fbpx
Wikipedia

Combustible nuclear

Se denomina combustible nuclear a todo aquel material que haya sido adaptado para poder ser utilizado en la generación de energía nuclear.

Proceso de producción del combustible nuclear.

El término combustible nuclear puede referirse tanto al material (físil o fusionable) por sí mismo como al conjunto elaborado y utilizado finalmente, es decir, los haces o manojos de combustible, compuestos por barras que contienen el material físil en su interior, aquellas configuraciones que incluyen el combustible junto con el moderador o cualquier otra cosa.

El proceso más utilizado y conocido es la fisión nuclear. El combustible nuclear más común está formado por elementos fisibles como el uranio, generando reacciones en cadena controladas dentro de los reactores nucleares que se encuentran en las centrales nucleares. El isótopo utilizado más habitualmente en la fisión es el 235U.

Los procesos de producción del combustible nuclear que comprenden la minería, refinado, purificado, su utilización y el tratamiento final de residuos, conforman en su conjunto el denominado ciclo del combustible nuclear.

Otro proceso nuclear que puede ser utilizado es la fusión. En dicho proceso se utilizan como combustible isótopos ligeros como el tritio y el deuterio.

Otros elementos como el 238Pu y otros se usan para producir pequeñas cantidades de energía mediante procesos de desintegración radiactiva en los generadores termoeléctricos de radioisótopos o en otros tipos de pilas atómicas.

Fabricación de combustible nuclear

El combustible nuclear utilizado por los reactores de agua a presión (PWR) y de agua en ebullición (BWR) se fabrica a partir del uranio natural. El uranio tal como se encuentra en la naturaleza está formado por tres tipos de isótopos: uranio-238 (238U), uranio-235 (235U) y uranio-234 (234U). La composición porcentual del uranio naturales: 99,28% de 238U, 0,71% de 235U y 0,005% de 234U. Los reactores PWR y BWR funcionan obteniendo la energía de la fisión de los átomos de 235U contenidos en el combustible y de otras reacciones nucleares, principalmente la fisión del 239Pu generado por activación del 238U.

Para que los reactores moderados por agua ligera (PWR, BWR, VVER, ...) puedan funcionar es necesario aumentar la proporción del isótopo 235U desde el 0,71% con el que se presenta en la naturaleza hasta una concentración de entre el 2% y el 5%, mediante un proceso llamado enriquecimiento de Uranio.

Para poder utilizar el uranio en un reactor nuclear es necesario realizar una serie de procesos químicos y físicos para convertirlo desde la forma mineral en que se encuentra en la naturaleza a los pellets de óxido cerámico que se cargan en el núcleo de un reactor nuclear. Son fundamentalmente cuatro o cinco pasos, las imágenes adjuntas ilustran el material obtenido después de cada paso:

  1. Primero, se extrae uranio de la tierra y se tritura y procesa (habitualmente se disuelve con ácido sulfúrico) para obtener la "yellow cake" (torta amarilla).
  2. El siguiente paso consiste en, bien convertir el uranio en UF6 para su enriquecimiento en el isótopo 235 antes de reconvertirlo en óxido de uranio, bien saltarse esta etapa pasando al cuarto paso, como se hace con el combustible CANDU.[1][2]

Tipos de combustibles para reactores de fisión nuclear[3]

Combustibles a base de óxidos

Dióxido de Uranio (UO2)

Este combustible es el que utilizan la mayoría de los reactores PWR y BWR en operación.

El dióxido de uranio se utiliza en forma de cerámico sólido negro. Al ser un material cerámico, el dióxido de uranio posee una baja conductividad térmica, lo que resulta en una elevada temperatura en la zona central de las pastillas combustibles cuando se encuentran en un reactor nuclear. La conductividad térmica es una función de la porosidad del material y del grado de quemado que posea el combustible (se denomina "quemado del combustible" al porcentaje de átomos de uranio iniciales que han fisionado). La fisión genera otros isótopos que afectan al combustible, a su comportamiento y a sus propiedades. Algunos productos permanecen disueltos en el material combustible (como los lantánidos), otros precipitan como por ejemplo el Paladio y otros forman burbujas que contienen productos como el Xenón o el Kriptón. El combustible también se ve afectado por las radiaciones, por los desplazamientos por el retroceso de los fragmentos de fisión al producirse esta reacción y por las tensiones de origen térmico. Un aumento de porosidad da lugar a una disminución de la conductividad térmica y al hinchado del material combustible.

El dióxido de uranio se puede obtener por reacción de nitrato de uranio con una base de amonio para formar un sólido (uranato de amonio, el cual se calienta (calcina) para formar U3O8 que, entonces, puede convertirse calentándolo en una mezcla de argón / hidrógeno a (700.oC) para formar UO2. El UO2 se mezcla con un vinculador orgánico y se comprime en bolitas (llamados pellets), que son quemados a una temperatura mucho más alta (en atmósfera de H2/Ar) para sinterizar el sólido. El propósito de este sinterizado es conseguir un sólido que tenga un bajo grado de porosidad.

Óxidos mixtos (MOX)

El Combustible nuclear de mezcla de óxidos, Óxido mixto, combustible MOX o simplemente MOX, es una mezcla de plutonio y uranio natural o empobrecido que se comporta en un reactor de forma similar al uranio enriquecido que alimenta la mayoría de los reactores nucleares. El MOX es una alternativa al combustible de uranio enriquecido utilizado en la mayoría de los reactores comerciales del mundo.

Se han mostrado algunas preocupaciones sobre el hecho de que los núcleos de MOX plantearían algunas cuestiones sobre la gestión de los residuos de alta actividad que generan. Sin embargo el MOX es a su vez una solución para el tratamiento, mediante fisión, de los sobrantes de plutonio de las centrales que utilizan combustibles de uranio.

Actualmente (2005) el reprocesamiento de combustible nuclear comercial para obtener MOX se realiza en Inglaterra, Francia y en menor medida en Rusia, India y Japón. China tiene planes para desarrollar reactores reproductores rápidos y reprocesar.

Combustibles para reactores nucleares de investigación

Los reactores de investigación son los utilizados en universidades e institutos de investigación. Estos reactores poseen potencias unos tres órdenes de magnitud inferiores a las potencias de un reactor de generación industrial de electricidad. Además los reactores de investigación operan a temperaturas y presiones mucho menores con respecto a los comerciales, y no generan electricidad. Los reactores de investigación permiten capacitar personal en técnicas nucleares, investigar propiedades de la materia, irradiar materiales para producir radioisótopos de aplicación en medicina nuclear, realizar radiografías por neutrones, realizar análisis por activación neutrónica e irradiar silicio para producir material base para semiconductores (técnica conocida como Silicon NTD), entre otras aplicaciones.

En estos reactores se utiliza uranio enriquecido en un porcentaje de un 12% a un 19.75% en 235U.

Algunos de estos reactores de investigación utilizan combustibles formados por cajas que alojan unas 20 placas de aluminio en cuyo interior está contenido el Uranio. El uranio se encuentra disuelto en el interior de cada placa en forma de U3O8, UAlx o U3Si2.

Otros reactores denominados TRIGA (Training, Research, Isotopes, General Atomics, en inglés, correspondientes a Entrenamiento, Investigación, Isótopos, "General Atomics") utilizan combustible en forma de barras. El combustible TRIGA está compuesto por una matriz de hidruro de uranio-zirconio. Muchos núcleos que usan este combustible son de "altas pérdidas", donde los neutrones que fugan del núcleo del reactor son utilizados para investigación.

Combustibles Líquidos

Sales fundidas

Estos combustibles se encuentran disueltos en el refrigerante. Se han utilizado en los reactores de sales fundidas y en numerosos experimentos con reactores de núcleo líquido.

El combustible líquido utilizado en el reactor de sal fundida es LiF-BeF2-ThF4-UF4 (72-16-12-0,4 mol). Su temperatura máxima de funcionamiento es de 705 °C, pero puede soportar temperaturas mayores ya que su punto de ebullición excede los 1400 °C.[4]

Soluciones acuosas de sales de uranio

El reactor homogéneo acuoso utiliza una solución de sulfato de uranio u otras sales de uranio en agua. Este tipo de reactor homogéneo no se ha utilizado por ningún reactor de gran energía. Una de sus desventajas es que el combustible, en caso de accidente, tiene una presentación que favorece que se disperse fácilmente.

Nitruro de uranio

Este es a menudo el combustible de elección para los diseños de reactor que fabrica la NASA. Una ventaja es que el UN tiene una mejor conductividad térmica que el UO2. El nitruro de uranio tiene una temperatura de fusión muy elevada. Este combustible tiene el inconveniente de que, a menos de que se utilice 15N (en lugar del más habitual 14N), se generará una gran cantidad de 14C del nitrógeno por la reacción pn. Como el nitrógeno necesario para producir este combustible es sumamente costoso, sería lógico que el combustible tuviera que ser reprocesado mediante un método pirolítico a fin de permitir recuperar el 15N. También es lógico que si el combustible fuera procesado y disuelto en ácido nítrico el nitrógeno enriquecido con 15N quedaría diluido en el habitual 14N.

Carburo de uranio

Otro combustible que se ha sugerido, nuevamente tiene una mejor conductividad térmica que el dióxido de uranio.

Presentaciones físicas habituales del combustible nuclear

Para su uso como combustible en reactores nucleares, el UF6 producido con Uranio enriquecido en el isótopo 235U, debe ser convertido en polvo de dióxido de uranio (UO2), que entonces es procesado dándole forma de pequeñas partículas. Las partículas son comprimidas y horneadas a altas temperaturas, horneados, en un proceso llamado sinterización durante el cual las partículas se adhieren entre sí, formando pequeños cilindros (pellets) cerámicos de uranio enriquecido. Los pellets cilíndricos entonces son rectificados mediante tornos especiales para conseguir un tamaño uniforme.

A continuación, los pellets son introducidos en tubos metálicos de una aleación resistente a la corrosión, estos tubos son llamados vainas combustibles. Los tubos que contienen los pellets de combustible son cerrados mediante tapones soldados en sus extremos: estos tubos con su carga de pellets de uranio son llamados barras combustibles. Las barras combustibles terminadas se agrupan formando haces, manojos o elementos combustibles, cada haz con entre 100 a 400 barras combustibles dependiendo la cantidad del diseño específico de cada reactor. Un núcleo de un reactor nuclear contiene varios cientos de haces o manojos de combustible.

El metal de las vainas depende del diseño del reactor- en el pasado se utilizaba acero inoxidable, pero actualmente la mayoría de reactores utilizan una aleación de zirconio. Para los tipos más habituales de reactores (BWR y PWR) los tubos se ensamblan en haces o manojos con los tubos espaciados a distancias precisas. A estos haces o manojos se les asigna un número de identificación único, lo que permite su trazabilidad en todo el ciclo (desde su fabricación, hasta su almacenamiento como material irradiado usado, pasando por su uso en el reactor).

Combustible para reactores PWR

 
Elemento combustible PWR. Elemento combustible del reactor de agua presurizada del barco de pasajeros y carga NS Savannah. Diseñado y construido por Babcock and Wilcox Company.

El combustible del reactor de agua presurizada (PWR) está compuesto por barras cilíndricas organizadas en haces, manojos o elementos de combustible. El óxido de uranio cerámico es conformado en pequeños cilindros (pellets) que se insertan en tubos de una aleación rica en zirconio llamada Zircaloy. Estos tubos, llamados vainas, son cerrados herméticamente con tapones soldados. Los tubos de Zircaloy tienen alrededor de 1 cm de diámetro. Hay alrededor de 179-264 barras de combustible por elemento combustible, y el núcleo de un reactor aloja desde 120 a 200 elementos combustibles según su diseño. Generalmente, los elementos combustibles son de sección transversal cuadrada, estando armados con barras combustibles ordenadas en conjuntos de 14x14 a 17x17. Los elementos combustibles para reactores PWR tienen cerca de 4 m de largo. En los elementos combustibles PWR, las barras de material absorbente que se utilizan para controlar la reacción nuclear ("barras de control") se insertan por la parte superior en sitios especiales dentro del elemento combustible. Los elementos combustible normalmente están enriquecidos en diversos porcentajes de 235U. El óxido de uranio es secado antes de insertarlo en los tubos para eliminar la humedad en el combustible cerámico que podría ocasionar corrosión y fragilidad inducida por hidrógeno. Los tubos de Zircaloy están presurizados con helio para intentar minimizar la interacción entre la vaina (o “cladding” en inglés) de los pellets (PCI) que puede llevar a fallos de la barra de combustible durante largos períodos.

Combustible para reactores BWR

En el reactor de agua en ebullición (BWR), el combustible es similar al del PWR excepto que los haces o manojos de barras combustibles están contenidos dentro de un tubo metálico de sección cuadrada. Esto se hace para prevenir variaciones de densidad del refrigerante (agua) ocasionadas por la distribución de generación de calor y existencia de vapor en el núcleo. En los haces de BWR, hay alrededor de 500-800 barras combustibles en cada elemento combustible. Cada barra combustible para BWR está rellenada con helio a una presión de cerca de tres atmósferas (300 kPa).

Combustible para reactores CANDU

 
Haces o manojos de combustible CANDU Dos haces o manojos de combustible CANDU, cada uno de aproximadamente 50 cm de largos y 10 cm de diámetro. Foto cortesía de Atomic Energy of Canada Ltd.

Los haces o manojos de combustible para reactores CANDU miden alrededor de medio metro de largo y 10 cm de diámetro. Están formados por tubos de zirconio conteniendo pellets sinterizados de (UO2) contenidos, los tubos o vainas están soldados en los extremos a platos de zirconio. Cada haz o manojo pesa alrededor de 20 kg y el núcleo de un reactor puede llegar a contener unos 4500 haces o manojos. Los modelos modernos normalmente tienen 37 barras de combustible idénticas dispuestas radialmente alrededor del eje longitudinal del haz o manojo, pero en el pasado se utilizaron diversas configuraciones y números de barras. Los diseños actuales del CANDU no necesitan uranio enriquecido para alcanza el punto crítico (debido a su más eficiente moderador de neutrones de agua pesada, no obstante, algunos nuevos conceptos exigen un bajo enriquecimiento para ayudar a reducir el tamaño de los reactores.

Otros tipos de combustible nuclear menos habituales

Existen otras varias presentaciones de combustible nuclear para aplicaciones específicas, pero carecen del amplio uso de las utilizadas en las plantas de energía de BWR, PWR, y CANDU. Muchos de estas presentaciones solo se encuentran en reactores de investigación, o tienen aplicaciones militares.

Combustible compacto TRISO

 
Partícula de combustible TRISO, fragmentada para mostrar las múltiples capas cobertoras.

Los combustibles tri-isotrópicos (TRISO) fueron desarrollados inicialmente en Alemania para reactores de altas temperaturas refrigerados por gas. En los combustibles TRISO, el carburo de uranio está revestido por varias capas de carbón pirolítico y dióxido de silicio para retener los productos de fisión a elevadas temperaturas. Estos combustibles se moldeaban en esferas de grafito (para reactores de lecho de esferas) o en barras de combustible de grafito (para reactores prismáticos con núcleos refrigerado por gas). Actualmente, este tipo de combustibles se utilizan en el HTR-10 en China, y en el HTTR en Japón, los cuales son reactores experimentales. Los combustibles compactos TRISO podrían utilizarse también en los diseños PBMR y GT-MHR, si tales diseños fueran construidos. La primera planta de energía en utilizar este combustible fue el THTR-300.

Combustible CerMet

El combustible CerMet está formado por partículas de combustible cerámico (normalmente óxido de uranio) alojadas en una matriz metálica. Se ha especulado que este tipo de combustible es el utilizado en los reactores de los portaaviones y submarinos nucleares de la US Navy. Este combustible posee un elevado coeficiente de transferencia térmico y puede soportar un gran volumen de expansión.

Combustible tipo placa

 
Núcleo del Reactor de Pruebas Avanzado. Este reactor utiliza combustible del tipo placa en una distribución en hojas de trébol.

El combustible de tipo placa ha ido ganado posiciones con el transcurso de los años. Actualmente se utiliza en el Reactor de Pruebas Avanzado en el Laboratorio Nacional de Idaho.

Combustible de óxido usado

El combustible de óxido usado es una mezcla compleja de productos de fisión, uranio, plutonio y metales transplutónicos. El combustible que se ha utilizado a altas temperaturas en los reactores de energía es normal que no sea homogéneo, a menudo contiene nanopartículas de metales del grupo del platino tales como el paladio. También es frecuente que el combustible se haya agrietado, formando protuberancias o haya sido utilizado a temperaturas cercanas a su punto de fusión. Aunque el combustible usado puede agrietarse, es muy insoluble en agua, y puede retener la gran mayoría de actínidos y productos de fisión dentro del dióxido de uranio.

Combustibles para reactores de fusión

Aunque en el 2008 aún no existen reactores de fusión que hayan operado durante períodos de tiempo relevantes, ni que hayan permitido aprovechar su energía, los principales combustibles que podrían utilizarse en estos reactores serían el tritio (³H) y el deuterio (²H), pudiendo usar también el helio tres (³He). Muchos otros elementos pueden fusionarse si se les fuerza a acercarse entre sí lo suficiente, para lo cual es necesario alcanzar temperaturas suficientemente altas. En general, se considera que habrá tres generaciones de combustibles de fusión dependiendo de la factibilidad técnica de poder lograr la fusión de distintos núcleos atómicos de elementos ligeros.

Esta se encuentra en etapas de investigación y desarrollo. El proyecto ITER es una iniciativa internacional para avanzar en el conocimiento de la fusión por confinamiento magnético.

Combustible de fusión de primera generación

El deuterio y el tritio son considerados la primera generación de combustibles de fusión; existen varias reacciones en las cuales pueden fusionarse juntos. Las tres reacciones más habituales son:

²H + ³H   n (14,07 MeV) + 4He (3,52 MeV)

²H + ²H   n (2,45 MeV) + ³He (0,82 MeV)

²H + ²H   p (3,02 MeV) + ³H (1,01 MeV)

Combustible de fusión de segunda generación

La segunda generación de combustibles requiere o bien alcanzar temperaturas más altas de confinamiento para lograr la fusión o tiempos de confinamiento más prolongados, que los requeridos para los combustibles de primera generación. Este grupo está formado por deuterio y helio tres. Los productos de estos reactivos son todas partículas cargadas, pero existen reacciones laterales no beneficiosas que llevan a la activación radiactiva de los componentes del reactor de fusión.

²H + ³He   p (14,68 MeV) + 4He (3,67 MeV)

Combustible de fusión de tercera generación

Hay varios combustibles de fusión potenciales en la tercera generación. La tercera generación de combustibles de fusión producen sólo partículas cargadas en el proceso de fusión y no hay reacciones laterales. Por lo tanto, no habría ninguna activación radiactiva en el reactor de fusión. A menudo esto es visto como el objetivo final de la investigación de la fusión. El ³He es el combustible de tercera generación que es más probable que se utilice primero ya que tiene la menor reactividad de Maxwell en comparación con otros combustibles de fusión de tercera generación.

³He + ³He   2p + 4He (12,86 MeV)

Otra reacción de fusión aneutrónica podría ser la de protón-boro:

p + 11B → 34He

Según estimaciones razonables, las reacciones laterales serían de alrededor del 0,1% de la energía de fusión llevada a término por los neutrones. Con 123 keV, la temperatura óptima de esta reacción es cerca de diez veces más que para las reacciones de hidrógeno puro, el confinamiento de energía debiera ser 500 veces mejor que la requerida para la reacción D-T, y la densidad de energía sería 2500 veces más baja que para D-T.

Combustibles basados en la desintegración de radioisótopos

Pila de radioisótopos

Las expresiones pila atómica, pila nuclear o pila de radioisótopos se utilizan para describir un dispositivo que usa las emisiones de partículas cargadas de un isótopo radiactivo para producir electricidad. Estos sistemas utilizan radioisótopos que emiten partículas beta de baja energía o partículas alfa de forma que se minimice la radiación de frenado, que requeriría de otro modo el uso de blindajes a las radiaciones más pesados. Se han probado isótopos como el tritio, el 63Ni, el 147Pm o el 99Tc y se han utilizado el 90Sr, el 238Pu, el 242Cm o el 244curio.

Básicamente existen dos tipos de pilas atómicas: térmicas y no térmicas. De las no térmicas hay varios diseños, que utilizan la carga de las partículas alfa y beta, e incluyen diseños como el generador de carga directa, el betavolt la pila nuclear optoeléctrica o el generador piezoeléctrico de radioisótopos. Por su parte las pilas atómicas térmicas convierten el calor de la desintegración radiactiva en electricidad. En este efecto se fundamentan diseños como el convertidor termoiónico, las células termofotovoltaicas, los convertidores termoeléctricos metal-alcalino y el diseño más común: el generador termoeléctrico de radioisótopos.

Generadores de calor a partir de radioisótopos

Las Unidades de calor de radioisótopos, (RHU) por sus iniciales en inglés, generan aproximadamente 1 vatio de calor, procedente de la desintegración de algunos gramos de 238Pu. Este calor es proporcionado de forma continua durante un lapso tiempo de varias décadas.

Su función es generar calor, para calentar equipos muy sensibles en el espacio profundo. El satélite artificial Cassini-Huygens enviado al planeta Saturno contiene 82 de estas unidades (además de 3 GTR para generar electricidad). La sonda Huygens a Titán contiene 35 de estos elementos.

Generadores termoeléctricos de radioisótopos

 
Inspeccionando los niveles de radiación de los RTG de la Cassini-Huygens

Un generador termoeléctrico de radioisótopos (GTR o RTG en inglés) es un generador eléctrico que obtiene su energía de la desintegración radiactiva. En estos aparatos, el calor liberado por la desintegración de un material radiactivo, se convierte en electricidad utilizando una serie de termopares.

El 238Pu en forma de dióxido de plutonio se ha convertido en el combustible más usado en los GTR. Este radioisótopo tiene un semiperíodo de 87,7 años, una densidad de energía razonable y unos niveles de radiaciones gamma y de neutrones bajos. Algunos GTR terrestres han utilizado 90Sr, isótopo que tiene un semiperiodo más corto, una densidad de energía más baja y produce radiaciones gamma, pero es mucho más barato. El primer GTR fue construido en 1958 por la Comisión de Energía Atómica de Estados Unidos (NRC sus siglas en inglés), utilizando 210Po. Este combustible proporciona una enorme densidad de energía, (un solo gramo de polonio-210 genera 140 vatios térmicos) pero tiene un uso limitado debido a su corto semiperiodo y a que emite radiaciones gamma, por lo que fue desestimado para esta aplicación.

Comportamiento del combustible en un reactor nuclear de fisión

La temperatura en una pastilla combustible varía con la distancia desde el centro. A una distancia x del centro la temperatura (Tx) se describe mediante una ecuación en la que ρ es la densidad de energía (W m-3) y Kf es la conductividad térmica del combustible:

 

El combustible utilizado en las centrales nucleares, tanto experimentales como industriales, se examina antes y después de su uso.

El combustible fresco suele pasar varios controles en los que se verifica que sus características físicas coinciden con las indicadas en las especificaciones técnicas. Estos controles son siempre no destructivos, utilizando técnicas de metrología, ultrasonidos o inspecciones visuales entre otras técnicas.

En el caso del combustible gastado los exámenes se realizan en las denominadas celdas calientes (recintos con gruesas paredes para proteger a las personas de las radiaciones que emite el combustible irradiado), dada la intensidad de las radiaciones que emite. En este caso se utilizan métodos destructivos y no destructivos.[5][6]

En el combustible gastado se estudian los siguientes efectos:

  • Hinchado.[7]
  • Liberación de gases de fisión. Los productos de fisión más volátiles que están atrapados dentro del dióxido de uranio pueden liberarse.
  • Agrietado del combustible. En los ciclos termodinámicos (calentamientos y enfriamientos) producen tensiones en el combustible. Estas pueden producir grietas que tienden a ir del centro a los bordes formando un patrón en forma de estrella.

Estos ensayos se utilizan para comprobar que el combustible es seguro y además efectivo. Tras accidentes que han supuesto daños en el núcleo se suele investigar el combustible para estudiar su comportamiento.

Comportamiento del combustible nuclear de fisión en accidentes

Se han realizado numerosas investigaciones que permiten conocer con precisión los fenómenos y condiciones que pueden producir la falla de un combustible en un reactor y la posterior liberación de material radiactivo desde el mismo. Solo los productos de fisión más volátiles se podrían liberar en caso de que un accidente produjera daños graves en el núcleo. En Francia existe una instalación donde se puede simular la fusión de combustible en condiciones controladas.

Como parte del programa de investigación PHEBUS, se realizaron experimentos en los que combustibles alcanzaron temperaturas superiores a las de funcionamiento, analizando su comportamiento y los mecanismos de falla de la vaina que contiene al combustible. En este experimento además se estudió la liberación de radioisótopos desde el combustible.[8]

Referencias

  1. El ciclo del combustible nuclear. Asociación Nuclear Mundial. (en inglés)
  2. Ventajas y desventajas de los diferentes tipos de combustibles. (en inglés)
  3. Fluoruros fundidos como combustible para reactores nucleares. R. C. Briant y A. M. Weinberg. Oak Ridge Laboratory. Nuclear Science and Engineering. pp. 797-803. (1957).(en inglés)
  4. . Archivado desde el original el 10 de julio de 2007. Consultado el 21 de abril de 2007. 
  5. Exámenes post-irradiación de elementos de combustible U3SiX-Al construidos e irradiados en Argentina. Argonne National Laboratory. (en inglés)
  6. Análisis del hinchado del combustible nuclear. Documento de la NASA (en inglés)
  7. [1] el 20 de noviembre de 2006 en Wayback Machine.Experimento Phebus. Informe anual del ITU correspondiente al 2004 el 20 de noviembre de 2006 en Wayback Machine.

Enlaces externos

(en inglés):

Combustible PWR

  • Imagen mostrando el manejo de un haz PWR

Combustible BWR

  • Enlaces a fotos de BWR desde la página web de nuclear tourist.

Combustible CANDU

  • Nociones básicas del diseño del CANDU
  • La evolución de los ciclos del combustible CANDU y su uso potencial para contribuir a la paz mundial
  • Especificaciones del combustible y del reactor CANDU (Nuclear Tourist)
  • Barras y haces de combustible Candu.

Combustible TRISO

  • Examen no destructivo de las cápsulas de combustible nuclear de SiC utilizando la técnica de microfotografía con rayos X fluorescentes.
  • Página Web de LANL mostrando varios pasos de la producción del combustible TRISO

Combustible CERMET

Combustible del tipo placa

Combustible TRIGA

    Combustibles de reactores espaciales

      Combustible de fusión

      • Presentación de combustibles de fusión avanzados
      •   Datos: Q194523
      •   Multimedia: Nuclear fuels

      combustible, nuclear, denomina, combustible, nuclear, todo, aquel, material, haya, sido, adaptado, para, poder, utilizado, generación, energía, nuclear, proceso, producción, combustible, nuclear, término, combustible, nuclear, puede, referirse, tanto, material. Se denomina combustible nuclear a todo aquel material que haya sido adaptado para poder ser utilizado en la generacion de energia nuclear Proceso de produccion del combustible nuclear El termino combustible nuclear puede referirse tanto al material fisil o fusionable por si mismo como al conjunto elaborado y utilizado finalmente es decir los haces o manojos de combustible compuestos por barras que contienen el material fisil en su interior aquellas configuraciones que incluyen el combustible junto con el moderador o cualquier otra cosa El proceso mas utilizado y conocido es la fision nuclear El combustible nuclear mas comun esta formado por elementos fisibles como el uranio generando reacciones en cadena controladas dentro de los reactores nucleares que se encuentran en las centrales nucleares El isotopo utilizado mas habitualmente en la fision es el 235U Los procesos de produccion del combustible nuclear que comprenden la mineria refinado purificado su utilizacion y el tratamiento final de residuos conforman en su conjunto el denominado ciclo del combustible nuclear Otro proceso nuclear que puede ser utilizado es la fusion En dicho proceso se utilizan como combustible isotopos ligeros como el tritio y el deuterio Otros elementos como el 238Pu y otros se usan para producir pequenas cantidades de energia mediante procesos de desintegracion radiactiva en los generadores termoelectricos de radioisotopos o en otros tipos de pilas atomicas Indice 1 Fabricacion de combustible nuclear 2 Tipos de combustibles para reactores de fision nuclear 3 2 1 Combustibles a base de oxidos 2 1 1 Dioxido de Uranio UO2 2 1 2 oxidos mixtos MOX 2 2 Combustibles para reactores nucleares de investigacion 2 3 Combustibles Liquidos 2 3 1 Sales fundidas 2 3 2 Soluciones acuosas de sales de uranio 2 3 2 1 Nitruro de uranio 2 3 2 2 Carburo de uranio 2 4 Presentaciones fisicas habituales del combustible nuclear 2 4 1 Combustible para reactores PWR 2 4 2 Combustible para reactores BWR 2 4 3 Combustible para reactores CANDU 2 5 Otros tipos de combustible nuclear menos habituales 2 5 1 Combustible compacto TRISO 2 5 2 Combustible CerMet 2 5 3 Combustible tipo placa 2 5 4 Combustible de oxido usado 3 Combustibles para reactores de fusion 3 1 Combustible de fusion de primera generacion 3 2 Combustible de fusion de segunda generacion 3 3 Combustible de fusion de tercera generacion 4 Combustibles basados en la desintegracion de radioisotopos 4 1 Pila de radioisotopos 4 2 Generadores de calor a partir de radioisotopos 4 3 Generadores termoelectricos de radioisotopos 5 Comportamiento del combustible en un reactor nuclear de fision 5 1 Comportamiento del combustible nuclear de fision en accidentes 6 Referencias 7 Enlaces externosFabricacion de combustible nuclear EditarArticulo principal Ciclo del combustible nuclear El combustible nuclear utilizado por los reactores de agua a presion PWR y de agua en ebullicion BWR se fabrica a partir del uranio natural El uranio tal como se encuentra en la naturaleza esta formado por tres tipos de isotopos uranio 238 238U uranio 235 235U y uranio 234 234U La composicion porcentual del uranio naturales 99 28 de 238U 0 71 de 235U y 0 005 de 234U Los reactores PWR y BWR funcionan obteniendo la energia de la fision de los atomos de 235U contenidos en el combustible y de otras reacciones nucleares principalmente la fision del 239Pu generado por activacion del 238U Para que los reactores moderados por agua ligera PWR BWR VVER puedan funcionar es necesario aumentar la proporcion del isotopo 235U desde el 0 71 con el que se presenta en la naturaleza hasta una concentracion de entre el 2 y el 5 mediante un proceso llamado enriquecimiento de Uranio Para poder utilizar el uranio en un reactor nuclear es necesario realizar una serie de procesos quimicos y fisicos para convertirlo desde la forma mineral en que se encuentra en la naturaleza a los pellets de oxido ceramico que se cargan en el nucleo de un reactor nuclear Son fundamentalmente cuatro o cinco pasos las imagenes adjuntas ilustran el material obtenido despues de cada paso Primero se extrae uranio de la tierra y se tritura y procesa habitualmente se disuelve con acido sulfurico para obtener la yellow cake torta amarilla El siguiente paso consiste en bien convertir el uranio en UF6 para su enriquecimiento en el isotopo 235 antes de reconvertirlo en oxido de uranio bien saltarse esta etapa pasando al cuarto paso como se hace con el combustible CANDU 1 2 1 Mineral de uranio principal materia prima del combustible nuclear 2 Yellow cake Torta amarilla forma en la que el uranio se transporta a la planta de enriquecimiento 3 UF6 utilizado para el enriquecimiento 4 Combustible nuclear solido compacto quimicamente inerte e insoluble Tipos de combustibles para reactores de fision nuclear 3 EditarCombustibles a base de oxidos Editar Dioxido de Uranio UO2 Editar Este combustible es el que utilizan la mayoria de los reactores PWR y BWR en operacion El dioxido de uranio se utiliza en forma de ceramico solido negro Al ser un material ceramico el dioxido de uranio posee una baja conductividad termica lo que resulta en una elevada temperatura en la zona central de las pastillas combustibles cuando se encuentran en un reactor nuclear La conductividad termica es una funcion de la porosidad del material y del grado de quemado que posea el combustible se denomina quemado del combustible al porcentaje de atomos de uranio iniciales que han fisionado La fision genera otros isotopos que afectan al combustible a su comportamiento y a sus propiedades Algunos productos permanecen disueltos en el material combustible como los lantanidos otros precipitan como por ejemplo el Paladio y otros forman burbujas que contienen productos como el Xenon o el Kripton El combustible tambien se ve afectado por las radiaciones por los desplazamientos por el retroceso de los fragmentos de fision al producirse esta reaccion y por las tensiones de origen termico Un aumento de porosidad da lugar a una disminucion de la conductividad termica y al hinchado del material combustible El dioxido de uranio se puede obtener por reaccion de nitrato de uranio con una base de amonio para formar un solido uranato de amonio el cual se calienta calcina para formar U3O8 que entonces puede convertirse calentandolo en una mezcla de argon hidrogeno a 700 o C para formar UO2 El UO2 se mezcla con un vinculador organico y se comprime en bolitas llamados pellets que son quemados a una temperatura mucho mas alta en atmosfera de H2 Ar para sinterizar el solido El proposito de este sinterizado es conseguir un solido que tenga un bajo grado de porosidad oxidos mixtos MOX Editar Articulo principal Combustible nuclear de mezcla de oxidos El Combustible nuclear de mezcla de oxidos oxido mixto combustible MOX o simplemente MOX es una mezcla de plutonio y uranio natural o empobrecido que se comporta en un reactor de forma similar al uranio enriquecido que alimenta la mayoria de los reactores nucleares El MOX es una alternativa al combustible de uranio enriquecido utilizado en la mayoria de los reactores comerciales del mundo Se han mostrado algunas preocupaciones sobre el hecho de que los nucleos de MOX plantearian algunas cuestiones sobre la gestion de los residuos de alta actividad que generan Sin embargo el MOX es a su vez una solucion para el tratamiento mediante fision de los sobrantes de plutonio de las centrales que utilizan combustibles de uranio Actualmente 2005 el reprocesamiento de combustible nuclear comercial para obtener MOX se realiza en Inglaterra Francia y en menor medida en Rusia India y Japon China tiene planes para desarrollar reactores reproductores rapidos y reprocesar Combustibles para reactores nucleares de investigacion Editar Los reactores de investigacion son los utilizados en universidades e institutos de investigacion Estos reactores poseen potencias unos tres ordenes de magnitud inferiores a las potencias de un reactor de generacion industrial de electricidad Ademas los reactores de investigacion operan a temperaturas y presiones mucho menores con respecto a los comerciales y no generan electricidad Los reactores de investigacion permiten capacitar personal en tecnicas nucleares investigar propiedades de la materia irradiar materiales para producir radioisotopos de aplicacion en medicina nuclear realizar radiografias por neutrones realizar analisis por activacion neutronica e irradiar silicio para producir material base para semiconductores tecnica conocida como Silicon NTD entre otras aplicaciones En estos reactores se utiliza uranio enriquecido en un porcentaje de un 12 a un 19 75 en 235U Algunos de estos reactores de investigacion utilizan combustibles formados por cajas que alojan unas 20 placas de aluminio en cuyo interior esta contenido el Uranio El uranio se encuentra disuelto en el interior de cada placa en forma de U3O8 UAlx o U3Si2 Otros reactores denominados TRIGA Training Research Isotopes General Atomics en ingles correspondientes a Entrenamiento Investigacion Isotopos General Atomics utilizan combustible en forma de barras El combustible TRIGA esta compuesto por una matriz de hidruro de uranio zirconio Muchos nucleos que usan este combustible son de altas perdidas donde los neutrones que fugan del nucleo del reactor son utilizados para investigacion Combustibles Liquidos Editar Sales fundidas Editar Estos combustibles se encuentran disueltos en el refrigerante Se han utilizado en los reactores de sales fundidas y en numerosos experimentos con reactores de nucleo liquido El combustible liquido utilizado en el reactor de sal fundida es LiF BeF2 ThF4 UF4 72 16 12 0 4 mol Su temperatura maxima de funcionamiento es de 705 C pero puede soportar temperaturas mayores ya que su punto de ebullicion excede los 1400 C 4 Soluciones acuosas de sales de uranio Editar El reactor homogeneo acuoso utiliza una solucion de sulfato de uranio u otras sales de uranio en agua Este tipo de reactor homogeneo no se ha utilizado por ningun reactor de gran energia Una de sus desventajas es que el combustible en caso de accidente tiene una presentacion que favorece que se disperse facilmente Nitruro de uranio Editar Este es a menudo el combustible de eleccion para los disenos de reactor que fabrica la NASA Una ventaja es que el UN tiene una mejor conductividad termica que el UO2 El nitruro de uranio tiene una temperatura de fusion muy elevada Este combustible tiene el inconveniente de que a menos de que se utilice 15N en lugar del mas habitual 14N se generara una gran cantidad de 14C del nitrogeno por la reaccion pn Como el nitrogeno necesario para producir este combustible es sumamente costoso seria logico que el combustible tuviera que ser reprocesado mediante un metodo pirolitico a fin de permitir recuperar el 15N Tambien es logico que si el combustible fuera procesado y disuelto en acido nitrico el nitrogeno enriquecido con 15N quedaria diluido en el habitual 14N Carburo de uranio Editar Otro combustible que se ha sugerido nuevamente tiene una mejor conductividad termica que el dioxido de uranio Presentaciones fisicas habituales del combustible nuclear Editar Para su uso como combustible en reactores nucleares el UF6 producido con Uranio enriquecido en el isotopo 235U debe ser convertido en polvo de dioxido de uranio UO2 que entonces es procesado dandole forma de pequenas particulas Las particulas son comprimidas y horneadas a altas temperaturas horneados en un proceso llamado sinterizacion durante el cual las particulas se adhieren entre si formando pequenos cilindros pellets ceramicos de uranio enriquecido Los pellets cilindricos entonces son rectificados mediante tornos especiales para conseguir un tamano uniforme A continuacion los pellets son introducidos en tubos metalicos de una aleacion resistente a la corrosion estos tubos son llamados vainas combustibles Los tubos que contienen los pellets de combustible son cerrados mediante tapones soldados en sus extremos estos tubos con su carga de pellets de uranio son llamados barras combustibles Las barras combustibles terminadas se agrupan formando haces manojos o elementos combustibles cada haz con entre 100 a 400 barras combustibles dependiendo la cantidad del diseno especifico de cada reactor Un nucleo de un reactor nuclear contiene varios cientos de haces o manojos de combustible El metal de las vainas depende del diseno del reactor en el pasado se utilizaba acero inoxidable pero actualmente la mayoria de reactores utilizan una aleacion de zirconio Para los tipos mas habituales de reactores BWR y PWR los tubos se ensamblan en haces o manojos con los tubos espaciados a distancias precisas A estos haces o manojos se les asigna un numero de identificacion unico lo que permite su trazabilidad en todo el ciclo desde su fabricacion hasta su almacenamiento como material irradiado usado pasando por su uso en el reactor Combustible para reactores PWR Editar Elemento combustible PWR Elemento combustible del reactor de agua presurizada del barco de pasajeros y carga NS Savannah Disenado y construido por Babcock and Wilcox Company El combustible del reactor de agua presurizada PWR esta compuesto por barras cilindricas organizadas en haces manojos o elementos de combustible El oxido de uranio ceramico es conformado en pequenos cilindros pellets que se insertan en tubos de una aleacion rica en zirconio llamada Zircaloy Estos tubos llamados vainas son cerrados hermeticamente con tapones soldados Los tubos de Zircaloy tienen alrededor de 1 cm de diametro Hay alrededor de 179 264 barras de combustible por elemento combustible y el nucleo de un reactor aloja desde 120 a 200 elementos combustibles segun su diseno Generalmente los elementos combustibles son de seccion transversal cuadrada estando armados con barras combustibles ordenadas en conjuntos de 14x14 a 17x17 Los elementos combustibles para reactores PWR tienen cerca de 4 m de largo En los elementos combustibles PWR las barras de material absorbente que se utilizan para controlar la reaccion nuclear barras de control se insertan por la parte superior en sitios especiales dentro del elemento combustible Los elementos combustible normalmente estan enriquecidos en diversos porcentajes de 235U El oxido de uranio es secado antes de insertarlo en los tubos para eliminar la humedad en el combustible ceramico que podria ocasionar corrosion y fragilidad inducida por hidrogeno Los tubos de Zircaloy estan presurizados con helio para intentar minimizar la interaccion entre la vaina o cladding en ingles de los pellets PCI que puede llevar a fallos de la barra de combustible durante largos periodos Combustible para reactores BWR Editar En el reactor de agua en ebullicion BWR el combustible es similar al del PWR excepto que los haces o manojos de barras combustibles estan contenidos dentro de un tubo metalico de seccion cuadrada Esto se hace para prevenir variaciones de densidad del refrigerante agua ocasionadas por la distribucion de generacion de calor y existencia de vapor en el nucleo En los haces de BWR hay alrededor de 500 800 barras combustibles en cada elemento combustible Cada barra combustible para BWR esta rellenada con helio a una presion de cerca de tres atmosferas 300 kPa Combustible para reactores CANDU Editar Haces o manojos de combustible CANDU Dos haces o manojos de combustible CANDU cada uno de aproximadamente 50 cm de largos y 10 cm de diametro Foto cortesia de Atomic Energy of Canada Ltd Los haces o manojos de combustible para reactores CANDU miden alrededor de medio metro de largo y 10 cm de diametro Estan formados por tubos de zirconio conteniendo pellets sinterizados de UO2 contenidos los tubos o vainas estan soldados en los extremos a platos de zirconio Cada haz o manojo pesa alrededor de 20 kg y el nucleo de un reactor puede llegar a contener unos 4500 haces o manojos Los modelos modernos normalmente tienen 37 barras de combustible identicas dispuestas radialmente alrededor del eje longitudinal del haz o manojo pero en el pasado se utilizaron diversas configuraciones y numeros de barras Los disenos actuales del CANDU no necesitan uranio enriquecido para alcanza el punto critico debido a su mas eficiente moderador de neutrones de agua pesada no obstante algunos nuevos conceptos exigen un bajo enriquecimiento para ayudar a reducir el tamano de los reactores Otros tipos de combustible nuclear menos habituales Editar Existen otras varias presentaciones de combustible nuclear para aplicaciones especificas pero carecen del amplio uso de las utilizadas en las plantas de energia de BWR PWR y CANDU Muchos de estas presentaciones solo se encuentran en reactores de investigacion o tienen aplicaciones militares Combustible compacto TRISO Editar Particula de combustible TRISO fragmentada para mostrar las multiples capas cobertoras Los combustibles tri isotropicos TRISO fueron desarrollados inicialmente en Alemania para reactores de altas temperaturas refrigerados por gas En los combustibles TRISO el carburo de uranio esta revestido por varias capas de carbon pirolitico y dioxido de silicio para retener los productos de fision a elevadas temperaturas Estos combustibles se moldeaban en esferas de grafito para reactores de lecho de esferas o en barras de combustible de grafito para reactores prismaticos con nucleos refrigerado por gas Actualmente este tipo de combustibles se utilizan en el HTR 10 en China y en el HTTR en Japon los cuales son reactores experimentales Los combustibles compactos TRISO podrian utilizarse tambien en los disenos PBMR y GT MHR si tales disenos fueran construidos La primera planta de energia en utilizar este combustible fue el THTR 300 Combustible CerMet Editar El combustible CerMet esta formado por particulas de combustible ceramico normalmente oxido de uranio alojadas en una matriz metalica Se ha especulado que este tipo de combustible es el utilizado en los reactores de los portaaviones y submarinos nucleares de la US Navy Este combustible posee un elevado coeficiente de transferencia termico y puede soportar un gran volumen de expansion Combustible tipo placa Editar Nucleo del Reactor de Pruebas Avanzado Este reactor utiliza combustible del tipo placa en una distribucion en hojas de trebol El combustible de tipo placa ha ido ganado posiciones con el transcurso de los anos Actualmente se utiliza en el Reactor de Pruebas Avanzado en el Laboratorio Nacional de Idaho Combustible de oxido usado Editar El combustible de oxido usado es una mezcla compleja de productos de fision uranio plutonio y metales transplutonicos El combustible que se ha utilizado a altas temperaturas en los reactores de energia es normal que no sea homogeneo a menudo contiene nanoparticulas de metales del grupo del platino tales como el paladio Tambien es frecuente que el combustible se haya agrietado formando protuberancias o haya sido utilizado a temperaturas cercanas a su punto de fusion Aunque el combustible usado puede agrietarse es muy insoluble en agua y puede retener la gran mayoria de actinidos y productos de fision dentro del dioxido de uranio Combustibles para reactores de fusion Editar Este articulo o seccion necesita referencias que aparezcan en una publicacion acreditada Este aviso fue puesto el 29 de marzo de 2010 Aunque en el 2008 aun no existen reactores de fusion que hayan operado durante periodos de tiempo relevantes ni que hayan permitido aprovechar su energia los principales combustibles que podrian utilizarse en estos reactores serian el tritio H y el deuterio H pudiendo usar tambien el helio tres He Muchos otros elementos pueden fusionarse si se les fuerza a acercarse entre si lo suficiente para lo cual es necesario alcanzar temperaturas suficientemente altas En general se considera que habra tres generaciones de combustibles de fusion dependiendo de la factibilidad tecnica de poder lograr la fusion de distintos nucleos atomicos de elementos ligeros Esta se encuentra en etapas de investigacion y desarrollo El proyecto ITER es una iniciativa internacional para avanzar en el conocimiento de la fusion por confinamiento magnetico Combustible de fusion de primera generacion Editar El deuterio y el tritio son considerados la primera generacion de combustibles de fusion existen varias reacciones en las cuales pueden fusionarse juntos Las tres reacciones mas habituales son H H displaystyle rightarrow n 14 07 MeV 4He 3 52 MeV H H displaystyle rightarrow n 2 45 MeV He 0 82 MeV H H displaystyle rightarrow p 3 02 MeV H 1 01 MeV Combustible de fusion de segunda generacion Editar La segunda generacion de combustibles requiere o bien alcanzar temperaturas mas altas de confinamiento para lograr la fusion o tiempos de confinamiento mas prolongados que los requeridos para los combustibles de primera generacion Este grupo esta formado por deuterio y helio tres Los productos de estos reactivos son todas particulas cargadas pero existen reacciones laterales no beneficiosas que llevan a la activacion radiactiva de los componentes del reactor de fusion H He displaystyle rightarrow p 14 68 MeV 4He 3 67 MeV Combustible de fusion de tercera generacion Editar Hay varios combustibles de fusion potenciales en la tercera generacion La tercera generacion de combustibles de fusion producen solo particulas cargadas en el proceso de fusion y no hay reacciones laterales Por lo tanto no habria ninguna activacion radiactiva en el reactor de fusion A menudo esto es visto como el objetivo final de la investigacion de la fusion El He es el combustible de tercera generacion que es mas probable que se utilice primero ya que tiene la menor reactividad de Maxwell en comparacion con otros combustibles de fusion de tercera generacion He He displaystyle rightarrow 2p 4He 12 86 MeV Otra reaccion de fusion aneutronica podria ser la de proton boro p 11B 34HeSegun estimaciones razonables las reacciones laterales serian de alrededor del 0 1 de la energia de fusion llevada a termino por los neutrones Con 123 keV la temperatura optima de esta reaccion es cerca de diez veces mas que para las reacciones de hidrogeno puro el confinamiento de energia debiera ser 500 veces mejor que la requerida para la reaccion D T y la densidad de energia seria 2500 veces mas baja que para D T Combustibles basados en la desintegracion de radioisotopos EditarPila de radioisotopos Editar Articulo principal Bateria nuclear Las expresiones pila atomica pila nuclear o pila de radioisotopos se utilizan para describir un dispositivo que usa las emisiones de particulas cargadas de un isotopo radiactivo para producir electricidad Estos sistemas utilizan radioisotopos que emiten particulas beta de baja energia o particulas alfa de forma que se minimice la radiacion de frenado que requeriria de otro modo el uso de blindajes a las radiaciones mas pesados Se han probado isotopos como el tritio el 63Ni el 147Pm o el 99Tc y se han utilizado el 90Sr el 238Pu el 242Cm o el 244curio Basicamente existen dos tipos de pilas atomicas termicas y no termicas De las no termicas hay varios disenos que utilizan la carga de las particulas alfa y beta e incluyen disenos como el generador de carga directa el betavolt la pila nuclear optoelectrica o el generador piezoelectrico de radioisotopos Por su parte las pilas atomicas termicas convierten el calor de la desintegracion radiactiva en electricidad En este efecto se fundamentan disenos como el convertidor termoionico las celulas termofotovoltaicas los convertidores termoelectricos metal alcalino y el diseno mas comun el generador termoelectrico de radioisotopos Generadores de calor a partir de radioisotopos Editar Las Unidades de calor de radioisotopos RHU por sus iniciales en ingles generan aproximadamente 1 vatio de calor procedente de la desintegracion de algunos gramos de 238Pu Este calor es proporcionado de forma continua durante un lapso tiempo de varias decadas Su funcion es generar calor para calentar equipos muy sensibles en el espacio profundo El satelite artificial Cassini Huygens enviado al planeta Saturno contiene 82 de estas unidades ademas de 3 GTR para generar electricidad La sonda Huygens a Titan contiene 35 de estos elementos Generadores termoelectricos de radioisotopos Editar Inspeccionando los niveles de radiacion de los RTG de la Cassini Huygens Un generador termoelectrico de radioisotopos GTR o RTG en ingles es un generador electrico que obtiene su energia de la desintegracion radiactiva En estos aparatos el calor liberado por la desintegracion de un material radiactivo se convierte en electricidad utilizando una serie de termopares El 238Pu en forma de dioxido de plutonio se ha convertido en el combustible mas usado en los GTR Este radioisotopo tiene un semiperiodo de 87 7 anos una densidad de energia razonable y unos niveles de radiaciones gamma y de neutrones bajos Algunos GTR terrestres han utilizado 90Sr isotopo que tiene un semiperiodo mas corto una densidad de energia mas baja y produce radiaciones gamma pero es mucho mas barato El primer GTR fue construido en 1958 por la Comision de Energia Atomica de Estados Unidos NRC sus siglas en ingles utilizando 210Po Este combustible proporciona una enorme densidad de energia un solo gramo de polonio 210 genera 140 vatios termicos pero tiene un uso limitado debido a su corto semiperiodo y a que emite radiaciones gamma por lo que fue desestimado para esta aplicacion Comportamiento del combustible en un reactor nuclear de fision EditarLa temperatura en una pastilla combustible varia con la distancia desde el centro A una distancia x del centro la temperatura Tx se describe mediante una ecuacion en la que r es la densidad de energia W m 3 y Kf es la conductividad termica del combustible T x T b o r d e r r p e l l e t 2 x 2 4 K f displaystyle T x T borde frac rho cdot r pellet 2 x 2 4 cdot K f El combustible utilizado en las centrales nucleares tanto experimentales como industriales se examina antes y despues de su uso El combustible fresco suele pasar varios controles en los que se verifica que sus caracteristicas fisicas coinciden con las indicadas en las especificaciones tecnicas Estos controles son siempre no destructivos utilizando tecnicas de metrologia ultrasonidos o inspecciones visuales entre otras tecnicas En el caso del combustible gastado los examenes se realizan en las denominadas celdas calientes recintos con gruesas paredes para proteger a las personas de las radiaciones que emite el combustible irradiado dada la intensidad de las radiaciones que emite En este caso se utilizan metodos destructivos y no destructivos 5 6 En el combustible gastado se estudian los siguientes efectos Hinchado 7 Liberacion de gases de fision Los productos de fision mas volatiles que estan atrapados dentro del dioxido de uranio pueden liberarse Agrietado del combustible En los ciclos termodinamicos calentamientos y enfriamientos producen tensiones en el combustible Estas pueden producir grietas que tienden a ir del centro a los bordes formando un patron en forma de estrella Estos ensayos se utilizan para comprobar que el combustible es seguro y ademas efectivo Tras accidentes que han supuesto danos en el nucleo se suele investigar el combustible para estudiar su comportamiento Comportamiento del combustible nuclear de fision en accidentes Editar Se han realizado numerosas investigaciones que permiten conocer con precision los fenomenos y condiciones que pueden producir la falla de un combustible en un reactor y la posterior liberacion de material radiactivo desde el mismo Solo los productos de fision mas volatiles se podrian liberar en caso de que un accidente produjera danos graves en el nucleo En Francia existe una instalacion donde se puede simular la fusion de combustible en condiciones controladas Como parte del programa de investigacion PHEBUS se realizaron experimentos en los que combustibles alcanzaron temperaturas superiores a las de funcionamiento analizando su comportamiento y los mecanismos de falla de la vaina que contiene al combustible En este experimento ademas se estudio la liberacion de radioisotopos desde el combustible 8 Referencias Editar El ciclo del combustible nuclear Asociacion Nuclear Mundial en ingles Enriquecimiento de Uranio Centro Nacional de Energia Atomica de Argentina Ventajas y desventajas de los diferentes tipos de combustibles en ingles Fluoruros fundidos como combustible para reactores nucleares R C Briant y A M Weinberg Oak Ridge Laboratory Nuclear Science and Engineering pp 797 803 1957 en ingles Examenes post irradiacion del combustible nuclear MOX ATR FMDP Oak Ridge Laboratory en ingles Archivado desde el original el 10 de julio de 2007 Consultado el 21 de abril de 2007 Examenes post irradiacion de elementos de combustible U3SiX Al construidos e irradiados en Argentina Argonne National Laboratory en ingles Analisis del hinchado del combustible nuclear Documento de laNASA en ingles 1 Archivado el 20 de noviembre de 2006 en Wayback Machine Experimento Phebus Informe anual del ITU correspondiente al 2004 Archivado el 20 de noviembre de 2006 en Wayback Machine Enlaces externos Editar en ingles Combustible PWR de combustible 543 NEI Imagen de un conjunto de combustible PWR Imagen mostrando el manejo de un haz PWR Mitsubishi nuclear fuel Co Combustible BWR Imagen del ensamblaje de un BWR enlatado Descripcion fisica del combustible LWR Enlaces a fotos de BWR desde la pagina web de nuclear tourist Combustible CANDU Imagenes del combustible CANDU y FAQ Nociones basicas del diseno del CANDU La evolucion de los ciclos del combustible CANDU y su uso potencial para contribuir a la paz mundial Curso de gestion del combustible CANDU Especificaciones del combustible y del reactor CANDU Nuclear Tourist Barras y haces de combustible Candu Combustible TRISO Descripcion del combustible TRISO Examen no destructivo de las capsulas de combustible nuclear de SiC utilizando la tecnica de microfotografia con rayos X fluorescentes Proceso del combustible compacto GT MHR Descripcion del combustible TRISO para guijarros pebbles Pagina Web de LANL mostrando varios pasos de la produccion del combustible TRISOCombustible CERMET Una revision de 50 anos de los programas de desarrollo de combustible nuclear espacial Combustible Cermet nuclear basado en el torio fabricacion de micro esfera sinterizada por secado de difusion El uso del combustible CERMET basado en el molibdeno para la gestion de actinidos en LWRCombustible del tipo placa Lista de reactores en el INL e imagen de un nucleo de ATR Combustible de placa ATRCombustible TRIGA Web de combustibles General Atomics TRIGACombustibles de reactores espaciales Conferencia Nuclear del Espacio 2005 SNC 05 Combustible de fusion Presentacion de combustibles de fusion avanzados Datos Q194523 Multimedia Nuclear fuelsObtenido de https es wikipedia org w index php title Combustible nuclear amp oldid 135700864, wikipedia, wiki, leyendo, leer, libro, biblioteca,

      español

      , española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos