fbpx
Wikipedia

Química supramolecular

La química supramolecular es la rama de la química que estudia las interacciones supramoleculares, esto quiere decir entre moléculas. Su estudio está inspirado por la biología y está basada en los mecanismos de la química orgánica e inorgánica sintética.

La química supramolecular estudia el reconocimiento molecular y la formación de agregados supramoleculares lo que nos da paso para comprender e interfasear el mundo biológico, los sistemas complejos y la nanotecnología. La química Supramolecular se define como:

"La química supramolecular es la química de los enlaces intermoleculares, cubriendo las estructuras y funciones de las entidades formadas por asociación de dos o más especies químicas" J-M- Lehn[1]

"La química supramolecular se define como la química más allá de la molecular, una química de interacciones intermoleculares diseñadas" F. Vögtle[2]

Los agregados supramoleculares que son objeto de estudio por la química supramolecular son muy diversos, pudiendo abarcar desde sistemas biológicos donde intervienen un número elevado de moléculas que se organizan espontáneamente formando estructuras más grandes,[3]​ como monocapas, bicapas, micelas,[4]complejos enzimáticos y lipoproteínas, hasta conjuntos de pocas moléculas que sufren un fenómeno de autoensamblaje molecular,[5]​ como los catenanos, rotaxanos, poliedros moleculares y otras arquitecturas afines.

Historia

El concepto de química supramolecular fue definido por primera vez en 1978 por el Premio Nobel Jean-Marie Lehn, que la define como “la química de los enlaces intermoleculares” pero antes se realizaron diversos trabajos que llevaron al desarrollo de la química supramolecular a como la conocemos hoy día.

En 1810 Humphry Davy demuestra que el cloro es un elemento químico y le da ese nombre debido a su color amarillo verdoso. En 1823 los estudios en cloro continúan y Michael Faraday diseña la fórmula de los hidratos de cloro. En 1891 los científicos Villiers y Hebd desarrollan una investigación donde descubren las ciclodextrinas, las cuales son consideradas como moléculas anfitrionas; estos conceptos dieron paso a las contribuciones más importantes como la que realiza Alfred Werner en 1893 introduciendo el término de química de coordinación, concepto básico para entender la química supramolecular.

En 1894 el premio Nobel Hermann Emil Fischer desarrolló las raíces filosóficas de la química supramolecular, sugirió que las interacciones enzima-sustrato se asemejan a una interacción "cerradura-llave", principio fundamental del reconocimiento molecular y la química hospedador-huésped (del inglés host-guest) . A principios del siglo XX los enlaces no covalentes se entendieron con más detalle, como el enlace de hidrógeno que describieron Latimer y Rodebush en 1920.

El uso de estos principios condujo a una mayor comprensión de la estructura de las proteínas y otros procesos biológicos. Por ejemplo, el importante avance que permitió la elucidación de la estructura de doble hélice del ADN se produjo cuando se vio que hay dos cadenas distintas de nucleótidos conectadas a través de enlaces de hidrógeno. El uso de enlaces no covalentes es esencial para la replicación, ya que permiten que las hebras se separen y se utilizan para nueva plantilla de ADN de doble cadena. Al mismo tiempo, los químicos empezaron a reconocer y estudiar estructuras sintéticas sobre la base de interacciones no covalentes, tales como micelas y microemulsiones.

Con el tiempo, los químicos fueron capaces de tomar estos conceptos y aplicarlos a los sistemas sintéticos. El avance se produjo en la década de 1960 con la síntesis de los éteres corona por Charles J. Pedersen. A raíz de este trabajo, otros investigadores como Donald James Cram, Jean-Marie Lehn y Fritz Vögtle continuaron trabajando con esta química a lo largo de la década de 1980, lo que les permitió ganar el Premio Nobel de Química en 1987.

Bottom-Up

Los sistemas supramoleculares funcionan particularmente debido al arreglo de sus componentes usando moléculas como bloques básicos, del mismo modo se pueden crear moléculas independientes con diferentes especies de átomos para crear moléculas complejas de las cuales se usaran para crean un sistema con propiedades sobre la base de las de la moléculas.

Las únicas alternativas que se han encontrado para crear sistemas complejos son por medios bottom-up el cual ofrece una gran diversidad de métodos de los cuales se siguen investigando para crear nano estructuras de las cuales no se podrían comprender si usamos medios top-bottom debido a la dificultad de la manipulación a esa escala.

Las fuentes de las cuales podemos asegurarnos de que la aproximación bottom-up up es confiable se encuentran principalmente en sistemas biológicas o que se originan en la naturaleza. Estos sistemas no utilizan interacciones covalentes por lo que sus costos de entropía de formación son prácticamente nulos al ser la mayoría de las interacciones reversibles, la forma de crear nano estructuras sintéticas imitando sistemas biológicos para que puedan reconocer componentes de moléculas es los objetivos que se quieren alcanzar con la aproximación bottom-up.

Reconocimiento Molecular

El reconocimiento molecular explica las uniones que se desarrollan de manera específica en una molécula hacia su receptor molecular. Las moléculas que logran un reconocimiento eficiente y selectivo se llaman moléculas anfitrión (host) las cuales pueden ser compuesto cíclicos llamados macrocilos que tienen cavidades de tamaños específicos en su interior, útiles para albergar a otras moléculas más pequeñas definidas como huéspedes (huest)[6]

Este reconocimiento molecular está relacionado con los procesos catalíticos ya sea mediante el uso de catalizadores sintéticos o naturales como las enzimas que formaran compuestos supramoleculares en conjunto con el sustrato a través de tres pasos esenciales que son:

  • Reconocimiento molecular entre catalizador y sustrato para formar un complejo, se define la selectividad del catalizador.
  • La velocidad de reacción se acelera mientras que la energía de activación disminuye con el fin de estabilizar la reacción y definir el estado de transición.
  • Regeneración del catalizador con la liberación del productor dando inicio a un nuevo ciclo, donde la velocidad definirá el número de ciclos catalíticos a realizar por unida de tiempo.

Un concepto que explica de manera concreta el reconocimiento molecular es el modelo de llave-cerradura propuesto en 1884 por el bioquímico alemán E.Fisher

Auto ensamblaje.

Algunos de los sistemas biológicos que utilizan el autoensamblaje más conocidos es la replicación del ADN en una estructura con doble hélices unida por puentes de hidrógeno donde las interacciones están hechas por 4 moléculas que se unen 2 a 2: Guanina (G) con Citosina (C) formando 3 puentes de hidrógeno y Adenina (A) con Tiamina (T) formando 2 puentes de hidrógeno, creando las interacciones de unión entre las 2 hélices de ADN.

En esta estructura solo depende de la afinidad de las moléculas para que se creen los puentes de hidrógeno siendo nada efectivo las diferentes combinación entre las moléculas para que se unan como lo hacen con la combinación convencional. Los errores que podrían ocurrir en la formación de la estructura del ADN son altamente nulos ya que la entropía de formación impide que las moléculas se acomoden en combinaciones equivocadas, por lo que nos proporcionaría una modalidad mucho más eficiente, óptima y rápida para crear sistemas nano estructurados en el futuro para que no existan costos por error en su fabricación.

Metalosupramolecular

Los compuestos de coordinación son usados en la química inorgánica para poder crear estructuras compuestas de una parte orgánica con algún ion o metal el cual queden a fines sus propiedades para crear nano estructuras, estos sistemas dependen de los factores en los cuales son sintetizados ya que al varias sus dimensiones general grandes cambios en la forma en la cual van a interactuar con moléculas que se les este dispuestas a cambiar.

Estas estructuras son generalmente polígonos en dos dimensiones donde el tamaño y el Ángulo en donde los ligantes hace conexión con otras estructuras que harán al sistema óptimo para las moléculas que tengan afinidad con esta, de esta forma la selectividad tendrá un espectro específico con posibles especies que estén en su entorno.

Rejillas

Involucran una serie de componentes paralelos en una orientación ortogonal en otra serie de iones metálicos ligandos en una sección cruzada creando una red conforme se le va agregando más iones a las rejillas.

Entropía de formación

Los costos de entropía se toman en consideración a la hora de crear nano estructuras para su arreglo y agregación adecuado y no sean inestables del cual dependen sus grados de libertad y se pueden estimar de diferentes formas en diferentes tipos de agregación.

Entropía de traslación

La magnitud de la entropía de traslación refleja la posibilidad de diferentes arreglos en una molécula en un espacio determinado pero en entornos líquidos donde igual se puede aplicar para gases, sin embargo al ser un gas su entropía será mucho mayor a la de un líquido por lo que se dificulta más la predicción de la entropía de formación en dichas estructuras en modelación computacional.

Entropía rotacional

Se define la densidad molecular de una molécula como su masa molecular en KG/molécula dividida por su volumen en compuestos orgánicos compuestos principalmente de carbón, nitrógeno y oxígeno dadas en estructuras esféricas en solución, la agregación de otros componentes dependerá de la inercia en la cual la molécula girara en una solución.

Entropía vibracional

La frecuencia de las vibraciones a las que se puede someter una molécula puede tener efectos en el momento de agregar otras moléculas, algunas de ellas necesitas de vibraciones para poder agregarse correctamente en los sitios adecuados de otras, es por eso que las altas frecuencias aumentaras la entropía y en algunos casos puede ser favorable para la vinculación o agregación, por otro lado las bajas frecuencias igual favorecerán sistemas que necesiten de una vibración tenue.

Interacciones supramoleculares

 
Fuerzas de las interacciones no covalentes

Las interacciones supramoleculares nos sirven para entender como es que las especies se mantiene unidas mediante una variedad de interacciones no covalentes donde su fuerza va de 2-300 kJmol-1. Las interaccione no covalentes utilizadas para la formación de sistemas supramoleculares son:

Ión-Ión: Esta interacción se presenta cuando dos especies con cargas opuestas están en contacto, por lo que no presentan dependencia de la direccionalidad. Un aspecto que afecta la estabilidad de la interacción es la fuerza iónica del medio, la cual puede ser analizada empleando la ecuación de DebyeHückel. Para el desarrollo de estas interacción se suele utilizar disolventes con constantes dieléctricas bajas como el cloroformo, acetonitrilo o diclorometano y evitar el agua en el medio ya es altamente competitivo.

ión-dipolo: Estas interacciones se establecen entre una especie neutra y otra que estará cargada por lo que mostraran dependencia a la orientación del dipolo de tal manera que cuando la molécula orienta su dipolo hacia la especie cargada resulta una fuerza de enlace de alrededor de 5-200 kJmol-1

En la química Supramolecular existen sistemas que explican esta interacción como los complejos formados por éteres corona con diferentes derivados de amonio, donde la interacción se establecerá entre los oxígenos del éter y el hidrógeno del huésped que estará cargado positivamente y la complejación de los anfitriones con metales alcalinos y alcalinos-térreos. También se ha observado al formación de rotaxanos a través de ciclodextrinas utilizadas como macrocilos y como ejes los cationes bipiridino.

Dipolo-dipolo: Existen dos tipos de interacciones dipolo-dipolo, una es cuando las dos moléculas adyacentes alinean sus dipolos donde solo es necesario que solo una de las moléculas se oriente adecuadamente, el otro tipo es cuando simultáneamente ambas moléculas se alinean sus dos momentos dipolares, en este caso se es dependiente de la direccionalidad. Los sistemas que más frecuentemente se detectan como formadores de estas interacciones son neutros polares y por lo regular son los que presentan grupos carbonilo, nitro y aminas, como por ejemplo C=O/C=O,C=O/CN,

Dentro de estas interacciones existen tres tipos de asociaciones entre dipolos, las cuales surgen a partir de las fluctuaciones de la distribución de electrones entre dos especies que se encuentran cercanas; estas interacciones van a mostrar dependencia a la polarización de las moléculas, siendo las más polarizables las que forman las interacciones fuertes.

La interacción de Keersom es cuando las moléculas se encuentran interactuando a ciertas distancias poseen dipolos permanentes por lo que se alinean a esos dipolos de manera atractiva, por otro lado cuando una molécula con un dipolo permanente induce un dipolo en otra cercana se conocen como interacción de Debye y por último la interacción entre dos moléculas no polares pero polarizables es conocida como interacción de London. En la química supramolecular, más específicamente en sistemas anfitrión-huésped, estas interacciones juegan roles importantes.

 
Representación de Puente de Hidrógeno

La química supramolecular se basa en los comportamientos biológicos para imitarlos y desarrollar técnicas de reacción. Los enlaces π- π son de gran importancia pues pueden observarse en el apilamiento de proteínas y la estructura del ADN.

Esta interacción ocurre entre especies donadoras parcialmente negativas con otras aceptoras de protones y un hidrógeno localizado entre ellas. Se considera que los puentes de hidrógenos con geometría lineal son más fuertes por lo que el requisito de direccionalidad lo hace selectivo al momento de formar complejos por lo que dentro de la química Supramolecular se considera la inteacción que será responsable de un ensamble organizado y estable pero es difícil hacerlo en un sistema acuoso dado que el agua es un excelente donador y aceptor de puentes de hidrógeno

Agregados supramoleculares

A modo de ejemplo:

Véase también

Referencias

  1. Lehn, J.-M (2002). Toward complex matter: Supramolecular chemistry. PMID 11929970. doi:10.1073/pnas.072065599. 
  2. Vögtle, Fritz (15 de junio de 2000). Dendrimers II: Architecture, Nanostructure and Supramolecular Chemistry (en inglés). Springer Science & Business Media. ISBN 9783540670971. Consultado el 30 de noviembre de 2015. 
  3. Arquitecturas supramoleculares generadas por nuevos derivados de ciclodextrinas y ácidos biliares. Antelo Queijo, Álvaro Editor Universidad de Santiago de Compostela. Pág. 7
  4. Estudio estructural y dinámico de sistemas organizados mediante sondas fluorescentes. Reija Otero, Belén. Universidad de Santiago de Compostela. Pág. 46
  5. Estudios sobre el comportamiento de complejos metálicos con bases de Schiff compartimentales en la obtención de compuestos polinucleares. Ocampo Prado, Noelia. Universidad de Santiago de Compostela. Pág. 4
  6. Katsuhiko, Ariaga (2009). Supramolecular chemistry, fundamentals and applications.. Springer. 

Enlaces externos

  •   Wikimedia Commons alberga una categoría multimedia sobre Química supramolecular.
  •   Datos: Q756449
  •   Multimedia: Supramolecular chemistry

química, supramolecular, química, supramolecular, rama, química, estudia, interacciones, supramoleculares, esto, quiere, decir, entre, moléculas, estudio, está, inspirado, biología, está, basada, mecanismos, química, orgánica, inorgánica, sintética, química, s. La quimica supramolecular es la rama de la quimica que estudia las interacciones supramoleculares esto quiere decir entre moleculas Su estudio esta inspirado por la biologia y esta basada en los mecanismos de la quimica organica e inorganica sintetica La quimica supramolecular estudia el reconocimiento molecular y la formacion de agregados supramoleculares lo que nos da paso para comprender e interfasear el mundo biologico los sistemas complejos y la nanotecnologia La quimica Supramolecular se define como La quimica supramolecular es la quimica de los enlaces intermoleculares cubriendo las estructuras y funciones de las entidades formadas por asociacion de dos o mas especies quimicas J M Lehn 1 La quimica supramolecular se define como la quimica mas alla de la molecular una quimica de interacciones intermoleculares disenadas F Vogtle 2 Los agregados supramoleculares que son objeto de estudio por la quimica supramolecular son muy diversos pudiendo abarcar desde sistemas biologicos donde intervienen un numero elevado de moleculas que se organizan espontaneamente formando estructuras mas grandes 3 como monocapas bicapas micelas 4 complejos enzimaticos y lipoproteinas hasta conjuntos de pocas moleculas que sufren un fenomeno de autoensamblaje molecular 5 como los catenanos rotaxanos poliedros moleculares y otras arquitecturas afines Indice 1 Historia 2 Bottom Up 3 Reconocimiento Molecular 4 Entropia de formacion 4 1 Entropia de traslacion 4 2 Entropia rotacional 4 3 Entropia vibracional 5 Interacciones supramoleculares 6 Agregados supramoleculares 7 Vease tambien 8 Referencias 9 Enlaces externosHistoria EditarEl concepto de quimica supramolecular fue definido por primera vez en 1978 por el Premio Nobel Jean Marie Lehn que la define como la quimica de los enlaces intermoleculares pero antes se realizaron diversos trabajos que llevaron al desarrollo de la quimica supramolecular a como la conocemos hoy dia En 1810 Humphry Davy demuestra que el cloro es un elemento quimico y le da ese nombre debido a su color amarillo verdoso En 1823 los estudios en cloro continuan y Michael Faraday disena la formula de los hidratos de cloro En 1891 los cientificos Villiers y Hebd desarrollan una investigacion donde descubren las ciclodextrinas las cuales son consideradas como moleculas anfitrionas estos conceptos dieron paso a las contribuciones mas importantes como la que realiza Alfred Werner en 1893 introduciendo el termino de quimica de coordinacion concepto basico para entender la quimica supramolecular En 1894 el premio Nobel Hermann Emil Fischer desarrollo las raices filosoficas de la quimica supramolecular sugirio que las interacciones enzima sustrato se asemejan a una interaccion cerradura llave principio fundamental del reconocimiento molecular y la quimica hospedador huesped del ingles host guest A principios del siglo XX los enlaces no covalentes se entendieron con mas detalle como el enlace de hidrogeno que describieron Latimer y Rodebush en 1920 El uso de estos principios condujo a una mayor comprension de la estructura de las proteinas y otros procesos biologicos Por ejemplo el importante avance que permitio la elucidacion de la estructura de doble helice del ADN se produjo cuando se vio que hay dos cadenas distintas de nucleotidos conectadas a traves de enlaces de hidrogeno El uso de enlaces no covalentes es esencial para la replicacion ya que permiten que las hebras se separen y se utilizan para nueva plantilla de ADN de doble cadena Al mismo tiempo los quimicos empezaron a reconocer y estudiar estructuras sinteticas sobre la base de interacciones no covalentes tales como micelas y microemulsiones Con el tiempo los quimicos fueron capaces de tomar estos conceptos y aplicarlos a los sistemas sinteticos El avance se produjo en la decada de 1960 con la sintesis de los eteres corona por Charles J Pedersen A raiz de este trabajo otros investigadores como Donald James Cram Jean Marie Lehn y Fritz Vogtle continuaron trabajando con esta quimica a lo largo de la decada de 1980 lo que les permitio ganar el Premio Nobel de Quimica en 1987 Bottom Up EditarLos sistemas supramoleculares funcionan particularmente debido al arreglo de sus componentes usando moleculas como bloques basicos del mismo modo se pueden crear moleculas independientes con diferentes especies de atomos para crear moleculas complejas de las cuales se usaran para crean un sistema con propiedades sobre la base de las de la moleculas Las unicas alternativas que se han encontrado para crear sistemas complejos son por medios bottom up el cual ofrece una gran diversidad de metodos de los cuales se siguen investigando para crear nano estructuras de las cuales no se podrian comprender si usamos medios top bottom debido a la dificultad de la manipulacion a esa escala Las fuentes de las cuales podemos asegurarnos de que la aproximacion bottom up up es confiable se encuentran principalmente en sistemas biologicas o que se originan en la naturaleza Estos sistemas no utilizan interacciones covalentes por lo que sus costos de entropia de formacion son practicamente nulos al ser la mayoria de las interacciones reversibles la forma de crear nano estructuras sinteticas imitando sistemas biologicos para que puedan reconocer componentes de moleculas es los objetivos que se quieren alcanzar con la aproximacion bottom up Reconocimiento Molecular EditarEl reconocimiento molecular explica las uniones que se desarrollan de manera especifica en una molecula hacia su receptor molecular Las moleculas que logran un reconocimiento eficiente y selectivo se llaman moleculas anfitrion host las cuales pueden ser compuesto ciclicos llamados macrocilos que tienen cavidades de tamanos especificos en su interior utiles para albergar a otras moleculas mas pequenas definidas como huespedes huest 6 Este reconocimiento molecular esta relacionado con los procesos cataliticos ya sea mediante el uso de catalizadores sinteticos o naturales como las enzimas que formaran compuestos supramoleculares en conjunto con el sustrato a traves de tres pasos esenciales que son Reconocimiento molecular entre catalizador y sustrato para formar un complejo se define la selectividad del catalizador La velocidad de reaccion se acelera mientras que la energia de activacion disminuye con el fin de estabilizar la reaccion y definir el estado de transicion Regeneracion del catalizador con la liberacion del productor dando inicio a un nuevo ciclo donde la velocidad definira el numero de ciclos cataliticos a realizar por unida de tiempo Un concepto que explica de manera concreta el reconocimiento molecular es el modelo de llave cerradura propuesto en 1884 por el bioquimico aleman E FisherAuto ensamblaje Algunos de los sistemas biologicos que utilizan el autoensamblaje mas conocidos es la replicacion del ADN en una estructura con doble helices unida por puentes de hidrogeno donde las interacciones estan hechas por 4 moleculas que se unen 2 a 2 Guanina G con Citosina C formando 3 puentes de hidrogeno y Adenina A con Tiamina T formando 2 puentes de hidrogeno creando las interacciones de union entre las 2 helices de ADN En esta estructura solo depende de la afinidad de las moleculas para que se creen los puentes de hidrogeno siendo nada efectivo las diferentes combinacion entre las moleculas para que se unan como lo hacen con la combinacion convencional Los errores que podrian ocurrir en la formacion de la estructura del ADN son altamente nulos ya que la entropia de formacion impide que las moleculas se acomoden en combinaciones equivocadas por lo que nos proporcionaria una modalidad mucho mas eficiente optima y rapida para crear sistemas nano estructurados en el futuro para que no existan costos por error en su fabricacion MetalosupramolecularLos compuestos de coordinacion son usados en la quimica inorganica para poder crear estructuras compuestas de una parte organica con algun ion o metal el cual queden a fines sus propiedades para crear nano estructuras estos sistemas dependen de los factores en los cuales son sintetizados ya que al varias sus dimensiones general grandes cambios en la forma en la cual van a interactuar con moleculas que se les este dispuestas a cambiar Estas estructuras son generalmente poligonos en dos dimensiones donde el tamano y el Angulo en donde los ligantes hace conexion con otras estructuras que haran al sistema optimo para las moleculas que tengan afinidad con esta de esta forma la selectividad tendra un espectro especifico con posibles especies que esten en su entorno RejillasInvolucran una serie de componentes paralelos en una orientacion ortogonal en otra serie de iones metalicos ligandos en una seccion cruzada creando una red conforme se le va agregando mas iones a las rejillas Entropia de formacion EditarLos costos de entropia se toman en consideracion a la hora de crear nano estructuras para su arreglo y agregacion adecuado y no sean inestables del cual dependen sus grados de libertad y se pueden estimar de diferentes formas en diferentes tipos de agregacion Entropia de traslacion Editar La magnitud de la entropia de traslacion refleja la posibilidad de diferentes arreglos en una molecula en un espacio determinado pero en entornos liquidos donde igual se puede aplicar para gases sin embargo al ser un gas su entropia sera mucho mayor a la de un liquido por lo que se dificulta mas la prediccion de la entropia de formacion en dichas estructuras en modelacion computacional Entropia rotacional Editar Se define la densidad molecular de una molecula como su masa molecular en KG molecula dividida por su volumen en compuestos organicos compuestos principalmente de carbon nitrogeno y oxigeno dadas en estructuras esfericas en solucion la agregacion de otros componentes dependera de la inercia en la cual la molecula girara en una solucion Entropia vibracional Editar La frecuencia de las vibraciones a las que se puede someter una molecula puede tener efectos en el momento de agregar otras moleculas algunas de ellas necesitas de vibraciones para poder agregarse correctamente en los sitios adecuados de otras es por eso que las altas frecuencias aumentaras la entropia y en algunos casos puede ser favorable para la vinculacion o agregacion por otro lado las bajas frecuencias igual favoreceran sistemas que necesiten de una vibracion tenue Interacciones supramoleculares Editar Fuerzas de las interacciones no covalentes Las interacciones supramoleculares nos sirven para entender como es que las especies se mantiene unidas mediante una variedad de interacciones no covalentes donde su fuerza va de 2 300 kJmol 1 Las interaccione no covalentes utilizadas para la formacion de sistemas supramoleculares son IonicasIon Ion Esta interaccion se presenta cuando dos especies con cargas opuestas estan en contacto por lo que no presentan dependencia de la direccionalidad Un aspecto que afecta la estabilidad de la interaccion es la fuerza ionica del medio la cual puede ser analizada empleando la ecuacion de DebyeHuckel Para el desarrollo de estas interaccion se suele utilizar disolventes con constantes dielectricas bajas como el cloroformo acetonitrilo o diclorometano y evitar el agua en el medio ya es altamente competitivo ion dipolo Estas interacciones se establecen entre una especie neutra y otra que estara cargada por lo que mostraran dependencia a la orientacion del dipolo de tal manera que cuando la molecula orienta su dipolo hacia la especie cargada resulta una fuerza de enlace de alrededor de 5 200 kJmol 1En la quimica Supramolecular existen sistemas que explican esta interaccion como los complejos formados por eteres corona con diferentes derivados de amonio donde la interaccion se establecera entre los oxigenos del eter y el hidrogeno del huesped que estara cargado positivamente y la complejacion de los anfitriones con metales alcalinos y alcalinos terreos Tambien se ha observado al formacion de rotaxanos a traves de ciclodextrinas utilizadas como macrocilos y como ejes los cationes bipiridino DipolaresDipolo dipolo Existen dos tipos de interacciones dipolo dipolo una es cuando las dos moleculas adyacentes alinean sus dipolos donde solo es necesario que solo una de las moleculas se oriente adecuadamente el otro tipo es cuando simultaneamente ambas moleculas se alinean sus dos momentos dipolares en este caso se es dependiente de la direccionalidad Los sistemas que mas frecuentemente se detectan como formadores de estas interacciones son neutros polares y por lo regular son los que presentan grupos carbonilo nitro y aminas como por ejemplo C O C O C O CN De Van Der WaalsDentro de estas interacciones existen tres tipos de asociaciones entre dipolos las cuales surgen a partir de las fluctuaciones de la distribucion de electrones entre dos especies que se encuentran cercanas estas interacciones van a mostrar dependencia a la polarizacion de las moleculas siendo las mas polarizables las que forman las interacciones fuertes La interaccion de Keersom es cuando las moleculas se encuentran interactuando a ciertas distancias poseen dipolos permanentes por lo que se alinean a esos dipolos de manera atractiva por otro lado cuando una molecula con un dipolo permanente induce un dipolo en otra cercana se conocen como interaccion de Debye y por ultimo la interaccion entre dos moleculas no polares pero polarizables es conocida como interaccion de London En la quimica supramolecular mas especificamente en sistemas anfitrion huesped estas interacciones juegan roles importantes Interacciones p p de apilamiento Representacion de Puente de HidrogenoLa quimica supramolecular se basa en los comportamientos biologicos para imitarlos y desarrollar tecnicas de reaccion Los enlaces p p son de gran importancia pues pueden observarse en el apilamiento de proteinas y la estructura del ADN puente de hidrogenoEsta interaccion ocurre entre especies donadoras parcialmente negativas con otras aceptoras de protones y un hidrogeno localizado entre ellas Se considera que los puentes de hidrogenos con geometria lineal son mas fuertes por lo que el requisito de direccionalidad lo hace selectivo al momento de formar complejos por lo que dentro de la quimica Supramolecular se considera la inteaccion que sera responsable de un ensamble organizado y estable pero es dificil hacerlo en un sistema acuoso dado que el agua es un excelente donador y aceptor de puentes de hidrogenoAgregados supramoleculares EditarA modo de ejemplo Macrociclo Criptando Enzima Coloide Micela Ciclodextrina Liposoma Membrana plasmatica Lipoproteina Ribosoma Cromatina Ciclofano PodandoVease tambien Editar Portal Quimica Contenido relacionado con Quimica Autoensamblaje molecularReferencias Editar Lehn J M 2002 Toward complex matter Supramolecular chemistry PMID 11929970 doi 10 1073 pnas 072065599 fechaacceso requiere url ayuda Vogtle Fritz 15 de junio de 2000 Dendrimers II Architecture Nanostructure and Supramolecular Chemistry en ingles Springer Science amp Business Media ISBN 9783540670971 Consultado el 30 de noviembre de 2015 Arquitecturas supramoleculares generadas por nuevos derivados de ciclodextrinas y acidos biliares Antelo Queijo Alvaro Editor Universidad de Santiago de Compostela Pag 7 Estudio estructural y dinamico de sistemas organizados mediante sondas fluorescentes Reija Otero Belen Universidad de Santiago de Compostela Pag 46 Estudios sobre el comportamiento de complejos metalicos con bases de Schiff compartimentales en la obtencion de compuestos polinucleares Ocampo Prado Noelia Universidad de Santiago de Compostela Pag 4 Katsuhiko Ariaga 2009 Supramolecular chemistry fundamentals and applications Springer Enlaces externos Editar Wikimedia Commons alberga una categoria multimedia sobre Quimica supramolecular Datos Q756449 Multimedia Supramolecular chemistry Obtenido de https es wikipedia org w index php title Quimica supramolecular amp oldid 131005650, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos