 estadounidense usada en el Polaris A1 y el Polaris A2 tenía un dispositivo de seguridad consistente de un cable forrado en boro insertado en el pozo hueco durante la fabricación. La cabeza de guerra era armada al retirar enrollando el cable en un carrete impulsado por un motor eléctrico. Una vez retirado el cable no podía ser reinsertado.[50]

Seguridad de un punto

Mientras el disparo de solo un detonador no causará que un pozo hueco se vuelva crítico, especialmente un pozo hueco de baja masa que requiere de estimulación, la introducción de sistemas de implosión de dos puntos hizo de esa posibilidad una real preocupación.

En un sistema de dos puntos, si un detonador se dispara, un hemisferio completo del pozo implosionará de acuerdo a lo diseñado. La carga de alto explosivo que rodea al otro hemisferio explosará progresivamente, desde el ecuador hacia el polo opuesto. Idealmente, esto apretará al ecuador y exprimirá al segundo hemisferio alejándolo del primero, como la pasta de dientes al apretar el tubo. Hacia el momento en que la explosión lo envuelva, su implosión los separará tanto en tiempo como espacio de la implosión del primer hemisferio. La forma resultante, parecida a la de una pesa, con cada extremo alcanzando densidad máxima en un momento diferente, no puede convertirse en crítico.

Desafortunadamente, no es posible decir en teoría como resultará esto. Ni es posible usar un pozo falso de U-238 y cámaras de rayos-X de alta velocidad, aunque tales pruebas son útiles. Para poder determinar finalmente esto, se necesita una prueba con material fisible real. En consecuencia, comenzando en 1957, un año después de Swan, ambos laboratorios comenzaron pruebas de un punto.

De 25 pruebas de seguridad de un punto conducidas en 1957 y 1958, siete tuvieron cero o una ligera potencia nuclear (es decir fueron un éxito), tres tuvieron altas potencias de entre 300 a 5000 toneladas (falla severa) y el resto tuvieron potencias inaceptables entre esos dos extremos.

De particular interés fue la cabeza de guerra W47 de Livermore para el misil lanzado desde submarinos Polaris. La última prueba antes de la moratoria de 1958 fue una prueba de un punto de la primaria de la W47, que tenía una potencia nuclear inaceptablemente alta de 400 lb (181 kg) de equivalente a TNT (Hardtack II Titania). Con la moratoria de pruebas en vigor, no existía forma de refinar el diseño y hacerlo inherentemente seguro de un punto. Los Álamos tenía una primaria adecuada que era segura de un-punto, pero más que compartir con Los Álamos el crédito por diseñar la primera cabeza de guerra para SLBM, Livermore escogió usar un mecanismo mecánico de seguridad en su propia primaria inherentemente insegura. El resultado fue el esquema de seguridad que usaba el sistema de cable descrito anteriormente.[51]

Resultó que la W47 puede haber sido más segura que lo anticipado. El sistema de seguridad de cable puede haber convertido a la mayor parte de las cabezas de guerra en defectuosas, incapaces de explotar si se hacían detonar.[51]

Cuando las pruebas se reiniciaron en 1961, y continuadas por tres décadas, hubo suficiente tiempo para hacer que todos los diseños de cabezas de guerra fueran inherentemente seguras de un-punto, sin necesidad de un mecanismo mecánico de seguridad.

Enlace fuerte enlace débil

Un enlace fuerte/enlace débil y zona de exclusión es un mecanismo de detonación nuclear que es una forma de acople de seguridad automático.

Enlaces de acción permisiva

En adición a los pasos indicados anteriormente para reducir la probabilidad de una detonación nuclear resultante de una sola falla, mecanismos de cierre referidos por los estados de la OTAN como Enlaces de Acción Permisiva (en inglés: Permissive Action Links) son algunas veces asignados a los mecanismos de control para las cabezas de guerra nuclear. Los enlaces de acción permisiva actúan únicamente para prevenir el uso no autorizado de un arma nuclear.

Referencias

Bibliografía

  • Cohen, Sam, The Truth About the Neutron Bomb: The Inventor of the Bomb Speaks Out, William Morrow & Co., 1983
  • Coster-Mullen, John, "Atom Bombs: The Top Secret Inside Story of Little Boy and Fat Man", Self-Published, 2011
  • Glasstone, Samuel and Dolan, Philip J., (hosted at the ), U.S. Government Printing Office, 1977.
  • Grace, S. Charles, Nuclear Weapons: Principles, Effects and Survivability (Land Warfare: Brassey's New Battlefield Weapons Systems and Technology, vol 10)
  • Hansen, Chuck, The Swords of Armageddon: U.S. Nuclear Weapons Development since 1945, October 1995, Chucklea Productions, eight volumes (CD-ROM), two thousand pages.
  • , Office of Technology Assessment (May 1979).
  • Rhodes, Richard. The Making of the Atomic Bomb. Simon and Schuster, New York, (1986 ISBN 978-0-684-81378-3)
  • Rhodes, Richard. Dark Sun: The Making of the Hydrogen Bomb. Simon and Schuster, New York, (1995 ISBN 978-0-684-82414-7)
  • Smyth, Henry DeWolf, Atomic Energy for Military Purposes, Princeton University Press, 1945. (see: Smyth Report)

Notas

  1. El paquete físico es el módulo explosivo nuclear al interior de la carcasa de la bomba, cabeza de guerra del misil o proyectil de artillería, etc., que transporta el arma a su blanco. Mientras que las fotos de la carcasa del arma son comunes, las fotografías del paquete físico son muy raras, incluso de las armas más antiguas y crudas. Para la fotografía de un paquete físico moderno véase a la W80.
  2. Life Editors (1961), «To the Outside World, a Superbomb more Bluff than Bang», Life (New York) (Vol. 51, No. 19, November 10, 1961): 34-37, consultado el 28 de junio de 2010 .. Artículo sobre la prueba nuclear soviética de la bomba del Zar. Debido a que las explosiones son de forma esférica y que los blancos están dispersos en la relativamente plana superficie de la tierra, numerosas armas más pequeñas pueden causar más destrucción. De la página 35: ". . .cinco bombas de cinco megatones demolerían una área mayor que una sola de 50 megatones".
  3. Estados Unidos y Unión Soviética fueron las únicas naciones en construir grandes arsenales nucleares con cada tipo posible de arma nuclear. Estados Unidos comenzó cuatro años antes y fue el primero en producir material fisible y armas de fisión, todo en 1945. Los soviéticos dicen que detonaron la primera bomba de hidrógeno lanzable, la detonación de la Joe 4 el 12 de agosto de 1953. Sin embargo, Herbert York reveló en The Advisors: Oppenheimer, Teller and the Superbomb (W.H. Freeman, 1976), que no era una verdadera bomba de hidrógeno (era un arma de fisión del tipo Sloika/Reloj de alarma, no un arma termonuclear de dos etapas). Las fechas soviéticas para los elementos esenciales de la miniaturización de la cabeza de guerra - impulsión, pozo hueco, primarias de dos puntos con lentes de aire – no están disponibles en la literatura abierta, pero el gran tamaño de los misiles balísticos soviéticos es a menudo usado como evidencia de las dificultades iniciales de los soviéticos en miniaturizar las cabezas de guerra.
  4. Caisse Nationale de la Recherche Scientifique (National Fund for Scientific Research), "Perfectionnements aux charges explosives (Improvements to explosive charges)", fr 971324, published 16 January 1951, issued 12 July 1950..
  5. La principal fuente para esta sección es la publicación de Samuel Glasstone y Philip Dolan, The Effects of Nuclear Weapons, Third Edition, 1977, U.S. Dept of Defense and U.S. Dept of Energy (ver los enlaces en la sección de referencias), con mayor detalle en la publicación de Samuel Glasstone, Sourcebook on Atomic Energy, Third Edition, 1979, U.S. Atomic Energy Commission, Krieger Publishing.
  6. Glasstone and Dolan, Effects, p. 12.
  7. Glasstone, Sourcebook, p. 503.
  8. "los neutrones llevan la mayor parte de la energía de la reacción", Glasstone y Dolan, Effects, p. 21.
  9. Glasstone and Dolan, Effects, p. 21.
  10. Glasstone and Dolan, Effects, p. 12–13. Cuando 454 gramos de U-235 se fisionan completamente, la potencia es de 8 kilotones. La potencia de 13 a 16 kilotones de la bomba Little Boy por lo tanto fue producida por la fisión de no más de 907 gramos de U-235, de un total de 64 kilos en el pozo. Los restantes 63 kg, el 98,5% del total, no contribuyeron en nada a la potencia del arma.
  11. Compere, A.L., and Griffith, W.L. 1991. "The U.S. Calutron Program for Uranium Enrichment: History,. Technology, Operations, and Production. Report," ORNL-5928, como se cita en John Coster-Mullen, "Atom Bombs: The Top Secret Inside Story of Little Boy and Fat Man," 2003, nota de pie de página 28, p. 18. La producción total de tiempo de guerra de Oralloy en Oak Ridge al 28 de julio de 1945 fue de 74,68 kg. De esta cantidad, el 84% fue dispersado sobre Hiroshima (ver nota de pie de página anterior).
  12. "Restricted Data Declassification Decisions from 1945 until Present" – "Hecho de que el plutonio y el uranio pueden ser pegados uno al otro en pozos no especificados o armas."
  13. "Restricted Data Declassification Decisions from 1946 until Present"
  14. Fissionable Materials section of the Nuclear Weapons FAQ (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última)., Carey Sublette, accessed Sept 23, 2006
  15. Toda la información sobre las pruebas de armas nucleares provienen de Chuck Hansen, The Swords of Armageddon: U.S. Nuclear Weapons Development since 1945, Octobre 1995, Chucklea Productions, Volume VIII, p. 154, Table A-1, "U.S. Nuclear Detonations and Tests, 1945–1962."
  16. Nuclear Weapons FAQ: 4.1.6.3 Hybrid Assembly Techniques, accesada el 1 de diciembre de 2007. Diagrama adaptado de la misma fuente.
  17. Nuclear Weapons FAQ: 4.1.6.2.2.4 Cylindrical and Planar Shock Techniques, accessed December 1, 2007.
  18. "Restricted Data Declassification Decisions from 1946 until Present", Section V.B.2.k "The fact of use in high explosive assembled (HEA) weapons of spherical shells of fissile materials, sealed pits; air and ring HE lenses," declassified November 1972.
  19. 4.4 Elements of Thermonuclear Weapon Design. Nuclearweaponarchive.org. Retrieved on 2011-05-01.
  20. Hasta que un diseño confiable fue refinado a principios de la década de 1950, la bomba de hidrógeno (el nombre público) era llamada la superbomba por los expertos. Después de eso, ellos usaron un nombre más descriptivo: termonuclear de dos etapas. Dos ejemplos son: de Herb York, The Advisors, 1976, "Este libro es acerca de ... el desarrollo de la bomba H, o la superbomba como era llamada en ese entonces." p. ix, y "El rápido y exitoso desarrollo de la superbomba (o super como sería llamada) . . ." p. 5. De National Public Radio Talk of the Nation, 8 de noviembre de 2005, Siegfried Hecker de Los Alamos, "la bomba de hidrógeno – estos es, un dispositivo termonuclear de dos etapas, como la llamábamos - es la parte principal del arsenal de estadounidense, así como lo es del arsenal ruso."
  21. Howard Morland, "Born Secret," Cardozo Law Review, March 2005, pp. 1401–1408.
  22. "Improved Security, Safety & Manufacturability of the Reliable Replacement Warhead," NNSA March 2007.
  23. Un diagrama de 1976 que muestra una interetapa que absorbe y reirradia los rayos-X. De Howard Morland, "The Article," Cardozo Law Review, Marzo 2005, p 1374.
  24. "ArmsControlWonk: FOGBANK", March 7, 2008. (Accessed 2010-04-06)
  25. "SAND8.8 – 1151 Nuclear Weapon Data – Sigma I," Sandia Laboratories, Septiembre, 1988.
  26. El diagrama de Greenpeace. De Morland, Cardozo Law Review, March 2005, p 1378.
  27. Herbert York, The Advisors: Oppenheimer, Teller and the Superbomb (1976).
  28. "El 'Reloj Alarma' ... se volvió práctico solo por la inclusión de Li6 (en 1950) y su combinación con la radiación por implosión". Hans A. Bethe, Memorandum sobre la Historia del Programa Termonuclear, 28 de mayo de 1952.
  29. Véase map.
  30. 4.5 Thermonuclear Weapon Designs and Later Subsections. Nuclearweaponarchive.org. Retrieved on 2011-05-01.
  31. Operation Hardtack I. Nuclearweaponarchive.org. Retrieved on 2011-05-01.
  32. Operation Redwing. Nuclearweaponarchive.org. Retrieved on 2011-05-01.
  33. . Weapons.technology.youngester.com (2010-04-19). Retrieved on 2011-05-01.
  34. Fourth Generation Nuclear Weapons. Nuclearweaponarchive.org. Retrieved on 2011-05-01.
  35. Never say "never". Whyfiles.org. Retrieved on 2011-05-01.
  36. Samuel Glasstone, The Effects of Nuclear Weapons, 1962, Revisado 1964, U.S. Dept of Defense and U.S. Dept of Energy, pp.464–5. Esta sección fue removida de las ediciones posteriores, pero, de acuerdo a Glasstone en 1978, no porque fuera inexacta o porque las armas hubieran cambiado.
  37. «Nuclear Weapons FAQ: 1.6». 
  38. «Neutron bomb: Why 'clean' is deadly». BBC News. 15 de julio de 1999. Consultado el 6 de enero de 2010. 
  39. Broad, William J. (7 September 1999), "Spies versus sweat, the debate over China's nuclear advance," The New York Times, p 1. El diagrama de la portada era similar a uno que apareció cuatro meses antes en San Jose Mercury News.
  40. Jonathan Medalia, "The Reliable Replacement Warhead Program: Background and Current Developments," CRS Report RL32929, Dec 18, 2007, p CRS-11.
  41. Richard Garwin, "Why China Won't Build U.S. Warheads" el 5 de noviembre de 2005 en Wayback Machine., Arms Control Today, April–May 1999.
  42. . Archivado desde el original el 1 de abril de 2007. Consultado el 7 de febrero de 2016. 
  43. William J. Broad, "The Hidden Travels of The Bomb: Atomic insiders say the weapon was invented only once, and its secrets were spread around the globe by spies, scientists and the covert acts of nuclear states," New York Times, December 9, 2008, p D1.
  44. Sybil Francis, Warhead Politics: Livermore and the Competitive System of Nuclear Warhead Design, UCRL-LR-124754, June 1995, Ph.D. Dissertation, Massachusetts Institute of Technology, disponible desde el National Technical Information Service. Esta tesis de 233 páginas fue escrita por un ajeno a los laboratorios de desarrollo de armas para distribución pública. La autora tuvo acceso a toda la información clasificada en Livermore que era relevante para su investigación sobre el diseño de cabezas de guerra; como consecuencia de este nivel de acceso, se le pidió que usara palabras código no descriptivas para ciertas innovaciones.
  45. Walter Goad, Declaración para el caso de Wen Ho Lee, 17 de mayo de 2000. Goad comenzó el trabajo de diseño de armas termonucleares en Los Álamos en 1950. En su declaración, el menciona "los problemas científicos básicos de computabilidad que no pueden ser resueltos sólo por la capacidad de los computadores. Estos son tipificados por el problema de predicciones de largo plazo del tiempo y el clima, y se extienden a las predicciones del comportamiento de las armas nucleares. Esto considera el hecho de que, después de enormes inversiones de esfuerzo por muchos años, aún no se puede confiar en estos modelos para desarrollo de diseños significativamente nuevos".
  46. Chuck Hansen, The Swords of Armageddon, Volume IV, pp. 211–212, 284.
  47. Dr. John C. Clark, as told to Robert Cahn, "We Were Trapped by Radioactive Fallout," The Saturday Evening Post, July 20, 1957, pp. 17–19, 69–71.
  48. Richard Rhodes, Dark Sun; the Making of the Hydrogen Bomb, Simon and Schuster, 1995, p. 541.
  49. Chuck Hansen, The Swords of Armageddon, Volume VII, pp. 396–397.
  50. Sybil Francis, Warhead Politics, pp. 141, 160.

Enlaces externos

  • Carey Sublette's Nuclear Weapon Archive es una fuente confiable de información y tiene enlaces a otras fuentes.
    • Preguntas frecuentemente realizadas sobre las armas nucleares: Sección 4.0 Ingeniería y Diseño de Armas Nucleares
  • The Federation of American Scientists proporciona sólida información sobre las armas de destrucción masiva, incluyendo nuclear weapons y sus
  • Globalsecurity.org provee una bien escrita introducción sobre los conceptos del diseño de armas nucleares (navegación del sitio al lado derecho).
  • Más información sobre el diseño de bombas de fusión de dos etapas
  • from the US Government's Defense Technical Information Center
  • "Restricted Data Declassification Decisions from 1946 until Present", Serie de informes del Departamento de Energía publicados desde 1994 hasta enero de 2001 que lista todas las acciones de desclasificación conocidas y sus fechas. Auspiciada por la 'Federation of American Scientists'.
  • The Holocaust Bomb: A Question of Time es una actualización de caso legal de 1979 USA v. The Progressive (en castellano: Estados Unidos contra Los Progresivos), con vínculos a documentos de apoyo sobre el diseño de armas nucleares.



  •   Datos: Q15221814
  •   Multimedia: Nuclear weapon design

diseño, armas, nucleares, diseños, armas, nucleares, arreglos, físicos, químicos, ingenieriles, causan, paquete, físico, arma, nuclear, detone, existen, tres, tipos, básicos, diseño, tres, energía, explosiva, dispositivos, desplegados, derivado, principalmente. Los disenos de armas nucleares son los arreglos fisicos quimicos e ingenieriles que causan que el paquete fisico 1 de un arma nuclear detone Existen tres tipos basicos de diseno En los tres la energia explosiva de los dispositivos desplegados se ha derivado principalmente de la fision nuclear y no de la fusion Las armas de fision nuclear fueron las primeras armas nucleares construidas y hasta el momento han sido las unicas usadas en combate El material activo es el uranio fisible U 235 o el plutonio Pu 239 ensamblados explosivamente en una masa critica reaccionando en cadena por uno de dos metodos Armas de fision con detonacion por disparo una pieza de uranio fisible se dispara hacia un blanco de uranio fisible en el otro extremo del arma de forma similar a disparar una bala por un canon logrando una masa critica cuando se combinan Armas de fision con detonacion por implosion una masa fisible de cualquier material U 235 Pu 239 o una combinacion es rodeada por explosivos de gran potencia que al explotar comprimen la masa resultando en una masa critica El metodo de implosion puede usar uranio o plutonio como combustible El metodo de canon solo usa uranio El plutonio se considera como poco practico para el metodo de canon a causa del disparo prematuro debido a la contaminacion con Pu 240 ya que su constante de tiempo para la fision casi critica es mucho mas pequena que la del U 235 Las primeras armas nucleares aunque grandes pesadas e ineficientes proporcionaron las bases de diseno basico para todas las futuras armas Aqui el dispositivo Gadget es preparado para la primera prueba nuclear Trinity Las armas de fision intensificada son una mejora sobre el diseno de implosion La alta presion y temperatura ambiental en el centro de un arma de fision explotando comprime y calienta una mezcla de tritio y gas de deuterio isotopos pesados de hidrogeno El hidrogeno se fusiona para formar helio y neutrones libres La energia liberada de esta reaccion de fusion es relativamente despreciable pero cada neutron comienza una nueva cadena de reaccion de fision acelerando la fision y reduciendo en forma importante la cantidad de material fisible que de otra forma seria desperdiciada cuando la expansion del material fisible detiene la reaccion en cadena La mejora puede mas que doblar la liberacion de energia de fision del arma Las armas termonucleares o bombas de hidrogeno son esencialmente una cadena de armas de fision intensificadas por fusion no confundir con las armas de fision mejoradas por fusion mencionadas en el punto anterior normalmente con dos etapas en la cadena La segunda etapa llamada la secundaria es implosionada por la energia de los rayos x de la primera etapa llamada la primaria Consecuentemente la secundaria puede ser mucho mas poderosa que la primaria sin ser mas grande La secundaria puede ser disenada para maximizar la liberacion de energia de la fusion pero en la mayor parte de los disenos de fusion es solo empleada para sostener o mejorar la fision como lo es en la primaria Se podrian agregar mas etapas pero el resultado seria un arma de gran potencia pero demasiado poderosa para servir a algun proposito plausible 2 Estados Unidos desplego brevemente una bomba de tres etapas de 25 megatones la B41 a comienzos de 1961 Tambien en 1961 la Union Sovietica probo pero no desplego un dispositivo de tres etapas de 50 a 100 megatones la Bomba del Zar Las armas de fision pura historicamente han sido el primer tipo en ser construida por un pais Los paises industrializados mas grandes con arsenales nucleares bien desarrollados tienen armas termonucleares de dos etapas que son mas compactas escalables y una opcion mas costo efectiva una vez que la infraestructura industrial necesaria es construida Las innovaciones mas conocidas en el diseno de armas nucleares se originaron en Estados Unidos aunque mas tarde fueron desarrolladas independientemente por otros estados 3 las siguientes descripciones presentan los disenos estadounidenses En las primeras explicaciones las armas de fision pura eran llamadas bombas atomicas o bombas A un error dado que la energia proviene solo del nucleo del atomo Las armas que usan la fusion fueron llamadas bombas de hidrogeno o bombas H tambien un error dado que la energia destructiva proviene principalmente de la fision Los expertos favorecen los terminos nuclear y termonuclear respectivamente El termino termonuclear se refiere a las altas temperatura requeridas para iniciar la fusion Ignora el igualmente importante factor de la presion que era considerado secreto en la epoca en que el termino se hizo popular Muchos terminos sobre armas nucleares son inexactos debido a su origen clasificado Indice 1 Reacciones nucleares 1 1 Fision 1 2 Fusion 1 3 Produccion de tritio 2 Armas de fision pura 2 1 Arma de armazon tipo canon 2 2 Armas del tipo implosion 2 3 Pozo de plutonio 2 4 Implosion de pozo levitado 2 5 Implosion lineal de dos puntos 2 6 Implosion de pozo hueco de dos puntos 3 Armas de fision intensificada por fusion 4 Armas termonucleares de dos etapas 4 1 Interetapa 5 Disenos especificos 5 1 Bombas de hidrogeno 5 2 Reloj de Alarma Sloika 5 3 Bombas limpias 5 4 Bombas de cobalto 5 5 Bombas de fision fusion fision 5 6 Bomba de neutrones 5 7 Cabezas de guerra termonucleares de Oralloy 5 8 Cabeza de guerra de reemplazo fiable 6 Laboratorios de diseno de armas 6 1 Berkeley 6 2 Los Alamos 6 3 Livermore 7 Pruebas explosivas 7 1 Tuberias de luz 7 2 Analisis de la lluvia radioactiva 7 3 Pruebas subterraneas 8 Instalaciones de produccion 9 Diseno de seguridad de las cabezas de guerra 10 Referencias 10 1 Bibliografia 10 2 Notas 11 Enlaces externosReacciones nucleares EditarLa fision nuclear divide los atomos mas pesados para formar atomos mas ligeros La fusion nuclear enlaza atomos mas ligeros para formar atomos mas pesados Ambas reacciones generan aproximadamente un millon de veces mas energia que reacciones quimicas comparables haciendo las bombas nucleares un millon de veces mas poderosas que las bombas no nucleares tal como lo dijo una patente francesa en mayo de 1939 4 En algunas formas la fision y la fusion son reacciones opuestas y complementarias pero los detalles son unicos para cada una de ellas Para comprender como son disenadas las armas nucleares es util conocer las similitudes y diferencias importantes entre ellas La siguiente explicacion usa redondeos y aproximaciones 5 Fision Editar Representacion esquematica de los dos metodos para ensamblar una bomba de fision nuclear Cuando un neutron libre golpea el nucleo de un atomo fisionable tal como el uranio 235 235U el uranio se divide en dos atomos mas pequenos llamados fragmentos de fision y neutrones adicionales La fision se puede autosostener ya que produce mas neutrones de la velocidad requerida para causar nuevas fisiones El atomo de uranio se puede dividir en cualquiera de una docena de alternativas diferentes mientras el peso atomico sume 236 uranio mas el neutron extra La siguiente ecuacion muestra una posible division en estroncio 95 95Sr xenon 139 139Xe y dos neutrones n mas energia 6 235 U n 95 S r 139 X e 2 n 180 M e V displaystyle 235 mathrm U n 95 mathrm Sr 139 mathrm Xe 2n 180 mathrm MeV dd dd La inmediata liberacion de energia por atomo es de 180 millones de electronvoltios MeV por ejemplo 74 TJ kg de los cuales el 90 es energia cinetica o movimiento de los fragmentos de fision alejandose unos de otros mutuamente repelidos por la carga positiva de sus protones 38 para el estroncio 54 para el xenon Asi su energia cinetica inicial es de 67 TJ kg lo que significa que su velocidad inicial es de 12 000 kilometros por segundo pero su carga electrica causa muchas colisiones inelasticas con los nucleos cercanos Los fragmentos permanecen atrapados en el interior del pozo de uranio de la bomba hasta que su movimiento es convertido en calor de rayos x un proceso que toma aproximadamente una millonesima de segundo un microsegundo Esta energia de rayos x produce una explosion y fuego que son normalmente el proposito de una explosion nuclear Despues que los productos de la fision disminuyen su velocidad permanecen radiactivos Siendo nuevos elementos con demasiados neutrones estos elementos se vuelven estables por medio del decaimiento beta convirtiendo los neutrones en protones lanzando electrones y rayos gamma Cada nucleo de los productos de la fision decae entre una y seis veces con un promedio de tres veces produciendo una variedad de isotopos de diferentes elementos algunos estables algunos altamente radiactivos y otros radiactivos con vidas medias de hasta 200 000 anos 7 En los reactores los productos radiactivos son los desechos nucleares en el combustible gastado En las bombas se convierten en la lluvia radiactiva tanto a nivel local como global Mientras tanto en el interior de la bomba que esta explotando los neutrones libres liberados por la fision golpean los nucleos de U 235 cercanos causando que se fisionen en una reaccion en cadena creciente exponencial 1 2 4 8 16 etc Comenzando desde uno la cantidad de fisiones teoricamente se puede doblar cien veces en un microsegundo lo que podria consumir todo el uranio hasta centenares de toneladas al alcanzar el eslabon numero cien en la cadena En la practica las bombas no contienen tanto uranio y de cualquier forma solo unos pocos kilos se fisionan antes de que el nucleo vuele en pedazos Lograr mantener unida una bomba que explota es el mayor desafio del diseno de armas de fision El calor de la fision expande rapidamente el pozo del uranio separando el nucleo blanco y haciendo espacio para que los neutrones escapen sin ser capturados y al suceder eso la reaccion en cadena se detiene Los materiales que pueden sostener una reaccion en cadena son llamados fisibles Los dos materiales fisibles usados en las armas nucleares son el U 235 tambien conocido como uranio altamente enriquecido en ingles Highly Enriched Uranium HEU el oralloy Oy que significa Oak Ridge Alloy en espanol Aleacion Oak Ridge o 25 los ultimos digitos del numero atomico que es 92 para el uranio y el peso atomico para este caso 235 respectivamente y el Pu 239 tambien conocido como plutonio o 49 de 94 y 239 respectivamente El isotopo mas comun del uranio el U 238 es fisionable pero no fisible esto significa que no puede sostener una reaccion en cadena por si mismo pero si se puede fisionar especificamente por neutrones de una reaccion de fusion Sus alias incluyen uranio natural y enriquecido uranio empobrecido en ingles Depleted Uranium DU tubealloy Tu y 28 No puede sostener una reaccion en cadena ya que sus propios neutrones de fision no son lo suficientemente poderosos para causar que mas U 238 se fisione Sin embargo los neutrones liberados por fusion fisionaran el U 238 Esta reaccion de fision del U 238 produce la mayor parte de la energia destructiva de una tipica arma termonuclear de dos etapas Fusion Editar La fusion produce neutrones que disipan energia de la reaccion 8 En las armas la reaccion de fusion mas importante es llamada reaccion D T Usando el calor y la presion de la fision hidrogeno 2 o deuterio 2D se fusiona con hidrogeno 3 o tritio 3T para formar helio 4 4He mas un neutron n y energia 9 2 D 3 T 4 H e n 17 6 M e V displaystyle 2 mathrm D 3 mathrm T 4 mathrm He n 17 6 mathrm MeV dd dd Notese que la energia total producida 17 6 MeV es una decima de la que se produce con la fision pero la masa de los ingredientes es casi la cincuentava parte de la de los de fision asi que la energia producida por unidad de masa es unas 5 veces mayor Sin embargo en esta reaccion de fusion el 80 de la energia o 14 MeV esta en el movimiento del neutron que no teniendo carga electrica y siendo casi tan masivo como el nucleo de hidrogeno que lo creo puede escapar de la escena sin dejar su energia atras para ayudar a sostener la reaccion o generar rayos x para explosion o fuego La unica forma practica de capturar la mayor parte de la energia de fusion es atrapar los neutrones dentro de una masiva botella de material pesado tal como el plomo el uranio o el plutonio Si el neutron de 14 MeV es capturado por uranio ya sea 235 o 238 o plutonio el resultado es la fision y la liberacion de 180 MeV de energia de fision multiplicando la obtencion de energia diez veces Asi la fision es necesaria para comenzar la fusion ayuda a sostener la fusion y captura y multiplica la energia liberada en los neutrones de la fusion En el caso de una bomba de neutrones ver mas adelante lo mencionado anteriormente no se aplica ya que el escape de los neutrones es el objetivo Produccion de tritio Editar Una importante tercera reaccion nuclear es la que crea el tritio esencial en el tipo de fusion usada en las armas y casualmente el ingrediente mas caro en cualquier arma nuclear El tritio o hidrogeno 3 es fabricado bombardeando litio 6 6Li con un neutron n para producir helio 4 4He mas tritio 3T y energia 9 6 L i n 4 H e 3 T 5 M e V displaystyle 6 mathrm Li n 4 mathrm He 3 mathrm T 5 mathrm MeV dd dd Se necesita un reactor nuclear para proporcionar los neutrones La conversion a escala industrial de litio 6 a tritio es muy similar a la conversion de uranio 238 en plutonio 239 En ambos casos el material alimentado es colocado en el interior del reactor nuclear y despues de un periodo de tiempo es extraido para ser procesado En la decada de 1950 cuando la capacidad de los reactores era limitada la produccion de tritio y plutonio entraban en directa competencia Cada atomo de tritio en un arma reemplazaba a un atomo de plutonio que podria haber sido producido en su lugar La fision de un atomo de plutonio libera diez veces mas energia total que la fusion de un atomo de tritio y genera cincuenta veces mas explosion y fuego Por esta razon el tritio es incluido en los componentes de armas nucleares solo cuando causa mas fision de lo que su produccion sacrifica como en el caso de la fision mejorada por fusion Sin embargo una bomba nuclear explotando es un reactor nuclear Y la reaccion descrita anteriormente puede tener lugar simultaneamente a traves de la secundaria en un arma termonuclear de dos etapas produciendo tritio en el mismo momento y lugar en el que el dispositivo esta explotando De los tres tipos basicos de arma nuclear la primera fision pura usa la primera de las tres reacciones nucleares descritas La segunda la fision mejorada por fusion usa las dos primeras La tercera la termonuclear de dos etapas usa las tres Armas de fision pura EditarLa primera tarea del diseno de un arma nuclear es armar rapidamente una masa supercritica de uranio o plutonio fisible Una masa supercritica es una en que el porcentaje de neutrones producidos por la fision capturados por otro nucleo fisible es lo suficientemente grande para que cada evento de fision en promedio cause mas de un evento de fision adicional Una vez que la masa critica es armada a densidad maxima una rafaga de neutrones es proporcionada para iniciar tantas reacciones en cadena como sea posible Las primeras armas usaban un iniciador de neutrones modulado en el interior del pozo que contenia polonio 210 y berilio separados por una delgada barrera La implosion del pozo aplastaba el iniciador mezclando los dos metales y permitiendo asi que las particula alfa del polonio interactuaran con el berilio para producir neutrones libres En las armas mas modernas el generador de neutrones es un tubo de vacio de alto voltaje que contiene un acelerador de particulas que bombardea un blanco hidruro de metal deuterio tritio con iones de deuterio y tritio La fusion a pequena escala resultante produce neutrones en un lugar protegido fuera del paquete fisico desde donde penetran al pozo Este metodo permite un mejor control de los tiempos de iniciacion de la reaccion en cadena La masa critica de una esfera no comprimida de metal desnudo es de 50 kg 110 libras para el uranio 235 y de 16 kg 35 lb para la fase delta del plutonio 239 En aplicaciones practicas la cantidad de material requerido para la criticidad es modificada por la forma pureza densidad y proximidad al material reflectante de neutrones todos los cuales afectan el escape o la captura de neutrones Para evitar una reaccion en cadena durante el manejo el material fisible en el arma debe ser subcritico antes de la detonacion Puede consistir en uno o mas componentes que contengan menos de una masa critica no comprimida cada uno Una delgada armazon hueca puede tener mas masa critica que una esfera desnuda como por ejemplo un cilindro que puede ser arbitrariamente larga y nunca alcanzar la criticidad Una traba es una capa opcional de material denso que rodea al material fisible Debido a su inercia retrasa la expansion del material que reacciona incrementando la eficiencia del arma A menudo la misma capa sirve como traba y como reflector de neutrones Arma de armazon tipo canon Editar Diagrama de un arma de fision de tipo canon 1 Explosivo convencional 2 Tubo del canon 3 Bala hueca de uranio 4 Cilindro blanco Articulo principal Arma de fision de tipo canon La Little Boy la bomba lanzada sobre Hiroshima uso 64 kg 141 libras de uranio con un enriquecimiento promedio de alrededor de 80 o 51 kg 112 libras de U 235 apenas sobre la masa critica de metal desnudo vease el articulo Little Boy para un diagrama detallado Cuando estuvo ensamblada en el interior de su reflector traba de carburo de tungsteno los 64 kg 141 libras eran mas del doble de una masa critica Antes de la detonacion el uranio 235 estaba formado por dos pedazos subcriticos uno de los cuales fue disparado posteriormente por un canon para unirse al otro comenzando la explosion atomica Aproximadamente el 1 del uranio se fisiono 10 el resto que representaba la mayor parte de la produccion en tiempo de guerra de las gigantes fabricas de Oak Ridge se dispersaron inutilmente 11 La vida media del uranio 235 es de 704 millones de anos La ineficiencia fue causada por la velocidad con la que el uranio no comprimido fisionandose se expandio convirtiendose en sub critico por virtud de la disminucion de la densidad A pesar de su ineficiencia este diseno a causa de su forma fue adoptado para su uso en proyectiles de artilleria cilindricos de pequeno diametro una cabeza de guerra para artilleria disparada desde un tubo de un canon mucho mas grande Tales cabezas de guerra fueron desplegadas por Estados Unidos hasta 1992 dando cuenta de una fraccion significativa del U 235 del arsenal y fueron una de las primeras armas en ser desmanteladas para cumplir con los tratados que limitaban la cantidad de cabezas de guerra La razon detras de esta decision fue indudablemente una combinacion de baja potencia y graves temas de seguridad asociados con el diseno del tipo canon Armas del tipo implosion Editar Diagrama de un arma nuclear de implosion 1 Explosivo rapido 2 Explosivo lento 3 Traba Empujador 4 Iniciador de neutrones 5 Nucleo de plutonio 6 Onda de choque esferica comprime al nucleo La Fat Man la bomba lanzada sobre Nagasaki uso 6 2 kg 13 6 libras aproximadamente 350 ml en volumen de Pu 239 que es solo un 39 de la masa critica de esfera desnuda vease el articulo sobre la Fat Man para un diagrama detallado Rodeada por un reflector traba de U 238 el pozo fue llevado cerca de una masa critica por las propiedades de reflexion de neutrones del U 238 Durante la detonacion la criticidad fue lograda por una implosion El pozo de plutonio fue apretado para incrementar su densidad por la detonacion simultanea de explosivos convencionales colocados uniformemente alrededor del pozo Los explosivos fueron detonados por multiples detonadores de cable explosivo Se estimo que solo aproximadamente un 20 del plutonio se fisiono el resto aproximadamente 11 lb 5 kg se disperso Una onda de choque de una implosion seria de tan corta duracion que solo una fraccion del pozo es comprimido en cualquier instante a medida que la onda pasa a traves de este Imagenes instantaneas de rayos X de las ondas de choque convergentes formadas durante una prueba de un sistema de lentes explosivos Puede ser necesaria una carcasa empujadora fabricada de un metal de baja densidad como el aluminio berilio o una aleacion de dos metales siendo el aluminio el mas facil y seguro de dar forma y es dos ordenes de magnitud mas barato pero el berilio tiene una capacidad de reflexion de neutrones mas alta El empujador esta localizado entre las lentes explosivas y la traba Trabaja reflejando algo de la onda de choque hacia atras teniendo el efecto de alargar su duracion La Fat Man uso un empujador de aluminio La clave de la mayor eficiencia de la Fat Man fue el momentum hacia el interior de la masiva traba de U 238 que no se fisiono Una vez que la reaccion en cadena comenzo en el plutonio el momentum de la implosion tenia que ser revertido antes de que la expansion detuviera la fision Manteniendo todo junto por al menos unos pocos centenares de nanosegundos mas se pudo incrementar la eficiencia Pozo de plutonio Editar Articulo principal Pozo arma nuclear El nucleo de un arma de implosion el material fisible y cualquier reflector o traba adosado a ella se conoce como el pozo Algunas armas probadas durante la decada de 1950 usaron pozos fabricados solo con U 235 o en materiales compuestos con plutonio 12 pero los pozos fabricados solo con plutonio son los mas pequenos en diametro y han sido los estandares desde principios de la decada de 1960 El fundido y luego el mecanizado del plutonio es dificil no solo por causa de su toxicidad sino tambien porque el plutonio tiene muchas diferentes fases metalicas tambien conocidas como alotropos A medida que el plutonio se enfria los cambios en la fase resultan en distorsion y agrietamiento Esta distorsion normalmente se supera mediante su aleacion con 3 3 5 molar 0 9 1 0 por peso de galio formando una aleacion de plutonio galio que causa que se conserve su fase delta sobre un mayor rango de temperaturas 13 Cuando se enfria desde el fundido solo pasa por un cambio de fase de epsilon a delta en vez de los cuatro que normalmente ocurririan Otros metales trivalentes tambien funcionarian pero el galio tiene una pequena area de seccion de absorcion de neutrones y ayuda a proteger el plutonio contra la corrosion Una desventaja de los compuestos de galio es que ellos por si mismos son corrosivos y si el plutonio se recupera de armas desmanteladas para convertirlo en dioxido de plutonio para ser usado en reactores de energia nuclear es necesario retirar el galio lo que es dificil de hacer Ya que el plutonio es quimicamente reactivo es comun forrar completamente el pozo con una delgada capa de metal inerte que tambien ayuda a reducir los riesgos de toxicidad 14 The Gadget uso un forro de plata galvanica despues se utilizo niquel depositado a partir de vapor de niquel tetracarbonilo 14 pero ahora se prefiere el oro Implosion de pozo levitado Editar La primera mejora del diseno de la Fat Man fue poner un espacio de aire entre la traba y el pozo para crear un impacto de martillo sobre clavo El pozo apoyado en un cono hueco en el interior de la cavidad de la traba se decia que levitaba En las tres pruebas de la Operation Sandstone en 1948 se usaron disenos Fat Man con pozos levitados La potencia mas grande fue de 49 kilotones mas del doble de potencia que una Fat Man sin dicha modificacion 15 Se vio claramente que la implosion era el mejor diseno para un arma de fision Su unica desventaja parecia ser su diametro La Fat Man tenia 1 5 m de ancho frente los 60 cm de la Little Boy Once anos mas tarde los disenos de implosion habian avanzado lo suficiente y se habia pasado de los 1 52 m de diametro de la esfera de Fat Man a 0 3 m de diametro de un cilindro de 0 61 m de largo del dispositivo Swan El pozo de Pu 239 de la Fat Man era de solo 9 cm de diametro el tamano de una pelota de softball El grueso de la circunferencia de la Fat Man era el mecanismo de implosion mas en detalle eran las capas concentricas de U 238 aluminio y alto explosivo La clave en la reduccion de la circunferencia fue el diseno de implosion de dos puntos Implosion lineal de dos puntos Editar Implosion lineal 1 Pozo de Pu 239 fisible 2 Alto explosivo 3 Formador de onda inerte 4 Detonador 5 Frentes de detonacion emergiendo desde los formadores de onda Un diseno de implosion muy ineficiente es uno que simplemente cambia la forma de un ovoide a una esfera con compresion minima En la implosion lineal una masa de Pu 239 sin apisonar solida elongada mas grande que la masa critica de una esfera es puesta en el interior de un cilindro de alto explosivo con un detonador en cada extremo 16 La detonacion convierte el pozo en critico al llevar los extremos hacia el interior creando una forma esferica La onda de choque tambien puede cambiar el plutonio de la fase delta a la fase alfa incrementando su densidad en un 23 pero sin el momentum hacia el interior de una verdadera implosion La carencia de compresion la convierte en ineficiente pero la simplicidad y pequeno diametro la hacen utilizable en proyectiles de artilleria y municiones atomicas de demolicion en ingles Atomic Demolition Munitions ADM tambien conocidas como bombas atomicas de mochila o de maletin Todas las armas de campo de batalla de baja potencia sean del tipo canon de U 235 o de implosion lineal de Pu 239 pagan un alto precio en material fisible con el proposito de lograr diametros de alrededor de 254 mm Implosion de pozo hueco de dos puntos Editar Un sistema de implosion de dos puntos mas eficiente usa dos lentes de alto explosivo y un pozo hueco Un pozo de plutonio hueco fue el plan original para la bomba Fat Man en 1945 pero no hubo suficiente tiempo para desarrollar y probar el sistema de implosion para eso Un diseno de pozo solido mas simple fue considerado mas confiable dada la restriccion de tiempo pero requirio de una pesada traba de U 238 un grueso empujador de aluminio y tres toneladas de alto explosivo Despues de la guerra el interes en el pozo hueco se reavivo Su ventaja obvia es que una carcasa hueca de plutonio deformada por la onda de choque y conducida hacia el interior de sus centro vacio tendria momentum producto de su violenta transformacion en una esfera solida Se aplastaria por si misma requiriendo una traba de U 238 mas pequena ningun empujador de aluminio y menos alto explosivo La bomba Fat Man tenia dos carcasas concentricas esfericas de alto explosivo cada una de 25 cm de grosor La carcasa interior consistia en un patron como la cubierta de una pelota de futbol de 32 lentes de alto explosivo cada una de las cuales convertia la onda convexa de su detonador en una onda concava alineada al contorno de la superficie exterior de la carcasa interna Si estas 32 lentes pudieran ser reemplazadas con solo dos la esfera de alto explosivo podria convertirse en un elipsoide esferoide alargado con un diametro mucho mas pequeno Una buena ilustracion de estas dos caracteristicas es un diagrama de 1956 del programa de la bomba nuclear de Suecia el cual fue cancelado antes de producir una explosion de prueba El diagrama muestra los elementos esenciales del diseno de pozo hueco de dos puntos Existen diagramas similares en la literatura abierta que provienen del programa de la bomba nuclear alemana de post guerra que tambien fue cancelado y del programa frances que produjo un arsenal nuclear El mecanismo de las lentes de alto explosivo diagrama item 6 no es mostrado en el diagrama sueco pero una lente estandar fabricada de altos explosivos lentos y rapidos como en la Fat Man seria mucho mas larga que lo que muestra la forma Para que una lente unica de alto explosivo genere una onda concava que abarque un hemisferio completo o debe ser muy larga o la parte de la onda en linea directa entre el detonador y el pozo debe ser demorada drasticamente Un alto explosivo lento es demasiado rapido pero la lamina volante de una lente de aire no lo es Una lamina metalica deformada por la onda de choque y empujada a traves de un espacio vacio puede ser disenada para moverse lo suficientemente lento 17 18 Un sistema de implosion de dos puntos usando tecnologia de lentes de aire puede tener un largo de no mas del doble de su diametro como se ve en el diagrama sueco Armas de fision intensificada por fusion EditarArticulo principal Arma de fision intensificada El siguiente paso en la miniaturizacion fue acelerar el fisionamiento del pozo para reducir el tiempo de confinamiento inercial minimo El pozo hueco proporciono un lugar ideal para introducir fusion que mejorara la fision Una mezcla 50 50 de gramos de tritio y deuterio bombeado en el pozo durante el armado se fusionara en helio y liberara neutrones libres despues de que comience la fision Los neutrones comenzaran una gran cantidad de nuevas reacciones en cadena mientras el pozo es aun critico o casi critico El concepto de fision mejorada por fusion fue probado por primera vez el 25 de mayo de 1951 en la prueba Item de la Operacion Greenhouse Eniwetok con una potencia de 45 5 kilotones Este diseno reduce el diametro de tres formas que se complementan entre si todo lo que resulta en una fision mas rapida Dado que el pozo comprimido no necesita ser mantenido unido tanto tiempo la masiva traba de U 238 puede ser reemplazada por una carcasa de berilio mas liviana para reflejar los neutrones que se escapan del pozo La masa del pozo puede ser reducida a la mitad sin disminuir la potencia Dado que la masa del metal siendo implosionado traba mas el pozo es reducida se necesita una cantidad de alto explosivo mas pequena reduciendo aun mas el diametro Dado que el estimulo es requerido para lograr la potencia total de diseno cualquier reduccion en este tambien disminuye la potencia Asi las armas mejoradas son armas de potencia variable La potencia puede ser reducida en cualquier momento antes de la detonacion simplemente poniendo menos tritio en el pozo durante el procedimiento de armado El primer dispositivo cuyas dimensiones sugieren el empleo de todas estas caracteristicas dos puntos pozo hueco implosion mejorada por fusion fue el dispositivo Swan probado el 22 de junio de 1956 como el ensayo Inca de la Operacion Redwing en Eniwetok Su potencia fue de 15 kilotones aproximadamente la misma que la Little Boy la bomba lanzada sobre Hiroshima Pesaba 47 6 kg 105 libras y tenia forma cilindrica con 29 5 cm 11 6 pulgadas de diametro y 58 cm 22 9 pulgadas de largo El esquema anterior ilustra lo que probablemente serian sus caracteristicas esenciales Once dias mas tarde el 3 de julio de 1956 el Swan fue probado nuevamente en Eniwetok como el ensayo Mohawk de Redwing Esta vez sirvio como primaria o primera etapa de un dispositivo termonuclear de dos etapas un rol que protagonizo en una docena de ensayos similares durante la decada de los anos 1950 El Swan fue el primer dispositivo multiuso listo para usar utilizado como primaria para otras armas y sirvio como prototipo para todas los desarrollos de primaria que lo siguieron Despues del exito del Swan 11 pulgadas 279 mm o 12 pulgadas 305 mm parecio convertirse en el diametro estandar de los dispositivos de una sola etapa mejorados probados durante la decada de los anos 1950 El largo usualmente era el doble del diametro pero en un dispositivo que se convirtio en la cabeza de guerra nuclea W54 estaba mas cercano a una esfera con solo 15 pulgadas 381 mm de largo Fue probado una docena de veces en el periodo de 1957 a 1962 antes de ser desplegado Ningun otro diseno tuvo una cadena tan larga de fracasos Dado que los dispositivos mas largos tendian a trabajar correctamente a la primera prueba debio haber existido algunas dificultades en aplastar lo suficiente los dos lentes de altos explosivos para lograr la proporcion alto ancho deseada Una de las aplicaciones de la W54 fue en el proyectil XM 388 del canon sin retroceso Davy Crockett mostrado aqui en comparacion a la bomba Fat Man con las dimensiones en pulgadas Otro beneficio de este diseno ademas de hacer las armas mas pequenas ligeras y con menos material fisible para una misma potencia es que hace a las armas inmunes a la interferencia por radiacion en ingles Radiation Interference RI Se descubrio a mediados de la decada de los anos 1950 que los pozos de plutonio eran particularmente susceptibles a la predetonacion parcial si eran expuestos a la intensa radiacion generada por una explosion nuclear cercana la electronica tambien podia ser danada pero esto es otro tema La RI era un problema antes de la aparicion de sistemas de radar de alerta temprana efectivos dado que un primer ataque podria inutilizar a las armas nucleares de desquite El mejorado reduce la cantidad de plutonio necesario en el arma a una cantidad inferior a la necesaria para ser vulnerable a este efecto Armas termonucleares de dos etapas EditarArticulo principal Arma termonuclear Las armas de fision pura o de fision mejorada por fusion pueden ser construidas para alcanzar una potencia de centenares de kilotones con un gran gasto de material fisible y tritio pero para incrementar la potencia mas alla de la decena de kilotones es mucho mas eficiente instalar una segunda etapa independiente llamada secundaria Ivy Mike la primera detonacion termonuclear de dos etapas 10 4 megatones 1 de noviembre de 1952 En la decada de 1940 los disenadores de bombas en Los Alamos pensaron que la secundaria seria un contenedor de deuterio en forma liquida o hidruro La reaccion de fusion seria D D mas dificil de lograr que una D T pero mas asequible Una bomba de fision en un extremo comprimiria por onda de choque y calor al extremo mas lejano y la fusion se propagaria a traves del contenedor al extremo lejano Las simulaciones matematicas mostraron que no funcionaria incluso agregando grandes cantidades del prohibitivamente caro tritio Todo el contenedor del combustible de fusion necesitaria estar rodeado por la energia de la fision para comprimirla y calentarla como con la carga de impulso en una primaria mejorada El avance en diseno se obtuvo en enero de 1951 cuando Edward Teller y Stanislaw Ulam inventaron la radiacion por implosion conocida publicamente por cerca de tres decadas como el secreto de la bomba H Teller Ulam El concepto de la radiacion por implosion fue probado por primera vez el 9 de mayo de 1951 en el ensayo George de la Operacion Greenhouse Eniwetok con una potencia de 225 kilotones La primera prueba completa se realizo el 1 de noviembre de 1952 el ensayo Mike de la Operacion Ivy Eniwetok con una potencia de 10 4 megatones En la radiacion por implosion la rafaga de rayos X que proviene de una primaria explotando es capturada y contenida dentro un canal de radiacion con murallas opacas que rodea a los componentes de energia nuclear de la secundaria La radiacion rapidamente convierte a la espuma plastica que estaba llenando el canal en un plasma que es en gran parte transparente a los rayos X y la radiacion es absorbida en las capas mas exteriores del empujador traba que rodea al secundario que se ablasiona y aplica una masiva fuerza 19 parecido al interior de un motor de cohete causando que la capsula de combustible de fusion implosione en forma similar al pozo de la primaria A la medida que el secundario implosiona un tapon de ignicion en ingles spark plug fisible en su centro se incendia y proporciona calor que permite que el combustible de fusion tambien se encienda Las reacciones en cadena de la fision y de la fusion intercambian neutrones entre si y mejoran la eficiencia de ambas reacciones La mayor fuerza implosiva mejora la eficiencia del tapon de ignicion fisible debido al aumento a traves de los neutrones de la fusion y la explosion de la fusion en si misma proporciona significativamente mayor potencia explosiva a partir de la secundaria a pesar de que a menudo no es mucho mas grande que la primaria Por ejemplo para la prueba Redwing Mohawk del 3 de julio de 1956 una secundaria llamada Flauta fue adosada a la primaria Swan Flauta era de 38 cm 15 pulgadas de diametro y 59 cm 23 4 pulgadas de largo aproximadamente el tamano de Swan Pero pesada diez veces mas y tenia una potencia 24 veces superior 355 kilotones contra 15 kilotones Igualmente importante los ingredientes activos en Flauta probablemente no costaban mas que los usados en Swan La mayor parte de la fision provenia del barato U 238 y el tritio era fabricado en el mismo lugar durante la explosion Unicamente el tapon de ignicion en el eje de la secundaria necesitaba ser fisible Una secundaria esferica puede lograr densidades de implosion mas altas que una secundaria cilindrica ya que una implosion esferica empuja desde todas las direcciones hacia el mismo punto Sin embargo en las cabezas de guerra con potencias superiores a un megaton el diametro de una secundaria esferica seria demasiado grande para la mayor parte de las aplicaciones Una secundaria cilindrica es necesaria en tales casos Los vehiculos de reentrada pequenos y en forma de cono usados en los misiles balisticos de cabezas de guerra multiples despues de la decada de los 1970 tienden a tener cabezas de guerra con secundarias esfericas y potencias de un pocos centenares de kilotones Como con la estimulacion las ventajas del diseno termonuclear de dos etapas son tan grandes que existe poco incentivo a no usarlo una vez que una nacion ha dominado dicha tecnologia En terminos de ingenieria la radiacion por implosion permite la explotacion de varias caracteristicas conocidas de los materiales de las bombas nucleares que hasta ese momento habia eludido una aplicacion practica Por ejemplo La mejor forma de almacenar deuterio en un estado de densidad razonable es enlazarlo quimicamente con el litio como litio deuterizado Pero el isotopo de litio 6 es tambien la materia prima para la produccion de tritio y una bomba que esta explotando es un reactor nuclear La radiacion por implosion sostendra todo armado el suficiente tiempo como para permitir la completa conversion del litio 6 en tritio mientras la bomba explota Asi que el agente de enlace para el deuterio permite usar una reaccion de fusion D T sin necesidad de tritio previamente fabricado este almacenado en la secundaria La restriccion de produccion de tritio desaparece Para que la secundaria sea implosionada por el plasma caliente inducido por la radiacion que la rodea debe permanecer fria por el primer microsegundo por ejemplo debe estar rodeada por un masivo escudo contra la radiacion calor La masividad del escudo le permite actuar como traba agregando momentum y duracion a la implosion Ningun material esta mejor adaptado a estos propositos que el ordinario y barato U 238 que tambien sucede que se fisiona cuando es golpeado por los neutrones producidos por la fusion D T Esta carcasa llamada empujador asi tiene tres tareas mantener a la secundaria fria mantenerla completa inercialmente en un estado altamente comprimido y finalmente servir como la principal fuente de energia para toda la bomba El empujador consumible convierte a la bomba mas en una bomba de fision de uranio que en una bomba de fusion de hidrogeno Es notorio que los expertos nunca usaron el termino bomba de hidrogeno 20 Finalmente el calor para ignicion de la fusion proviene no de la primaria sino que de la segunda bomba de fision llamada el tapon de ignicion incrustada en el corazon de la secundaria La implosion de la secundaria implosa este tapon de ignicion detonandolo y provocando la ignicion de la fusion en el material que la rodea pero el tapon de ignicion continua fisionando en el ambiente rico en neutrones hasta que se consume totalmente agregando significativa potencia al dispositivo 21 El empuje inicial detras del arma de dos etapas fue la promesa de 1950 del presidente Truman de construir una superbomba de hidrogeno de 10 megatones como la respuesta estadounidense a la prueba en 1949 de la primera bomba de fision sovietica Pero la invencion resultante se convirtio en la forma mas barata y compacta de construir bombas nucleares pequenas asi como grandes borrando cualquier distincion entre bombas A y bombas H y entre impulsores y super Todas las mejores tecnicas para explosiones por fision y por fusion estan incorporadas en un principio de diseno que lo abarca todo y que es totalmente escalable Incluso los proyectiles nucleares de artilleria de 6 pulgadas 152 mm pueden ser termonucleares de dos etapas En los siguientes cincuenta anos nadie ha logrado una mejor forma de construir una bomba nuclear Es el diseno de eleccion para Estados Unidos Rusia Reino Unido China y Francia las cinco naciones termonucleares Las otras naciones con armas nucleares Israel India Pakistan y Corea del Norte probablemente tienen armas de una etapa o posiblemente mejoradas 21 Interetapa Editar En un arma termonuclear de dos etapas la energia de la primaria impacta a la secundaria Un modulador esencial de energia llamado interetapa entre la primaria y la secundaria protege el combustible de fusion de la secundaria de calentarse demasiado rapido lo que podria causar una explosion de calor convencional y por lo tanto de menor magnitud antes de que las reacciones de fision y de fusion tengan una oportunidad de comenzar Existe muy poca informacion en la literatura abierta acerca del mecanismo de la interetapa La primera mencion en documentos del gobierno estadounidense formalmente liberados al publico general aparece en la leyenda de una grafica promoviendo el Programa de Reemplazo Confiable de Cabeza de Guerra Si se construye este nuevo diseno reemplazaria al material especial toxico fragil y caro en la interetapa 22 Esta declaracion sugiere que la interetapa puede contener berilio para moderar el flujo de neutrones de la primaria y quizas algo para absorber y reirradiar los rayos X de alguna forma en particular 23 Se especula que el material para la interetapa que puede ser llamado en codigo como FOGBANK podria ser un aerogel posiblemente dopado con berilio y o otras substancias 24 La interetapa y la secundaria son puestos juntos al interior de una membrana de acero inoxidable para formar el subensamble enlatado en ingles Canned Subassembly CSA un armazon que nunca habia sido mostrado en ningun diagrama publico 25 La ilustracion mas detallada de un interetapa muestra a un arma termonuclear britanica con un grupo de artefactos entre su primaria y su secundaria cilindrica Ellas estan etiquetadas como tapon final y lente de enfoque de neutrones portador de canon de neutron reflector y embalaje del reflector El origen del diagrama subido a internet por Greenpeace no esta claro y no existe una explicacion que lo acompane 26 Disenos especificos EditarMientras cada diseno de arma nuclear cae en alguna de las categorias descritas disenos especificos se han convertido ocasionalmente en materia de noticias y discusion publica a menudo con descripciones incorrectas acerca de como ellos trabajan y que es lo que hacen Ejemplos Bombas de hidrogeno Editar Todas las armas nucleares modernas hacen algun uso de la fusion D T Incluso las armas de fision pura incluyen generadores de neutrones que son tubos de vacio de alto voltaje que contienen pequenisimas cantidades de tritio y deuterio Sin embargo en la percepcion publica las bombas de hidrogeno o bombas H son dispositivos de multimegatones mil veces mas poderosos que la Little Boy de Hiroshima Tales bombas son realmente termonucleares de dos etapas escaladas a la potencia deseada con la fision del uranio como es usual proporcionando la mayor parte de su energia La idea de la bomba de hidrogeno aparecio en la atencion publica por primera vez en 1949 cuando prominentes cientificos recomendaron abiertamente no construir bombas nucleares mas poderosas que el modelo de fision pura estandar tanto en razones morales como practicas Sus supuestos eran que las consideraciones acerca de la masa critica limitarian el tamano potencial de las explosiones de fision pero que en una explosion de fusion podria ser tan grande como su abastecimiento de combustible que no posee el limite de masa critica En 1949 los sovieticos hicieron explotar su primera bomba de fision y en 1950 el presidente Truman finalizo el debate acerca de la bomba H ordenando a los disenadores de Los Alamos que construyeran una En 1952 la explosion de 10 4 megatones de Ivy Mike fue anunciada como la primera prueba de una bomba de hidrogeno reforzando la idea de que las bombas de hidrogeno son mil veces mas poderosas que las bombas de fision En 1954 J Robert Oppenheimer fue etiquetado como un oponente a la bomba de hidrogeno El publico no sabia que hay dos clases de bombas de hidrogeno ninguna de las cuales se puede describir como una bomba de hidrogeno El 23 de mayo cuando su nivel de secreto fue revocado el item 3 de las cuatro investigaciones publicas contra el era su conducta en el programa de la bomba de hidrogeno En 1949 Oppenheimer habia apoyado las bombas de fision mejoradas por fusion de una etapa para maximizar el poder explosivo del arsenal dado el compromiso entre la produccion de plutonio y de tritio El se opuso a las bombas termonucleares de dos etapas hasta 1951 cuando la radiacion por implosion que el llamo tecnicamente dulce por primera vez las hizo practicas La complejidad de su posicion no fue revelada al publico hasta 1976 nueve anos despues de su muerte 27 Cuando los misiles balisticos reemplazaron a los bombarderos en la decada de 1960 la mayor parte de las bombas de potencia multimegatonaje fueron reemplazadas por cabezas de guerra para los misiles tambien termonucleares de dos etapas disminuidas a un megaton o menos Reloj de Alarma Sloika Editar El primer esfuerzo para explotar la relacion simbiotica entre la fision y la fusion fue un diseno de 1940 que mezclaba combustible de fision y de fusion en delgadas capas alternantes Como un dispositivo de una etapa habria sido una aplicacion torpe de la fision mejorada Se volvio practico por primera vez cuando se incorporo en la secundaria de un arma termonuclear de dos etapas 28 El nombre estadounidense Reloj Alarma en ingles Alarm Clock era un nombre codigo sin relacion El nombre ruso para el mismo diseno era mas descriptivo Sloika en ruso Slojka una torta de capas Un Sloika de sovietico de una etapa fue probado en 12 de agosto de 1953 Ninguna version estadounidense fue probada pero el ensayo Union de la Operacion Castle 26 de abril de 1954 fue de un dispositivo termonuclear de dos etapas con nombre codigo Reloj Alarma Su potencia fue de 6 2 megatones Debido a que la prueba sovietica Sloika uso litio 6 deuterizado seco ocho meses antes de la primera prueba estadounidense en usarlo Castle Bravo 1 de marzo de 1954 algunas veces se declara que la Union Sovietica gano la carrera por la bomba H La prueba estadounidense Ivy Mike de 1952 uso deuterio liquido enfriado criogenicamente como combustible para la fusion en la secundaria y empleo la fusion de reaccion D D Ademas Sloika fue el primer diseno desplegable desde un avion incluso aunque no fue desplegada de esa forma durante la prueba Sin embargo la primera prueba sovietica en usar una secundaria implosionada por radiacion la caracteristica esencial de una verdadera bomba H se realizo el 23 de noviembre de 1955 tres anos despues de Ivy Mike De hecho en la Union Sovietica el real trabajo sobre el esquema de implosion solo se inicio muy a principios de 1953 varios meses despues de la exitosa prueba de Sloika Bombas limpias Editar Bassoon el prototipo de una bomba limpia de 3 5 megatones o una bomba sucia de 25 megatones Las versiones sucias mostradas aqui antes de su prueba en el ano 1956 El 1 de marzo de 1954 la mas grande explosion nuclear de prueba estadounidense el ensayo Bravo de 15 megatones de la Operacion Castle en el Bikini produjo una dosis letal de lluvia de productos de fision en mas de 6000 millas cuadradas 15 540 km de la superficie del Oceano Pacifico 29 Las heridas por radiacion a los habitantes de las Islas Marshall y a los pescadores japoneses volvio publico este hecho y revelo el rol de la fision en las bombas de hidrogeno En respuesta a la alarma publica por la lluvia radiactiva se realizo un esfuerzo para disenar un arma limpia de nivel de multimegatonaje basada casi enteramente en la fusion Dado que la energia producida por el fisionamiento del uranio natural no enriquecido cuando era utilizado como material para la traba en la secundaria y las subsecuentes etapas en el diseno Teller Ulam evidentemente puede empequenecer la potencia obtenida de la fusion como fue en el caso de la prueba Castle Bravo y dandose cuenta de que un material de traba no fisionable es un requerimiento esencial en una bomba limpia estaba claro que tal bomba limpia existiria una relativamente gran cantidad de material que no se ve afectado por el proceso de conversion masa a energia Asi que para un peso dado las armas sucias con trabas fisionables son mucho mas ligeras que una bomba limpia de igual potencia La mas temprana incidencia conocida de un dispositivo de tres etapas siendo probado con la tercera etapa llamada la terciaria siendo ignicionada por la secundaria fue el 27 de mayo de 1956 en el dispositivo Bassoon Este dispositivo fue probado en el ensayo Zuni de la Operation Redwing Este ensayo utilizo trabas no fisionables usando un material substituto relativamente inerte nuclearmente tal como el tungsteno o plomo su potencia fue de 3 5 megatones 85 por fusion y solo 15 por fision Los registros publicos de dispositivos que produjeron la mas alta proporcion de su potencia via solo reacciones de fusion es de 57 megatones la Bomba del Zar con un 97 por fusion 30 la prueba Hardtack Poplar de 9 3 megatones fue de un 95 2 31 y la prueba Redwing Navajo de 4 5 megatones con un 95 por fusion 32 El 19 de julio de 1956 el presidente de la AEC Lewis Strauss dijo que el ensayo Redwing Zuni de una prueba de una bomba limpia resulto de mucha importancia desde el aspecto humanitario Sin embargo menos de dos dias despues de este anuncio la version sucia de Bassoon llamada Bassoon Prime que usaba una traba de uranio 238 fue probada desde una barcaza en las afueras de la costa del Atolon de Bikini como el ensayo Redwing Tewa La Bassoon Prime produjo una potencia de 5 megatones de la cual el 87 provino de la fision Los datos obtenidos de esta prueba y de otras culminaron en el eventual despliegue del arma nuclear estadounidense de mas alta potencia conocida y de paso la mas alta proporcion de potencia a peso de un arma jamas fabricada un arma termonuclear de tres etapas con una potencia sucia maxima de 25 megatones designada como la bomba nuclear Mark 41 que fue transportada por los bombarderos de la Fuerza Aerea de Estados Unidos hasta su descomision esta arma nunca fue totalmente probada Como tal las bombas limpias de alta potencia parecen haber sido un ejercicio de relaciones publicas Las armas realmente desplegadas eran versiones sucias que maximizaban la potencia para un mismo tamano de dispositivo Sin embargo nuevos disenos de armas nucleares mas nuevos de cuarta y quinta generacion incluyen tecnologia como armas de fusion pura y propulsion de pulso nuclear de antimateria catalizada 33 que estan siendo estudiados extensivamente por las cinco naciones nucleares mas grandes 34 35 Bombas de cobalto Editar Articulo principal Bomba de cobalto Una bomba ficticia del dia del juicio final hecha popular por la novela de Nevil Shute publicada en 1957 y la subsecuente pelicula de 1959 On the Beach traducida en espanol como La Hora Final la bomba de cobalto era una bomba de hidrogeno con una chaqueta de metal de cobalto El cobalto activado por los neutrones supuestamente maximizaria el dano ambiental de la lluvia radiactiva resultante Estas bombas fueron popularizadas en la pelicula de 1964 Dr Strangelove or How I Learned to Stop Worrying and Love the Bomb El elemento agregado a las bombas es denominado en la pelicula como cobalto torio G Tales armas fueron solicitadas por la fuerza aerea de Estados Unidos y seriamente investigadas posiblemente construidas y probadas pero nunca desplegadas En la edicion de 1964 del libro de la DOD AEC The Effects of Nuclear Weapons en espanol Los Efectos de las Armas Nucleares una nueva seccion llamada Guerra Radiologica clarifico el tema 36 Los productos de la fision son tan mortales como el cobalto activo por neutrones El arma termonuclear de alta fision estandar es automaticamente un arma de guerra radiologica y tan sucia como una bomba de cobalto Inicialmente la radiacion gamma de los productos de la fision de una bomba de fision fusion fision de tamano equivalente son mucho mas intensas de la del Co 60 15 000 veces mas intensa en 1 hora 35 veces mas intensas en 1 semana 5 veces mas intensas en 1 mes y aproximadamente iguales en 6 meses A partir de alli la fision cae rapidamente de tal forma que la lluvia radiactiva del Co 60 es 8 veces mas intensa que la fision en 1 ano y 150 veces mas intensa en 5 anos Los isotopos de muy larga vida producidos por la fision serian mayores de los del 60Co nuevamente despues de los 75 anos 37 Bombas de fision fusion fision Editar En 1954 para explicar la sorprendente cantidad de lluvia radiactiva resultante de la fision producidas por las bombas de hidrogeno Ralph Lapp acuno el termino fision fusion fision para describir un proceso al interior de lo que el llamaba un arma termonuclear de tres etapas Su proceso de explicacion era correcto pero su eleccion de terminos causo confusion en la literatura abierta Las etapas de un arma nuclear no son fision fusion y fision Ellas son primaria secundaria y en una excepcionalmente poderosa arma la terciaria Cada una de estas etapas emplea fision fusion y fision Bomba de neutrones Editar Articulo principal Bomba de neutrones Una bomba de neutrones tecnicamente referida como un arma de radiacion aumentada en ingles Enhanced Radiation Weapon ERW es un tipo de arma nuclear tactica disenada especificamente para liberar una gran proporcion de sus energia como radiacion de neutrones energeticos Esto contrasta con las armas termonucleares estandares que esta disenadas para capturar esta intensa radiacion de neutrones para incrementar su potencia explosiva total En terminos de potencia las ERW tipicamente producen aproximadamente una decima parte de lo que hace un arma atomica de fision Incluso con su significativamente mas bajo poder explosivo las ERW aun son capaces de mucha mayor destruccion que cualquier bomba convencional Mientras que relativo a otras armas nucleares el dano esta mas enfocado en el material biologico que en el material o la infraestructura aunque la extrema explosion y los efectos del calor no son eliminados Oficialmente conocidas como armas de radiacion aumentada ERW por sus siglas en ingles ellas son mas exactamente descritas como armas de potencia restringida Cuando la potencia de un arma nuclear es menos de un kiloton el radio letal de su explosion 700 m 2300 ft es menor que el de su radiacion de neutrones Sin embargo la explosion es lo suficientemente potente para destruir la mayor parte de las estructuras las cuales son menos resistentes a los efectos de la explosion que incluso seres humanos no protegidos Se puede sobrevivir a las presiones por explosion de hasta 20 PSI mientras que la mayor parte de los edificios colapsaran con solo 5 PSI Comunmente mal percibidas como un arma disenada para matar poblaciones y dejar la infraestructura intacta estas bombas como se menciona en el parrafo anterior son aun muy capaces de destruir edificios en un gran radio El proposito de su diseno era matar a las tripulaciones de los tanques estos tienen una excelente proteccion contra las explosiones y el calor sobreviviendo relativamente muy cerca de una detonacion Y con las vastas cantidades de tanques de los sovieticos durante la Guerra Fria esta el arma perfecta para contrarrestarlos La radiacion por neutrones puede incapacitar instantaneamente a la tripulacion de un tanque a aproximadamente a la misma distancia que el calor y explosion incapacitaria a un ser humano desprotegido dependiendo del diseno Los chasis de los tanques tambien se volverian altamente radiactivos temporalmente impidiendo su uso por una nueva tripulacion Las armas de neutrones tambien fueron pensadas para ser usadas en otras aplicaciones Por ejemplo ellas son efectivas defensas antinucleares el flujo de neutrones es capaz de neutralizar a la cabeza de guerra que se acerca a una mayor distancia que el calor o la explosion Las cabezas de guerra nucleares son muy resistentes al dano fisico pero es muy dificil protegerlas contra un flujo extremo de neutrones Distribucion de energia del arma Estandar MejoradaExplosion 50 40 Energia termal 35 25 Radiacion instantanea 5 30 Radiacion residual 10 5 Las ERW eran bombas termonucleares de dos etapas con todo el uranio no esencial retirado para minimizar la potencia de la fision La fusion proporcionaba los neutrones Desarrollada en la decada de 1950 ellas fueron desplegadas por primera vez en la decada de 1970 por las fuerzas estadounidenses en Europa Las ultimas fueron retiradas en la decada de 1990 Una bomba de neutrones es solo factible si la potencia es lo suficientemente alta que una eficiente ignicion de fusion es posible y si la potencia es lo suficientemente baja que el grosor de la carcasa no absorbera demasiados neutrones Esto significa que las bombas de neutrones tienen una potencia de entre 1 a 10 kilotones con la proporcion de la fision variando del 50 en 1 kiloton a 25 en una de 10 kilotones toda la cual proviene de la etapa primaria La produccion de neutrones por kiloton es 10 a 15 veces mas grande que un arma de implosion de fision pura o para una cabeza de guerra estrategica tal como la W87 o la W88 38 Cabezas de guerra termonucleares de Oralloy Editar En 1999 el diseno de armas nucleares estuvo nuevamente en las noticias por primera vez en decadas En enero la Camara de Representantes de Estados Unidos entrego el Informe Cox Christopher Cox representante republicano de California que acusaba que China de alguna forma habia adquirido la informacion clasificada acerca la cabeza de guerra estadounidense W88 Nueve meses antes Wen Ho Lee un inmigrante taiwanes trabajando para Los Alamos fue publicamente acusado de espiar arrestado y estuvo nueve meses en prision preventiva antes de que el caso contra el fuera desechado No esta claro de que hubiera de hecho algun acto de espionaje En el curso de 18 meses de cubierta de noticias la cabeza de guerra W88 fue descrita con inusual detalle El The New York Times imprimio un diagrama esquematico en su portada 39 El diagrama mas detallado aparece en A Convenient Spy un libro del ano 2001 sobre el caso de Wen Ho Lee escrito por Dan Stober e Ian Hoffman adaptado y mostrado aqui con permiso Disenada para su uso en los misiles balisticos lanzados desde submarinos Trident II D5 D 5 la W88 entro en servicio en el ano 1990 y fue la ultima cabeza de guerra en ser disenada para el arsenal nuclear estadounidense Ha sido descrita como la mas avanzada aunque la literatura abierta no indica ninguna caracteristica de diseno importante que no estuviera disponible a los disenadores estadounidenses en 1958 El diagrama anterior muestra todas las caracteristicas estandares de las cabezas de guerra para misiles balisticos desde la decada de 1960 con dos excepciones que le dan una mayor potencia para su tamano La capa externa de la secundaria llamada el empujador en ingles pusher que sirve para tres funciones escudo termico traba y combustible para la fision esta fabricada de U 235 en vez de U 238 de ahi el nombre de Oralloy U 235 termonuclear Siendo fisible mas que solamente fisionable permite al empujador fisionarse mas rapido y mas completamente incrementando la potencia Esta caracteristica esta disponible solo a aquellas naciones con disponibilidad de uranio fisible Se estima que Estados Unidos posee 500 toneladas de este material La secundaria esta localizada en el extremo ancho del cono de reentrada donde puede ser mas grande y asi mas poderosa La disposicion usual es poner la secundaria mas pesada y densa en el extremo angosto para mayor estabilidad aerodinamica durante la reentrada desde el espacio exterior y permitir mas espacio para la voluminosa primaria en la parte mas amplia del cono El diagrama de la W87 en la seccion previa muestra la disposicion usual Debido a esta nueva geometria la primaria de la W88 usa alto explosivos convencionales compactos en ingles Conventional High Explosives CHE para ahorrar espacio 40 mas que el mas usual y voluminoso pero mas seguro alto explosivo insensitivo en ingles Insensitive High Explosives IHE El cono de reentrada probablemente tiene un lastre en la nariz para darle estabilidad aerodinamica 41 Las capas alternantes de material de fision y de fusion en la secundaria son una aplicacion del principio de Alarm Clock Sloika Cabeza de guerra de reemplazo fiable Editar Articulo principal Cabeza de guerra de reemplazo fiable Estados Unidos no ha producido ninguna cabeza de guerra nuclear desde al ano 1989 cuando la planta de produccion de pozos de Rocky Flats cerca de Boulder Colorado fue cerrada por razones ambientales Con el final de la Guerra Fria dos anos mas tarde la linea de produccion ha estado parada excepto para funciones de inspeccion o de mantenimiento La Administracion Nacional de Seguridad Nuclear en ingles National Nuclear Security Administration la ultima sucesora para las armas nucleares para la Comision de Energia Atomica y el Departamento de Energia ha propuesto construir una nueva instalacion de pozos y comenzar la linea de produccion de una nueva cabeza de guerra llamada cabeza de guerra de reemplazo fiable en ingles Reliable Replacement Warhead RRW 42 Dos mejoras de seguridad anunciadas de la RRW serian el retorno al uso de altos explosivos insensibles que mucho menos susceptibles a la detonacion accidental y la eliminacion de ciertos materiales peligrosos tal como el berilio que son daninos a las personas y al ambiente 43 Dado que la nueva cabeza de guerra no debe requerir ninguna prueba nuclear no se podria usar un nuevo diseno con conceptos no probados Laboratorios de diseno de armas EditarTodas las innovaciones de diseno de armas nucleares discutidas en este articulo se originaron de los siguientes tres laboratorios en la manera que se describe Otros laboratorios de diseno de armas nucleares en otros paises duplicaron estas innovaciones de diseno en forma independiente haciendo ingenieria inversa a partir del analisis de la lluvia radiactiva u obtenidas a traves del espionaje 44 Berkeley Editar Articulo principal Lawrence Berkeley National Laboratory La primera exploracion sistematica de los conceptos del diseno de armas nucleares ocurrio a mediados de 1942 en la University of California Berkeley Importantes primeros descubrimientos habian sido hechos en el Lawrence Berkeley Laboratory adyacente tales como la produccion y aislacion de plutonio usando un ciclotron en 1940 Un profesor de Berkeley J Robert Oppenheimer habia sido recien contratado para liderar el esfuerzo de diseno de una bomba secreta para la nacion Su primera accion fue convocar la conferencia de verano de 1942 Para el momento en que el traslado su operacion al nuevo pueblo secreto de Los Alamos Nuevo Mexico en la primavera de 1943 el conocimiento acumulado sobre el diseno de armas nucleares consistia en cinco charlas por el profesor de Berkeley Robert Serber transcritas y distribuidas como el Los Alamos Primer La cartilla trataba sobre la energia de la fision la produccion de neutrones y su captura las reacciones en cadena nucleares masa critica trabas predetonacion y tres metodos para construir una bomba estructura tipo canon implosion y metodos autocataliticos la unica posibilidad que resulto un callejon sin salida Los Alamos Editar Articulo principal Laboratorio Nacional de Los Alamos En Los Alamos en abril de 1944 Emilio G Segre descubrio que la estructura tipo canon propuesta para la Thin Man no funcionaria con plutonio debido a los problemas de predetonacion causados por las impurezas del Pu 240 De esa forma a la Fat Man la bomba tipo implosion le fue dada una alta prioridad como la unica opcion para el plutonio Las discusiones de Berkeley habian generado estimaciones teoricas de masa critica pero nada preciso El principal trabajo en tiempo de guerra en Los Alamos fue la determinacion experimental de la masa critica lo que tuvo que esperar hasta que suficientes cantidades de material fisible llegaran desde las plantas de produccion uranio desde Oak Ridge Tennessee y plutonio desde Hanford Site en Washington En 1945 usando los resultados de los experimentos de masa critica los tecnicos de Los Alamos fabricaron y armaron los componentes para cuatro bombas Trinity Gadget Little Boy Fat Man y una Fat Man de repuesto sin usar Despues de la guerra aquellos que podian incluyendo a Oppenheimer regresaron a posiciones de ensenanza universitaria Aquellos que permanecieron trabajaron en pozos huercos y levitados y condujeron las pruebas de efectos de las armas nucleares tales como Crossroads Able y Baker en el Atolon Bikini en 1946 Todas las ideas esenciales para incorporar la fusion en armas nucleares se originaron en Los Alamos entre 1946 y 1952 Despues del hallazgo de la radiacion por implosion de Teller Ulam en 1951 las implicaciones y posibilidades tecnicas fueron totalmente exploradas pero las ideas que no eran directamente relevantes para fabricar bombas lo mas grandes posibles para los bombarderos de largo alcance de la fuerza aerea fueron archivadas Debido a la posicion inicial de Oppenheimer en el debate de la bomba H en oposicion a las grandes armas termonucleares y el supuesto de que el aun tenia influencia en Los Alamos a pesar de su partida los aliados politicos de Edward Teller decidieron que el necesitaba su propio laboratorio para seguir desarrollando las bombas H Por el tiempo en que se inauguro en 1952 en Livermore California Los Alamos habia finalizado el trabajo para el cual Livermore habia sido disenado Livermore Editar Articulo principal Lawrence Livermore National Laboratory Ya que la mision original del laboratorio de Livermore habia sido alcanzada este probo nuevos disenos radicales que fallaron Sus tres primeras pruebas nucleares fueron bullicios en ingles fizzles en 1953 dos dispositivos de fision con pozos de hidruro de uranio de etapa unica y en 1954 un dispositivo termonuclear de dos etapas en el que la secundaria se calento prematuramente demasiado rapido para que la radiacion por implosion trabajara apropiadamente Cambiando su orientacion Livermore comenzo a tomar las ideas que en Los Alamos habian archivado y las desarrollo para el ejercito y la armada Esto llevo a que Livermore se especializara en armas tacticas de diametro pequeno particularmente las que usan sistemas de implosion de dos puntos tal como el dispositivo Swan Las armas tacticas de diametro pequeno se convirtieron en primarias para secundarias de pequeno diametro Alrededor de 1960 cuando la carrera de armas entre las superpotencias se convirtio en una carrera de misiles balisticos las cabezas de guerra de Livermore eran mas utiles que las cabezas de guerra grandes y pesadas de Los Alamos Las cabezas de guerra de Los Alamos fueron usadas en los primeros misiles balisticos de alcance intermedio en ingles Intermediate Range Ballistic Missiles IRBM pero las cabezas de guerra mas pequenas de Livermore fueron las usadas en los primeros misiles balisticos intercontinentales en ingles InterContinental Ballistic Missile ICBM y en los misiles balisticos lanzados desde submarinos en ingles Submarine Launched Ballistic Missile SLBM asi como en los primeros sistemas de cabezas de guerra multiples montados en estos misiles 45 En 1957 y 1958 ambos laboratorios construyeron y probaron tantos disenos como era posible en anticipacion de que la planificada prohibicion de ensayos nucleares de 1958 se convirtiera en permanente Para la epoca en que las pruebas se retomaron en 1961 los dos laboratorios se habian convertido en un duplicado uno del otro y los trabajos de diseno eran asignados mas por consideraciones de carga de trabajo que por la especialidad de los laboratorios Algunos disenos fueron intercambiados Por ejemplo la cabeza de guerra W38 para el misil Titan I comenzo como un proyecto de Livermore y fue transferida a Los Alamos donde se convirtio la cabeza de guerra para el misil Atlas y en 1959 fue devuelta a Livermore a cambio de la cabeza de guerra W54 del Davy Crockett que se traspaso de Livermore a Los Alamos De todas formas el periodo de real innovacion estaba finalizado para ese entonces Los disenos de cabezas de guerra despues de 1960 tomaron el caracter de cambios de modelo con cada nuevo misil recibiendo una nueva cabeza de guerra por razones de marketing El cambio principal mas sustantivo fue colocar mas uranio fisible en la secundaria en la medida en que habia mas disponible con el continuo enriquecimiento de uranio y el desmantelamiento de las grandes bombas de alta potencia Pruebas explosivas EditarLas armas nucleares son en gran parte disenadas por prueba y error Las pruebas a menudo envuelve la explosion de prueba de un prototipo En una explosion de nuclear una gran cantidad de eventos discretos con varias probabilidades agregados en flujos de energia de corta vida y caoticos al interior de la carcasa del dispositivo Complejos modelos matematicos son requeridos para hacer aproximaciones a los procesos y en la decada de 1950 no existian computadores lo suficientemente poderosos para correrlos apropiadamente Incluso los computadores y programas de simulacion actuales no son adecuados 46 Era relativamente facil disenar armas confiables para los arsenales Si el prototipo funcionaba adecuadamente podia ser industrializado y producido en masa Era mucho mas dificil comprender como funcionaba o por que habia fallado Los disenadores recuperaban tantos datos como fuera posible durante la explosion antes de que el dispositivo en si mismo se destruyera y los usaban para calibrar sus modelos a menudo insertando un factor de ajuste en las ecuaciones para hacer que las simulaciones coincidieran con los resultados del experimento Ellos tambien analizaban los desechos del arma en la lluvia radioactiva para ver cuanto se habia producido del potencial de la reaccion nuclear Tuberias de luz Editar Una importante herramienta para los analisis de las pruebas eran las tuberias de luz para diagnostico Una sonda en el interior de un dispositivo de prueba podia transmitir informacion calentando una placa de metal hasta la incandescencia un evento que podia ser registrado en el extremo lejano de una tuberia larga y muy recta La foto de abajo muestra el dispositivo Shrimp detonado el 1 de marzo de 1954 en Bikini como parte de la prueba Castle Bravo Su explosion de 15 megatones fue la mas grande realizada por Estados Unidos Se muestra la silueta de un hombre para apreciar la escala El dispositivo esta apoyado por debajo en ambos extremos Las tuberias que desaparecen en el techo de la cabina de disparo que parecen ser vigas de apoyo son las tuberias de luz para diagnostico Las ocho tuberias del extremo derecho 1 enviaban informacion sobre la detonacion de la primaria Las dos del medio 2 registraban el tiempo cuando los rayos X de la primaria alcanzaban el canal de radiacion alrededor de la secundaria Las dos ultimas tuberias 3 registraban el momento en que la radiacion alcanzaba el extremo lejano del canal de radiacion siendo la diferencia entre 2 y 3 el tiempo de transito de la radiacion por el canal 47 Desde la cabina de disparo en ingles Shot Cab las tuberias rotaban y eran horizontales e iban 2 300 m 7 500 pies a lo largo de una pasarela construida sobre el arrecife de Bikini hasta un bunker en ingles Data Bunker de recoleccion de datos controlado remotamente en la isla de Namu Mientras los rayos X normalmente viajan a la velocidad de la luz a traves de un material de baja densidad tal como la espuma plastica de relleno entre 2 y 3 la intensidad de la radiacion de la primaria explotando creaba un frente de radiacion relativamente opaco en el relleno del canal que actuaba como cuello de botella para retardar el paso de la energia radiante Mientras la secundaria estaba siendo comprimida via la ablacion inducida por la radiacion los neutrones de la primaria alcanzaban a los rayos X penetrando en la secundaria y comenzando a generar tritio con la tercera reaccion indicada en la primera seccion anterior Esta reaccion Li 6 n es exotermica produciendo 5 MeV por evento El tapon de ignicion aun no esta comprimido y por lo tanto no es critico con lo que no habra fision o fusion significativa Pero si suficientes neutrones llegan antes de que la implosion de la secundaria este completa la crucial diferencia de temperatura se degradara Esta es la causa que se reporto como razon del fallo del primer diseno termonuclear de Livermore el dispositivo Morgenstern probado como Castle Koon el 7 de abril de 1954 Los problemas de coordinacion de tiempos se miden a partir de los datos entregados por las tuberias de luz Las simulaciones matematicas que calibran se llaman codigos hidrodinamicos del flujo de radiacion Estos son usados para predecir el efecto de las futuras modificaciones de diseno No esta claro usando los registros publicos cuan exitosos fueron las tuberias de luz de Shrimp El bunker de datos estaba lo suficientemente lejos para permanecer fuera del crater de una milla de ancho Pero la onda expansiva producto de la explosion de 15 megatones dos veces y media mayor de lo esperado destruyo el bunker sacando la puerta de veinte toneladas de sus goznes y lanzandola a traves del interior de este Las personas mas cercanas estaban a 32 km 20 millas en un bunker que sobrevivio intacto 48 Analisis de la lluvia radioactiva Editar El dato mas interesante de Castle Bravo provino del analisis radioquimico de los restos del arma encontrados en la lluvia radioactiva posterior Debido a la escasez de litio 6 el 60 del litio en la secundaria de Shrimp era litio 7 ordinario que no produce tritio tan facilmente como lo hace el litio 6 Pero produce litio 6 como el producto de la reaccion n 2n un neutron entran dos neutrones salen un hecho conocido pero con probabilidad desconocida La probabilidad resulto ser alta El analisis de la lluvia radioactiva revelo a los disenadores que con la reaccion n 2n la secundaria Shrimp efectivamente tuvo dos y media veces mas del litio 6 que se esperaba El tritio la potencia de fusion los neutrones y la potencia de la fision se incrementaron en forma proporcional a ese valor 49 Como se indica anteriormente el analisis de la lluvia radioactiva de Bravo tambien le dijo al mundo exterior que las bombas termonucleares son mas dispositivos de fision que dispositivos de fusion Un buque pesquero japones el Lucky Dragon en espanol Dragon Afortunado llego a puerto con suficiente lluvia radioactiva en sus cubiertas como para permitirle a los cientificos en Japon y en cualquier otra parte determinar y anunciar que la mayor parte de la lluvia radioactiva habia provenido de la fision del U 238 por 14 MeV neutrones producidos por fision Pruebas subterraneas Editar Crateres de subsidencia en Yucca Flat Sitio de Pruebas de Nevada La alarma mundial causada por la lluvia radioactiva que comenzo con la prueba Castle Bravo eventualmente obligo a realizar pruebas nucleares subterraneas La ultima prueba atmosferica estadounidense se produjo en Atolon Johnston el 4 de noviembre de 1962 Durante las tres proximas decadas hasta el 23 de septiembre de 1992 Estados Unidos condujo un promedio de 2 4 explosiones nucleares subterraneas por mes todas excepto algunas pocas en el Nevada Test Site NTS en espanol Sitio de Pruebas de Nevada al noroeste de Las Vegas La seccion de Yucca Flat del NTS esta cubierto con crateres de subsidencia resultantes del colapso del terreno sobre las cavernas subterraneas radioactivas creadas por las explosiones nucleares ver la foto Despues del Threshold Test Ban Treaty TTBT de 1974 que limito las explosiones subterraneas a 150 kilotones o menos las cabeza de guerra como la W88 de medio megaton tuvieron que ser probadas a menos que su potencia total Dado que la primaria debe ser detonada a potencia total para que se puedan generar los datos acerca de la implosion de la secundaria la reduccion en potencia tenia que hacerse en la secundaria Reemplazando la mayor parte del combustible de fision de litio 6 deuterizado con hidruro de litio 7 se limitaba el tritio disponible para fusion y de esa forma la potencia total sin cambiar las dinamicas de la implosion El funcionamiento del dispositivo podia ser evaluado usando tuberias de luz otros dispositivos de medicion y el analisis de los escombros atrapados del arma La potencia total del arma almacenada podia ser calculada por extrapolacion Instalaciones de produccion EditarCuando las armas de dos etapas se convirtieron en estandares a principios de la decada de 1950 el diseno del arma determino la distribucion de las nuevas y ampliamente dispersadas instalaciones de produccion estadounidenses y viceversa Debido a que las primarias tienden a ser voluminosas especialmente en diametro el plutonio con reflectores de berilio es el material de eleccion para los pozos Tiene una masa critica mas pequena que el uranio La planta de Rocky Flats cerca de Boulder Colorado fue construida en 1952 para la produccion de pozos y consecuentemente las instalaciones de fabricacion de plutonio y berilio La planta Y 12 en Oak Ridge Tennessee donde los espectrometros de masa llamados Calutrones producian uranio enriquecido para el Proyecto Manhattan fue redisenada para fabricar secundarias El U 235 fisible es el mejor material para los tapones de ignicion debido a que su masa critica es mas grande especialmente en la forma cilindrica de las primeras secundarias termonucleares Los primeros experimentos usaban los dos materiales fisibles en combinacion como los pozos y tapones de ignicion compuestos de Pu Oy pero para la produccion en masa era mas facil dejar que las fabricas se especializaran pozos de plutonio en las primarias tapones de ignicion y empujadores de uranio en las secundarias La Y 12 fabricaba combustible de fusion litio 6 deuterizado y partes de U 238 las otras dos fabricaba ingredientes de secundarias La planta del Rio Savannah en Aiken Carolina del Sur tambien construida en 1952 operaba reactores nucleares que convertian U 238 en Pu 239 para los pozos y convertia litio 6 producido en Y 12 en tritio para el gas de amplificacion Dado que sus reactores eran moderados con agua pesada oxido de deuterio tambien fabricaba deuterio para gas de amplificacion y para la Y 12 que lo usaba en fabricar litio 6 deuterizado Diseno de seguridad de las cabezas de guerra EditarDebido a que incluso las cabezas de guerra de baja potencia tienen sorprendente poder destructivo los disenadores de armas siempre han reconocido la necesidad de incorporar mecanismos y procedimientos asociados ideados para prevenir la detonacion accidental Un diagrama del dispositivo bola de acero de la cabeza de guerra Green Grass se muestra a la izquierda lleno seguro y a la derecha vacio armado Las bolas de acero eran vaciadas en una tolva bajo el avion antes de despegar y podian ser reinsertadas usando un tunel haciendo rotar a la bomba en su carro y elevando la tolva Armas tipo canonEs inherentemente peligroso tener un arma conteniendo una cantidad y forma de material fisible que puede llegar a formar una masa critica a traves de un accidente relativamente simple Debido a este peligro el propelente en la Little Boy cuatro sacos de cordita fue insertado en la bomba en pleno vuelo poco despues de despegar el 6 de agosto de 1945 Esa fue la primera vez que un arma nuclear tipo canon fue totalmente ensamblada Si el arma cae al agua el efecto moderador del agua tambien puede causar un accidente de criticidad incluso aunque el arma no se haya danado fisicamente Similarmente un incendio causado por un avion que se estrelle podria facilmente ignigtar el propelente con resultados catastroficos Las armas tipo canon han sido siempre inherentemente inseguras Insercion del pozo en vueloNinguno de estos efectos es probable con las armas de implosion dado que normalmente hay insuficiente material fisible para formar una masa critica sin la correcta detonacion de los lentes Sin embargo las primeras armas de implosion tenian pozos tan cercanos a la criticidad que la detonacion accidental con algunas potencias nucleares era una preocupacion El 9 de agosto de 1945 la Fat Man fue cargada en su avion totalmente ensamblada pero posteriormente cuando los pozos levitados hicieron un espacio entre el pozo y la traba fue factible usar el metodo de insercion del pozo en pleno vuelo El bombardero despegaria sin material fisible al interior de la bomba Algunas armas del tipo implosion mas antiguas tales como la Mark 4 y la Mark 5 estadounidenses usaban este sistema de seguridad La insercion del pozo durante el vuelo no trabaja con un pozo hueco en contacto con su traba Metodo de la bola de acero de seguridadComo se muestra en el diagrama superior un metodo usado para disminuir la posibilidad de una detonacion accidental empleaba bolas metalicas Las bolas eran vertidas en el pozo esto prevenia la detonacion al incrementar la densidad del pozo hueco y de ese modo prevenian la implosion simetrica en caso de accidente Este diseno fue usado en el arma Green Grass tambien conocida como el Arma de Megaton Interina en ingles Interim Megaton Weapon que fue usada en las bombas Violet Club y Yellow Sun Mk 1 Metodo de la cadena de seguridadAlternativamente el pozo puede ser asegurado llenando su normalmente vacio nucleo con un material inerte tal como una fina cadena de metal posiblemente fabricada de cadmio para absorber los neutrones Mientras que la cadena este en el centro del pozo el pozo no puede ser comprimido en una forma apropiada para la fision cuando el arma esta armada la cadena es retirada Similarmente aunque un incendio serio podria detonar los explosivos destruyendo el pozo y dispersando el plutonio para contaminar los alrededores como ha sucedido en varios accidentes de armas no causaria una explosion nuclear Metodo del cable de seguridadLa cabeza de guerra W47 estadounidense usada en el Polaris A1 y el Polaris A2 tenia un dispositivo de seguridad consistente de un cable forrado en boro insertado en el pozo hueco durante la fabricacion La cabeza de guerra era armada al retirar enrollando el cable en un carrete impulsado por un motor electrico Una vez retirado el cable no podia ser reinsertado 50 Seguridad de un puntoMientras el disparo de solo un detonador no causara que un pozo hueco se vuelva critico especialmente un pozo hueco de baja masa que requiere de estimulacion la introduccion de sistemas de implosion de dos puntos hizo de esa posibilidad una real preocupacion En un sistema de dos puntos si un detonador se dispara un hemisferio completo del pozo implosionara de acuerdo a lo disenado La carga de alto explosivo que rodea al otro hemisferio explosara progresivamente desde el ecuador hacia el polo opuesto Idealmente esto apretara al ecuador y exprimira al segundo hemisferio alejandolo del primero como la pasta de dientes al apretar el tubo Hacia el momento en que la explosion lo envuelva su implosion los separara tanto en tiempo como espacio de la implosion del primer hemisferio La forma resultante parecida a la de una pesa con cada extremo alcanzando densidad maxima en un momento diferente no puede convertirse en critico Desafortunadamente no es posible decir en teoria como resultara esto Ni es posible usar un pozo falso de U 238 y camaras de rayos X de alta velocidad aunque tales pruebas son utiles Para poder determinar finalmente esto se necesita una prueba con material fisible real En consecuencia comenzando en 1957 un ano despues de Swan ambos laboratorios comenzaron pruebas de un punto De 25 pruebas de seguridad de un punto conducidas en 1957 y 1958 siete tuvieron cero o una ligera potencia nuclear es decir fueron un exito tres tuvieron altas potencias de entre 300 a 5000 toneladas falla severa y el resto tuvieron potencias inaceptables entre esos dos extremos De particular interes fue la cabeza de guerra W47 de Livermore para el misil lanzado desde submarinos Polaris La ultima prueba antes de la moratoria de 1958 fue una prueba de un punto de la primaria de la W47 que tenia una potencia nuclear inaceptablemente alta de 400 lb 181 kg de equivalente a TNT Hardtack II Titania Con la moratoria de pruebas en vigor no existia forma de refinar el diseno y hacerlo inherentemente seguro de un punto Los Alamos tenia una primaria adecuada que era segura de un punto pero mas que compartir con Los Alamos el credito por disenar la primera cabeza de guerra para SLBM Livermore escogio usar un mecanismo mecanico de seguridad en su propia primaria inherentemente insegura El resultado fue el esquema de seguridad que usaba el sistema de cable descrito anteriormente 51 Resulto que la W47 puede haber sido mas segura que lo anticipado El sistema de seguridad de cable puede haber convertido a la mayor parte de las cabezas de guerra en defectuosas incapaces de explotar si se hacian detonar 51 Cuando las pruebas se reiniciaron en 1961 y continuadas por tres decadas hubo suficiente tiempo para hacer que todos los disenos de cabezas de guerra fueran inherentemente seguras de un punto sin necesidad de un mecanismo mecanico de seguridad Enlace fuerte enlace debilUn enlace fuerte enlace debil y zona de exclusion es un mecanismo de detonacion nuclear que es una forma de acople de seguridad automatico Enlaces de accion permisivaEn adicion a los pasos indicados anteriormente para reducir la probabilidad de una detonacion nuclear resultante de una sola falla mecanismos de cierre referidos por los estados de la OTAN como Enlaces de Accion Permisiva en ingles Permissive Action Links son algunas veces asignados a los mecanismos de control para las cabezas de guerra nuclear Los enlaces de accion permisiva actuan unicamente para prevenir el uso no autorizado de un arma nuclear Referencias EditarBibliografia Editar Cohen Sam The Truth About the Neutron Bomb The Inventor of the Bomb Speaks Out William Morrow amp Co 1983 Coster Mullen John Atom Bombs The Top Secret Inside Story of Little Boy and Fat Man Self Published 2011 Glasstone Samuel and Dolan Philip J The Effects of Nuclear Weapons third edition hosted at the Trinity Atomic Web Site U S Government Printing Office 1977 PDF Version Grace S Charles Nuclear Weapons Principles Effects and Survivability Land Warfare Brassey s New Battlefield Weapons Systems and Technology vol 10 Hansen Chuck The Swords of Armageddon U S Nuclear Weapons Development since 1945 October 1995 Chucklea Productions eight volumes CD ROM two thousand pages The Effects of Nuclear War Office of Technology Assessment May 1979 Rhodes Richard The Making of the Atomic Bomb Simon and Schuster New York 1986 ISBN 978 0 684 81378 3 Rhodes Richard Dark Sun The Making of the Hydrogen Bomb Simon and Schuster New York 1995 ISBN 978 0 684 82414 7 Smyth Henry DeWolf Atomic Energy for Military Purposes Princeton University Press 1945 see Smyth Report Notas Editar El paquete fisico es el modulo explosivo nuclear al interior de la carcasa de la bomba cabeza de guerra del misil o proyectil de artilleria etc que transporta el arma a su blanco Mientras que las fotos de la carcasa del arma son comunes las fotografias del paquete fisico son muy raras incluso de las armas mas antiguas y crudas Para la fotografia de un paquete fisico moderno vease a la W80 Life Editors 1961 To the Outside World a Superbomb more Bluff than Bang Life New York Vol 51 No 19 November 10 1961 34 37 consultado el 28 de junio de 2010 Articulo sobre la prueba nuclear sovietica de la bomba del Zar Debido a que las explosiones son de forma esferica y que los blancos estan dispersos en la relativamente plana superficie de la tierra numerosas armas mas pequenas pueden causar mas destruccion De la pagina 35 cinco bombas de cinco megatones demolerian una area mayor que una sola de 50 megatones Estados Unidos y Union Sovietica fueron las unicas naciones en construir grandes arsenales nucleares con cada tipo posible de arma nuclear Estados Unidos comenzo cuatro anos antes y fue el primero en producir material fisible y armas de fision todo en 1945 Los sovieticos dicen que detonaron la primera bomba de hidrogeno lanzable la detonacion de la Joe 4 el 12 de agosto de 1953 Sin embargo Herbert York revelo en The Advisors Oppenheimer Teller and the Superbomb W H Freeman 1976 que no era una verdadera bomba de hidrogeno era un arma de fision del tipo Sloika Reloj de alarma no un arma termonuclear de dos etapas Las fechas sovieticas para los elementos esenciales de la miniaturizacion de la cabeza de guerra impulsion pozo hueco primarias de dos puntos con lentes de aire no estan disponibles en la literatura abierta pero el gran tamano de los misiles balisticos sovieticos es a menudo usado como evidencia de las dificultades iniciales de los sovieticos en miniaturizar las cabezas de guerra Caisse Nationale de la Recherche Scientifique National Fund for Scientific Research Perfectionnements aux charges explosives Improvements to explosive charges fr 971324 published 16 January 1951 issued 12 July 1950 La principal fuente para esta seccion es la publicacion de Samuel Glasstone y Philip Dolan The Effects of Nuclear Weapons Third Edition 1977 U S Dept of Defense and U S Dept of Energy ver los enlaces en la seccion de referencias con mayor detalle en la publicacion de Samuel Glasstone Sourcebook on Atomic Energy Third Edition 1979 U S Atomic Energy Commission Krieger Publishing Glasstone and Dolan Effects p 12 Glasstone Sourcebook p 503 los neutrones llevan la mayor parte de la energia de la reaccion Glasstone y Dolan Effects p 21 a b Glasstone and Dolan Effects p 21 Glasstone and Dolan Effects p 12 13 Cuando 454 gramos de U 235 se fisionan completamente la potencia es de 8 kilotones La potencia de 13 a 16 kilotones de la bomba Little Boy por lo tanto fue producida por la fision de no mas de 907 gramos de U 235 de un total de 64 kilos en el pozo Los restantes 63 kg el 98 5 del total no contribuyeron en nada a la potencia del arma Compere A L and Griffith W L 1991 The U S Calutron Program for Uranium Enrichment History Technology Operations and Production Report ORNL 5928 como se cita en John Coster Mullen Atom Bombs The Top Secret Inside Story of Little Boy and Fat Man 2003 nota de pie de pagina 28 p 18 La produccion total de tiempo de guerra de Oralloy en Oak Ridge al 28 de julio de 1945 fue de 74 68 kg De esta cantidad el 84 fue dispersado sobre Hiroshima ver nota de pie de pagina anterior Restricted Data Declassification Decisions from 1945 until Present Hecho de que el plutonio y el uranio pueden ser pegados uno al otro en pozos no especificados o armas Restricted Data Declassification Decisions from 1946 until Present a b Fissionable Materials section of the Nuclear Weapons FAQ enlace roto disponible en Internet Archive vease el historial la primera version y la ultima Carey Sublette accessed Sept 23 2006 Toda la informacion sobre las pruebas de armas nucleares provienen de Chuck Hansen The Swords of Armageddon U S Nuclear Weapons Development since 1945 Octobre 1995 Chucklea Productions Volume VIII p 154 Table A 1 U S Nuclear Detonations and Tests 1945 1962 Nuclear Weapons FAQ 4 1 6 3 Hybrid Assembly Techniques accesada el 1 de diciembre de 2007 Diagrama adaptado de la misma fuente Nuclear Weapons FAQ 4 1 6 2 2 4 Cylindrical and Planar Shock Techniques accessed December 1 2007 Restricted Data Declassification Decisions from 1946 until Present Section V B 2 k The fact of use in high explosive assembled HEA weapons of spherical shells of fissile materials sealed pits air and ring HE lenses declassified November 1972 4 4 Elements of Thermonuclear Weapon Design Nuclearweaponarchive org Retrieved on 2011 05 01 Hasta que un diseno confiable fue refinado a principios de la decada de 1950 la bomba de hidrogeno el nombre publico era llamada la superbomba por los expertos Despues de eso ellos usaron un nombre mas descriptivo termonuclear de dos etapas Dos ejemplos son de Herb York The Advisors 1976 Este libro es acerca de el desarrollo de la bomba H o la superbomba como era llamada en ese entonces p ix y El rapido y exitoso desarrollo de la superbomba o super como seria llamada p 5 De National Public Radio Talk of the Nation 8 de noviembre de 2005 Siegfried Hecker de Los Alamos la bomba de hidrogeno estos es un dispositivo termonuclear de dos etapas como la llamabamos es la parte principal del arsenal de estadounidense asi como lo es del arsenal ruso a b Howard Morland Born Secret Cardozo Law Review March 2005 pp 1401 1408 Improved Security Safety amp Manufacturability of the Reliable Replacement Warhead NNSA March 2007 Un diagrama de 1976 que muestra una interetapa que absorbe y reirradia los rayos X De Howard Morland The Article Cardozo Law Review Marzo 2005 p 1374 ArmsControlWonk FOGBANK March 7 2008 Accessed 2010 04 06 SAND8 8 1151 Nuclear Weapon Data Sigma I Sandia Laboratories Septiembre 1988 El diagrama de Greenpeace De Morland Cardozo Law Review March 2005 p 1378 Herbert York The Advisors Oppenheimer Teller and the Superbomb 1976 El Reloj Alarma se volvio practico solo por la inclusion de Li6 en 1950 y su combinacion con la radiacion por implosion Hans A Bethe Memorandum sobre la Historia del Programa Termonuclear 28 de mayo de 1952 Vease map 4 5 Thermonuclear Weapon Designs and Later Subsections Nuclearweaponarchive org Retrieved on 2011 05 01 Operation Hardtack I Nuclearweaponarchive org Retrieved on 2011 05 01 Operation Redwing Nuclearweaponarchive org Retrieved on 2011 05 01 Weapon and Technology 4th Generation Nuclear Nanotech Weapons Weapons technology youngester com 2010 04 19 Retrieved on 2011 05 01 Fourth Generation Nuclear Weapons Nuclearweaponarchive org Retrieved on 2011 05 01 Never say never Whyfiles org Retrieved on 2011 05 01 Samuel Glasstone The Effects of Nuclear Weapons 1962 Revisado 1964 U S Dept of Defense and U S Dept of Energy pp 464 5 Esta seccion fue removida de las ediciones posteriores pero de acuerdo a Glasstone en 1978 no porque fuera inexacta o porque las armas hubieran cambiado Nuclear Weapons FAQ 1 6 Neutron bomb Why clean is deadly BBC News 15 de julio de 1999 Consultado el 6 de enero de 2010 Broad William J 7 September 1999 Spies versus sweat the debate over China s nuclear advance The New York Times p 1 El diagrama de la portada era similar a uno que aparecio cuatro meses antes en San Jose Mercury News Jonathan Medalia The Reliable Replacement Warhead Program Background and Current Developments CRS Report RL32929 Dec 18 2007 p CRS 11 Richard Garwin Why China Won t Build U S Warheads Archivado el 5 de noviembre de 2005 en Wayback Machine Arms Control Today April May 1999 Home NNSA Archivado desde el original el 1 de abril de 2007 Consultado el 7 de febrero de 2016 DoE Fact Sheet Reliable Replacement Warhead Program William J Broad The Hidden Travels of The Bomb Atomic insiders say the weapon was invented only once and its secrets were spread around the globe by spies scientists and the covert acts of nuclear states New York Times December 9 2008 p D1 Sybil Francis Warhead Politics Livermore and the Competitive System of Nuclear Warhead Design UCRL LR 124754 June 1995 Ph D Dissertation Massachusetts Institute of Technology disponible desde el National Technical Information Service Esta tesis de 233 paginas fue escrita por un ajeno a los laboratorios de desarrollo de armas para distribucion publica La autora tuvo acceso a toda la informacion clasificada en Livermore que era relevante para su investigacion sobre el diseno de cabezas de guerra como consecuencia de este nivel de acceso se le pidio que usara palabras codigo no descriptivas para ciertas innovaciones Walter Goad Declaracion para el caso de Wen Ho Lee 17 de mayo de 2000 Goad comenzo el trabajo de diseno de armas termonucleares en Los Alamos en 1950 En su declaracion el menciona los problemas cientificos basicos de computabilidad que no pueden ser resueltos solo por la capacidad de los computadores Estos son tipificados por el problema de predicciones de largo plazo del tiempo y el clima y se extienden a las predicciones del comportamiento de las armas nucleares Esto considera el hecho de que despues de enormes inversiones de esfuerzo por muchos anos aun no se puede confiar en estos modelos para desarrollo de disenos significativamente nuevos Chuck Hansen The Swords of Armageddon Volume IV pp 211 212 284 Dr John C Clark as told to Robert Cahn We Were Trapped by Radioactive Fallout The Saturday Evening Post July 20 1957 pp 17 19 69 71 Richard Rhodes Dark Sun the Making of the Hydrogen Bomb Simon and Schuster 1995 p 541 Chuck Hansen The Swords of Armageddon Volume VII pp 396 397 a b Sybil Francis Warhead Politics pp 141 160 Enlaces externos EditarEsta obra contiene una traduccion derivada de Nuclear weapon design de la Wikipedia en ingles concretamente de esta version publicada por sus editores bajo la Licencia de documentacion libre de GNU y la Licencia Creative Commons Atribucion CompartirIgual 3 0 Unported Wikimedia Commons alberga una categoria multimedia sobre Diseno de armas nucleares Wikimedia Commons alberga una categoria multimedia sobre Diseno de armas nucleares Carey Sublette s Nuclear Weapon Archive es una fuente confiable de informacion y tiene enlaces a otras fuentes Preguntas frecuentemente realizadas sobre las armas nucleares Seccion 4 0 Ingenieria y Diseno de Armas Nucleares The Federation of American Scientists proporciona solida informacion sobre las armas de destruccion masiva incluyendo nuclear weapons y sus efectos Globalsecurity org provee una bien escrita introduccion sobre los conceptos del diseno de armas nucleares navegacion del sitio al lado derecho Mas informacion sobre el diseno de bombas de fusion de dos etapas Militarily Critical Technologies List MCTL from the US Government s Defense Technical Information Center Restricted Data Declassification Decisions from 1946 until Present Serie de informes del Departamento de Energia publicados desde 1994 hasta enero de 2001 que lista todas las acciones de desclasificacion conocidas y sus fechas Auspiciada por la Federation of American Scientists The Holocaust Bomb A Question of Time es una actualizacion de caso legal de 1979 USA v The Progressive en castellano Estados Unidos contra Los Progresivos con vinculos a documentos de apoyo sobre el diseno de armas nucleares Bibliografia comentada sobre el diseno de armas nucleares de la Alsos Digital Library for Nuclear Issues Datos Q15221814 Multimedia Nuclear weapon designObtenido de https es wikipedia org w index php title Diseno de armas nucleares amp oldid 136918187, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos