fbpx
Wikipedia

Gravedad cuántica de bucles

La gravedad cuántica de bucles o de lazos (LQG, por loop quantum gravity), o también gravedad cuántica de recurrencias, es una teoría de gravedad cuántica formulada por Abhay Ashtekar en 1986,[1]​ que mezcla las teorías aparentemente incompatibles de la mecánica cuántica y la relatividad general. Como teoría de la gravedad cuántica, es el competidor principal de la teoría de las cuerdas.

Red de espín.

Aunque es una teoría aún por terminar y no se sabe aún si es correcta (se desconoce incluso su dinámica), ya ha cosechado algunos éxitos. Versiones simplificadas de esta teoría han permitido incluso explorar el estado previo al Big Bang, contándonos qué hubo “antes”[2]​. LQG es el resultado del esfuerzo por formular una teoría cuántica substrato-independiente. La teoría topológica de campos cuánticos proporcionó un ejemplo, pero sin grados de libertad locales, y solamente finitos grados de libertad globales. Esto es inadecuado para describir la gravedad, que incluso en el vacío tiene grados de libertad locales, según la relatividad general.

Idea general editar

La gravedad cuántica bucles (LQG) es teoría cuántica de campos, como tal, se formula en términos de un espacio de Hilbert, observables y amplitudes de transición. Estos objetos estaban claramente definidos ya hacia 2010. Además, como toda teoría cuántica, la LQG tiene un límite clásico. Se conjetura que el límite clásico de la LQG es la teoría de la relatividad general, aunque esto no se ha demostrado matemáticamente, hay muchos elementos de evidencia que sugieren que esto es así. Por lo tanto, la "acción efectiva de baja energía" es solo la de la relatividad general. La idea principal de la LQG es construir la teoría cuántica, es decir, el espacio de Hilbert, los operadores y las amplitudes de transición, sin expandir los campos alrededor de una métrica de referencia (una métrico minkowskiana o de otro tipo), pero manteniendo el operador asociado a la métrica misma. Los pasos concretos para escribir la teoría son simplemente escribir el espacio de Hilbert, los operadores y la expresión para las amplitudes de transición. Esto requiere relativamente pocas matemáticas y forma parte de los aspectos bien estudiados de la teoría. Los resultados de la teoría son de tres tipos:

  • En primer lugar, los operadores que describen la geometría están bien definidos y su espectro puede ser calculado. Como siempre en la teoría cuántica, esto se puede utilizar para predecir la "cuantización", es decir, la discreción, de ciertas cantidades. El cálculo se puede hacer, y el área y el volumen son discretos. por lo tanto, la teoría predice un espacio granular. Esto es solo una consecuencia directa de la teoría cuántica y la cinemática de relatividad general.
  • En segundo lugar, es fácil ver que en las amplitudes de transición nunca hay divergencias ultravioletas, y esto es bastante bueno.
  • Luego hay resultados más "concretos". Dos principales: la aplicación a la cosmología, que "predice" que hubo big bang, pero solo un rebote: Y el cálculo de la entropía del agujero negro, que es agradable, pero aún no del todo satisfactorio.

En el aspecto formal, la LGQ representa el espacio-tiempo como una fina red tejida con un número finitos de lazos o bucles cuantizados que se denomina red de espín (spin network, SN). Si incorporamos el tiempo a estas redes entonces tendremos una espuma de espín (spin foam). En otras palabras, LQG plantea que a escalas muy pequeñas (a distancia de Planck), el espacio-tiempo está formado por una red de lazos entretejidos en una especie de espuma. Defiende que el espacio no es suave y continuo sino que consta de trozos indivisibles de 10-35 metros de diámetro que constituyen una especie de "átomos" de espacio-tiempo. Estos "átomos" del espacio-tiempo forman una malla densa en cambio incesante que, en condiciones normales, nunca apreciaremos: el espaciado dentro de la malla es tan pequeño que nos parece ser un continuo. La LQG define el espacio-tiempo como una red de enlaces abstractos que conecta estos volúmenes de espacio, como si fueran los nodos enlazados de un grafo. Las secuencias de enlaces o aristas conforman lazos, los cuales constituyen los bucles de la LQG.[3]

Éxitos editar

Los éxitos principales de la LQG son:

  • Implica una cuantización no perturbativa de la geometría del espacio 3D, con operadores cuantizados de área y de volumen.
  • La LQG puede librarse de los infinitos y de las singularidades presentes en la relatividad general cuando se aplica al Big Bang. Según esta teoría, las propias unidades de espacio sufren un análogo del principio de exclusión de Pauli y no pueden ocupar el mismo estado cuántico (el mismo punto de espacio). Por tanto, existe un límite de compresión que no se puede cruzar y las singularidades simplemente no se dan nunca. Esto significa que siempre se puede predecir la evolución de un sistema de este tipo. Mientras que las herramientas estándares de la física colapsan, la LQG ha proporcionado modelos internamente consistentes de un Big Bounce en el tiempo que precedió al Big Bang. Cuando se importan las técnicas de la LQG a la cosmología se encuentra que la singularidad inicial del universo, el punto inicial del Big Bang, no es un punto especial.
  • Permite el cálculo de la entropía de agujeros negros plausibles en astrofísica. La ley de Bekenstein-Hawking indica que la entropía de un agujero negro es A/4, pero para encontrar el coeficiente 1/4 hay que fijar un parámetro libre de la teoría para acomodar este valor, y esto parece demasiado ad hoc. No obstante, los últimos resultados indican actualmente que no hay que fijar dicho parámetro para encontrar la proporcionalidad correcta entre entropía y área en un agujero negro.
  • Representa una prueba de facto de que no es necesario tener una teoría de Todo para tener un candidato razonable para una teoría cuántica de la gravedad.

Defectos editar

Los defectos principales de LQG son:

  • El principal problema de la LQG es que no se sabe si cuando revertimos el proceso de convertir la relatividad general en una teoría cuántica volvemos a obtener relatividad general.
  • No tiene todavía un cuadro de la dinámica, sino solamente de la cinemática.
  • No es todavía capaz de incorporar la física de partículas, y por tanto no puede considerarse por el momento una teoría unificadora. La LQG puede aceptar cualquier tipo de campo no gravitatorio viviendo sobre las redes de espín. Así que no hay restricciones, ni unificaciones. Sin embargo, hay una unificación sutil en la LQG, ya que en esta teoría la gravedad se formula de manera idéntica al resto de interacciones del modelo estándar de la física de partículas.
  • No es capaz todavía de recuperar el límite clásico de acuerdo con el principio de correspondencia.
  • La granularidad del espacio-tiempo predicha por la LQG resulta ser mayor que la medida gracias al satélite de la ESA INTEGRAL[4]   frente a   de la escala de Planck.

Historia editar

La relatividad general es la teoría de la gravitación publicada por Albert Einstein en 1915. Según la relatividad general, la fuerza de la gravedad es una manifestación de la geometría local del espacio-tiempo. Matemáticamente, la teoría es modelada según la geometría métrica de Riemann, pero el grupo de Lorentz de las simetrías del espacio-tiempo (un ingrediente esencial de la propia teoría de Einstein de la relatividad especial) sustituye al grupo de simetrías rotatorias del espacio. La LQG hereda esta interpretación geométrica de la gravedad, y postula que una teoría cuántica de la gravedad es fundamentalmente una teoría cuántica del espacio-tiempo.

En los años 1920 el matemático francés Élie Cartan formuló la teoría de Einstein en el lenguaje de fibrados y conexiones, una generalización de la geometría de Riemann a la cual Cartan hizo contribuciones importantes. La así llamada teoría de Einstein-Cartan de la gravedad no solamente reformuló sino también generalizó la relatividad general, y permitió espacio-tiempos con torsión así como con curvatura. En la geometría de Cartan de fibrados el concepto de transporte paralelo es más fundamental que el de distancia, la pieza central de la geometría de Riemann. Un similar desplazamiento conceptual ocurrió entre el intervalo invariante de la relatividad general de Einstein y el transporte paralelo en la teoría Einstein-Cartan.

En la década de 1960 el físico inglés Roger Penrose exploró la idea del espacio presentándose como una estructura combinatoria cuántica. Sus investigaciones dieron lugar al desarrollo de las redes de espín (Spin Networks).[5]​ Como esta era una teoría cuántica del grupo de rotaciones y no del grupo de Lorentz, Penrose desarrolló los twistores.

El 3 de noviembre de 1986 se publicaba un artículo del físico indio Abhay Ashtekar donde formuló las ecuaciones del campo de la relatividad general de Einstein usando las que han venido a ser conocidas como las variables de Ashtekar, un enfoque particular de la teoría de Einstein-Cartan con una conexión compleja.[6]​ Usando esta reformulación, él pudo cuantificar la gravedad usando técnicas bien conocidas de la teoría cuántica del campo de gauge. En la formulación de Ashtekar, los objetos fundamentales son una regla para el transporte paralelo (técnicamente, una conexión) y un marco coordenado (llamada tétrada) en cada punto.

La cuantización de la gravedad en la formulación de Ashtekar fue basada en los bucles de Wilson, una técnica desarrollada en los años 1970 para estudiar el régimen de interacción fuerte de la cromodinámica cuántica. Es interesante, en este contexto, los bucles de Wilson tenían "mal comportamiento" en el caso de la teoría estándar cuántica del campo en el espacio de Minkowski (i. e. chato), y fue así que no proporcionó una cuantización no perturbativa de QCD. Sin embargo, como la formulación de Ashtekar era substrato-independiente, era posible utilizar los bucles de Wilson como la base para la cuantización no perturbativa de la gravedad.

El 8 de diciembre de 1986, el físico uruguayo Rodolfo Gambini en un artículo publicado junto con el catalán Antonio Trías, propuso que las interacciones físicas fundamentales se podían describir como interacciones entre bucles (loops) unidimensionales.[7][8]​ Rodolfo Gambini y Jorge Pullin desarrollaron aún más la LQG en su libro de 1996 Loops, Knots, Gauge Theories and Quantum Gravity. La LQG se ha aplicado a la cosmología, los agujeros negros y las espumas de espín. Rodolfo Gambini y sus colegas han estudiado los agujeros negros cuánticos en LQG.[9]

Alrededor de 1988, Carlo Rovelli y Lee Smolin (del grupo de Ashtekar), se interesaron en la propuesta de Gambini y tuvieron una reunión en Trento, Italia, iniciando un trabajo conjunto que llevó a la gravedad cuántica de bucles (palabras del propio Gambini).[8][10][11]​ En 1990, Rovelli y Smolin obtuvieron una base explícita de los estados de la geometría cuántica, que resultaron venir etiquetados por las redes de espín de Penrose.[12]​ En este contexto, las redes de espín se presentaron como una generalización de los bucles de Wilson necesaria para ocuparse de los bucles que se intersecan mutuamente. Matemáticamente, las SN (redes de spin) se relacionan con la teoría de representación de grupos y se pueden utilizar construir invariantes de nudo tales como el polinomio de Jones.

Bucles de Wilson y redes de espín editar

El desarrollo de una teoría cuántica de campos de una fuerza da lugar invariablemente a respuestas infinitas (y por lo tanto inútiles). Los físicos han desarrollado técnicas matemáticas (renormalización) para eliminar estos infinitos que funcionan con las fuerzas nucleares fuertes y débiles y con las electromagnéticas pero no con la gravedad.

Las maneras más obvias de combinar los dos (tales como tratar la gravedad como simplemente otro campo de partículas) conduce rápidamente a lo que se conoce como el problema de la renormalización. Las partículas (portadoras) de la gravedad se atraerían y, si se agregan juntas todas las interacciones, se termina con muchos resultados infinitos que no se puedan cancelar fácilmente. Esto contrasta con la electrodinámica cuántica donde las interacciones dan lugar a algunos resultados infinitos, pero estos son lo suficientemente escasos en número como para ser eliminables via renormalización.

Cuando se fuerza a la relatividad general a ser cuántica, la LQG, como la teoría de campos, afirma que solo puedes obtener información en líneas de campo, pero en este caso las líneas son cerradas, son círculos y de ahí viene el nombre de bucle o lazo (técnicamente bucles de Wilson). Esto implica una “discretización” efectiva del espacio-tiempo, en el que ya no se puede sondear en cualquier sitio. Solo tiene sentido hablar de gravedad (y por tanto de espacio-tiempo por donde se propagan partículas y energías) en esos lazos o bucles.

Los lazos no están en ningún sitio, sino que ellos mismos definen el espacio-tiempo por el cual la materia se propaga. No tiene sentido hablar de un “espacio” en el que están los lazos, ni de lo que hay fuera de los mismos. Solo tiene sentido hablar de dichos lazos. A nivel cuántico, un estado cuántico del espacio está dado por una configuración de dichos lazos.

Pronto se descubrió que este procedimiento era ciertamente complicado a la hora de hacer cálculos, y para simplificarlos se utilizó las redes de espín (fueron introducidos por Roger Penrose para dar una definición cuántica del espacio).

Las redes de espín son simplemente grafos, conjunto de líneas unidas en nodos, donde cada línea del grafo tiene una etiqueta que puede tomar valores 1/2, 1, 3/2, 2, 5/2,… Estas líneas tienen una orientación, es decir, podemos decir si la línea “entra” a un nodo o “sale” del nodo dado. Además, los nodos también tienen información. En ellos hay un objeto matemático que transforma los valores de las etiquetas entrantes en los valores de las etiquetas salientes, correspondientes a las líneas entrantes y salientes de un nodo dado. Esta es una característica esencial de la teoría. El punto esencial es que dado un conjunto de lazos siempre se puede encontrar una red de espín equivalente. Los estados cuánticos del espacio-tiempo, o de la geometría siguiendo la teoría de la relatividad general, vienen dados por una red de espín (conjunto de líneas unidas en los nodos y las etiquetas de cada línea). Es por eso que a veces se dice que las redes de espín representan un estado cuántico de la geometría y por eso a la LQG también se le llamar Geometría Cuántica.

El desarrollo de una teoría cuántica de la gravedad debe lograrse por diferentes medios que los que fueron utilizados para las otras fuerzas. En la LQG, la textura del espacio-tiempo es una red espumosa de lazos que obran recíprocamente y que son descritos matemáticamente por redes de espín. Estos lazos son de alrededor de 10-35 metros de tamaño, llamada Escala de Planck. Los lazos se anudan juntos con la formación de bordes, superficies y vértices, al igual que las pompas de jabón ensamblándose juntas. Es decir, el espacio-tiempo mismo está cuantificado. El dividir un lazo, si se logra, forma dos lazos, cada uno con el tamaño original. En LQG, las redes de espín representan los estados cuánticos de la geometría del espacio-tiempo relativo. Mirado de otra manera, la teoría de la relatividad general de Einstein es (como Einstein predijo) una aproximación clásica de una geometría cuantizada.

Características editar

Límite clásico editar

Cualquier teoría exitosa de la gravedad cuántica debe proporcionar predicciones físicas que emparejen de cerca la observación conocida, y reproducir los resultados de la teoría de campos cuánticos y de la gravedad. Hasta la fecha la teoría de Einstein de la relatividad general es la teoría más acertada de la gravedad. Se ha mostrado que cuantificar las ecuaciones del campo de la relatividad general no recuperará necesariamente esas ecuaciones en el límite clásico. Sigue siendo confuso si LQG da los resultados que emparejan la relatividad general en el dominio de las bajas energías, macroscópico y astronómico. Hasta la fecha, LQG ha demostrado dar resultados concordantes con relatividad general en 1+1 y 2+1 dimensiones. Hasta la fecha, no se ha demostrado que LQG reproduzca gravedad clásica en 3+1 dimensiones. Así, sigue siendo confuso si LQG combina con éxito la mecánica cuántica con relatividad general.

Cosmología cuántica editar

Un principio importante en la cosmología cuántica al cual LQG adhiere, es que no hay observadores exteriores al universo. Todos los observadores deben ser una parte del universo que están observando. Sin embargo, porque los conos de luz limitan la información que está disponible para cualquier observador, la idea platónica de verdades absolutas no existe en un universo de LQG. En su lugar, existe una consistencia de verdades en que cada observador, si es veraz, reportará resultados consistentes pero no necesariamente iguales.

Otro principio importante gira alrededor de la constante cosmológica, que es la densidad de la energía inherente a un vacío. Ha habido propuestas para incluir una constante cosmológica positiva en LQG que implicaba un estado designado como el estado de Kodama (por Hideo Kodama). Algunos han argumentado, por analogía con otras teorías, que este estado es no-físico. Este tema sigue sin resolverse.

Big Bang editar

La LQG se ha asociado a un modelo en el que el Big Bang es precedido por una o varias fases previas de colapso y expansión, en una especie de 'rebote' llamado Big Bounce (Gran Rebote). LQG permite hacer cálculos y computar lo que puede haber pasado antes del Big Bang, e indican de forma rotunda que antes del Big Bang hubo otro universo que se contrajo y luego, al rebotar, dio lugar al nuestro. Según este modelo cosmológico simplificado basado en LQG, si retrocedemos en el tiempo, el Universo se hace cada vez más denso hasta que no se puede comprimir más, pasándose luego a una fase de expansión hacia atrás en el tiempo (colapso en el sentido del tiempo habitual).

Los "átomos" del espacio-tiempo forman una malla densa que cambia incesantemente. A gran escala, su dinámica da lugar a una evolución del universo conforme a lo que dicta la relatividad general. Pero cuando el espacio-tiempo está abarrotado de energía, como ocurrió en el Big Bang, la estructura fina del espacio-tiempo constituye un factor a tener en cuenta y las predicciones de la LQG difieren de las de la relatividad general. La gravedad, en condiciones normales, es una fuerza de atracción. Pero, según se desprende de la LQG, la estructura atómica del espacio-tiempo modifica la naturaleza de la gravedad a densidades de energía muy altas y la convierte en repulsiva.[13]​ Un espacio cuántico tiene una capacidad finita de almacenar energía, al igual que una esponja porosa tiene una capacidad finita de absorber agua. Cuando las densidades energéticas son demasiado grandes, aparecen las fuerzas de repulsión. La relatividad general considera, por el contrario, que el espacio, además de ser continuo, puede almacenar cantidades ilimitadas de energía abriendo la puerta a la existencia de singularidades (como los agujeros negros o el Big Bang). Debido al cambio cuántico gravitatorio del balance de fuerzas, en gravedad de bucles no puede aparecer ninguna singularidad, ningún estado de densidad infinita.[13]​ Según este modelo, la materia del universo temprano tuvo una densidad que, aunque enorme, era finita y equivalente a un billón de soles concentrados en el tamaño de un protón. En situaciones tan extremas, la gravedad actuó de modo repulsivo y expandió el espacio. A medida que la densidad se relajaba, la gravedad pasó a ser la fuerza de atracción que todos conocemos. Esta gravedad repulsiva inicial provocó la expansión del espacio a un ritmo acelerado, tal como predicen las teorías de la inflación, las cuales, hoy por hoy, añaden la inflación de forma ad hoc para ajustarse a las observaciones.[13]

Por tanto, nuestro universo sería el resultado del rebote de un universo previo que colapsó bajo los efectos de la gravedad sin pasar por una singularidad. Las preguntas que surgen son muchas: ¿qué era ese universo? ¿era igual que el nuestro pero colapsando? ¿de donde surgió? ¿tiene nuestro universo memoria sobre el universo previo? Todas estas preguntas se están investigando y no hay una respuesta clara. Quizás el estudio en detalle de la radiación cósmica de fondo nos dé pistas al respecto y nos diga si esta teoría va por buen camino. Permitiría someter esta teoría al escrutinio experimental, y corroborar o refutar el modelo de evolución del universo que se infiere de la LQG. Posiblemente esta teoría cosmológica basada en LQG, que se conoce como LQC, afecte a la teoría inflacionaria, y por tanto podrá ser discriminada por observaciones cosmológicas que cada día son más precisas.

Contraste con la teoría de supercuerdas editar

La LQG es una hipótesis más conservadora que la teoría de supercuerdas que, partiendo de las ecuaciones de Einstein, también intenta fusionar las teorías de la relatividad y la mecánica cuántica, aunque de una forma menos espectacular. La LQG no considera más dimensiones que las habituales y trata de incorporar la relatividad general. Conserva muchas características de la relatividad general y a la vez cuantiza el propio espacio-tiempo.

En la teoría de supercuerdas, hay 10500 universos posibles que se dan como resultado de explicar los aparentes valores arbitrarios del universo, tales como la longitud de Planck o la masa y carga del electrón.

Por otro lado, la teoría de supercuerdas se desarrolla en un substrato espacio-temporal fijo, y no atiende a este substrato para explicar el desarrollo y comportamiento de las cuerdas. La LQG sí lo hace y por ello resulta un modelo que contiene, de una forma mucho más completa, los aspectos cruciales sobre materia, energía, espacio y tiempo que han de conjugarse para crear una teoría del todo. Dicho de otro modo: la teoría de supercuerdas desarrolla su base en un marco espacio-temporal fijo y que le es ajeno (es substrato-dependiente). La LQG incluye ese marco en su modelo teórico (es substrato-independiente).

Estas teorías cuánticas de la gravedad surgieron desde dos puntos de vista de la física teórica actual. La teoría de supercuerdas emergió de la comunidad de la física de partículas y fue formulada originalmente como una teoría que dependía de un espacio-tiempo de base, plano o curvado, que obedecía las ecuaciones de Einstein. Ahora se sabe que solo es una aproximación de una teoría subyacente misteriosa (Teoría M), todavía no bien formulada y que, por tanto, puede ser substrato-independiente o puede no serlo. Por el contrario, la LQG fue formulada con independencia del sustrato. Sin embargo, es difícil demostrar que la gravedad clásica emerge de la teoría.

Por esta razón, la LQG y la teoría de supercuerdas parecen complementarias. La teoría de supercuerdas recupera fácilmente la gravedad clásica, pero carece de una descripción fundamental del substrato espacio-temporal. La LQG es una teoría independiente del substrato, pero el límite clásico todavía no se ha probado manejable. Esto ha hecho creer a algunos físicos teóricos que la LQG y la teoría de supercuerdas pueden ser dos aspectos de una misma teoría subyacente y cuya síntesis conducirá a una teoría completa de la gravedad cuántica. Por el momento, tan solo es una especulación con poca evidencia, pero ahora existe una esperanza para la unificación de ambas teorías. Hasta hace poco se creía que la LQG no podía ser formulada en un espacio-tiempo con un número de dimensiones mayores de cuatro. Pero en 2011, se descubrió una versión de la teoría que permite extender las técnicas de LQG a un número arbitrario de dimensiones (Supergravedad cuántica de bucles, o LQSG por Loop Quantum Supergravity).[14]​ Además permite introducir la supersimetría en este contexto en dimensiones extra. Esto puede ser útil para ver si la LQG y la teoría de supercuerdas tienen algún punto en común.

Posibles pruebas experimentales editar

LQG puede hacer hipótesis que pueden ser experimentalmente verificables en el futuro cercano.

La trayectoria tomada por un fotón con una geometría discreta del espacio-tiempo sería diferente de la trayectoria tomada por el mismo fotón a través de un espacio-tiempo continuo. Normalmente, tales diferencias deben ser insignificantes, pero Giovanni Amelino-Camelia aclaró que los fotones que han viajado desde galaxias distantes pueden revelar la estructura del espacio-tiempo. LQG predice que los fotones más energéticos deben viajar levemente más rápido que los fotones menos energéticos. Este efecto sería demasiado pequeño para observarlo dentro de nuestra galaxia. Sin embargo, la luz que nos alcanza como explosiones de rayos gamma desde otras galaxias deben manifestar desplazamiento espectral variable en el tiempo. Es decir las explosiones gammas distantes deben aparecer más azuladas al comenzar y terminar más rojizas. Alternativamente, los fotones altamente enérgicos de ráfagas de rayos gamma deben llegar algo más pronto que los menos enérgicos. Los físicos de LQG aguardan con impaciencia resultados de los experimentos espaciales de espectrometría de rayos gamma -- una misión lanzada en febrero de 2007.

Lista de investigadores teóricos editar

Teóricos de LQG:

Véase también editar

Referencias editar

  1. A. Ashtekar (1986). New variables for classical and quantum gravity, Phys. Rev. Lett., 57, 2244-2247.
  2. Bojowald, Martin (2010). Antes del Big Bang (1.ª edición). Barcelona: Debate. p. 368. ISBN 9788483068489. Consultado el 2 de agosto de 2015. 
  3. Carlos Rovelli (2003). Loop quantum gravity. Quantum Gravity, Physics World.
  4. «Integral challenges physics beyond Einstein». www.esa.int (en inglés). Consultado el 3 de abril de 2021. 
  5. R. Penrose (1971). Angular momentum; an approach to combinatorial space time, in Quantum Theory and Beyond, ed. T. Bastin, Cambridge University Press, Cambridge.
  6. Ashtekar, Abhay (3 de noviembre de 1986). «New Variables for Classical and Quantum Gravity». Physical Review Letters 57 (18): 2244-2247. doi:10.1103/PhysRevLett.57.2244. Consultado el 21 de agosto de 2022. 
  7. Gambini, Rodolfo; Trias, Antoni (8 de diciembre de 1986). «Gauge dynamics in the C-representation». Nuclear Physics B (en inglés) 278 (2): 436-448. ISSN 0550-3213. doi:10.1016/0550-3213(86)90221-X. Consultado el 21 de agosto de 2022. 
  8. . El Pais. 21 de agosto de 1998. Archivado desde el original el 19 de diciembre de 2011. Consultado el 22 de agosto de 2022. 
  9. Gambini, Rodolfo; Pullin, Jorge. Loops, Knots, Gaugue Theories and Quantum Gravity. Cambridge monographs, on matemathical physics. 
  10. Rovelli, Carlo; Smolin, Lee (5 de septiembre de 1988). «Knot Theory and Quantum Gravity». Physical Review Letters 61 (10): 1155-1158. doi:10.1103/PhysRevLett.61.1155. Consultado el 21 de agosto de 2022. 
  11. «Si los argentinos tienen a Maldacena, los uruguayos tienen a Gambini». La Ciencia de la Mula Francis. 14 de junio de 2009. Consultado el 21 de agosto de 2022. 
  12. Rovelli, Carlo; Smolin, Lee (5 de febrero de 1990). «Loop space representation of quantum general relativity». Nuclear Physics B (en inglés) 331 (1): 80-152. ISSN 0550-3213. doi:10.1016/0550-3213(90)90019-A. Consultado el 21 de agosto de 2022. 
  13. Bojowald, M. (2013). Rebote del Universo. Investigación y Ciencia, Temas 72: 90-95.
  14. N. Bodendorfer, T. Thiemann y A. Thurn (2012). Towards Loop Quantum Supergravity (LQSG), Phys. Lett. B 711: 205-211, artículo Arxiv [1].

Bibliografía editar

  • libros populares:
  • trabajos introductorios:
    • John Baez y Javier Pérez de Muniain, Gauge Fields, Knots and Quantum Gravity, World Scientific (1994), ISBN 981-02-2034-0
    • Carlo Rovelli, A Dialog on Quantum Gravity, preprint available as hep-th/0310077
    • Carlo Rovelli, What is Time? What is Space?, Di Renzo Editore, Roma, 2006
  • Libros avanzados, reportes, conferencias:
    • Robert M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, Chicago University Press (1994), ISBN 0-226-87027-8
    • Robert M. Wald, General Relativity, Chicago University Press, ISBN 0-226-87033-2
    • Steven Weinberg, Gravitation and Cosmology: principles and applications of the general theory of relativity, Wiley (1972), ISBN 0-471-92567-5
    • Misner, Thorne and Wheeler, Gravitation, Freeman, (1973), ISBN 0-7167-0344-0
    • A. Ashtekar, Lectures on Non-Perturbative Canonical Gravity, World Scientific (1991)
    • Rodolfo Gambini y Jorge Pullin, Loops, Knots, Gauge Theories and Quantum Gravity
    • John Baez (ed.), Knots and Quantum Gravity

Enlaces externos editar

  • Más Allá de las Cuerdas. Neofronteras, Noticias de Ciencias y Tecnología, 2009
  • Carlo Rovelli (1998): Loop Quantum Gravity
  •   Datos: Q739962

gravedad, cuántica, bucles, gravedad, cuántica, bucles, lazos, loop, quantum, gravity, también, gravedad, cuántica, recurrencias, teoría, gravedad, cuántica, formulada, abhay, ashtekar, 1986, mezcla, teorías, aparentemente, incompatibles, mecánica, cuántica, r. La gravedad cuantica de bucles o de lazos LQG por loop quantum gravity o tambien gravedad cuantica de recurrencias es una teoria de gravedad cuantica formulada por Abhay Ashtekar en 1986 1 que mezcla las teorias aparentemente incompatibles de la mecanica cuantica y la relatividad general Como teoria de la gravedad cuantica es el competidor principal de la teoria de las cuerdas Red de espin Aunque es una teoria aun por terminar y no se sabe aun si es correcta se desconoce incluso su dinamica ya ha cosechado algunos exitos Versiones simplificadas de esta teoria han permitido incluso explorar el estado previo al Big Bang contandonos que hubo antes 2 LQG es el resultado del esfuerzo por formular una teoria cuantica substrato independiente La teoria topologica de campos cuanticos proporciono un ejemplo pero sin grados de libertad locales y solamente finitos grados de libertad globales Esto es inadecuado para describir la gravedad que incluso en el vacio tiene grados de libertad locales segun la relatividad general Indice 1 Idea general 1 1 Exitos 1 2 Defectos 2 Historia 2 1 Bucles de Wilson y redes de espin 3 Caracteristicas 3 1 Limite clasico 3 2 Cosmologia cuantica 3 3 Big Bang 3 4 Contraste con la teoria de supercuerdas 4 Posibles pruebas experimentales 5 Lista de investigadores teoricos 6 Vease tambien 7 Referencias 7 1 Bibliografia 7 2 Enlaces externosIdea general editarLa gravedad cuantica bucles LQG es teoria cuantica de campos como tal se formula en terminos de un espacio de Hilbert observables y amplitudes de transicion Estos objetos estaban claramente definidos ya hacia 2010 Ademas como toda teoria cuantica la LQG tiene un limite clasico Se conjetura que el limite clasico de la LQG es la teoria de la relatividad general aunque esto no se ha demostrado matematicamente hay muchos elementos de evidencia que sugieren que esto es asi Por lo tanto la accion efectiva de baja energia es solo la de la relatividad general La idea principal de la LQG es construir la teoria cuantica es decir el espacio de Hilbert los operadores y las amplitudes de transicion sin expandir los campos alrededor de una metrica de referencia una metrico minkowskiana o de otro tipo pero manteniendo el operador asociado a la metrica misma Los pasos concretos para escribir la teoria son simplemente escribir el espacio de Hilbert los operadores y la expresion para las amplitudes de transicion Esto requiere relativamente pocas matematicas y forma parte de los aspectos bien estudiados de la teoria Los resultados de la teoria son de tres tipos En primer lugar los operadores que describen la geometria estan bien definidos y su espectro puede ser calculado Como siempre en la teoria cuantica esto se puede utilizar para predecir la cuantizacion es decir la discrecion de ciertas cantidades El calculo se puede hacer y el area y el volumen son discretos por lo tanto la teoria predice un espacio granular Esto es solo una consecuencia directa de la teoria cuantica y la cinematica de relatividad general En segundo lugar es facil ver que en las amplitudes de transicion nunca hay divergencias ultravioletas y esto es bastante bueno Luego hay resultados mas concretos Dos principales la aplicacion a la cosmologia que predice que hubo big bang pero solo un rebote Y el calculo de la entropia del agujero negro que es agradable pero aun no del todo satisfactorio En el aspecto formal la LGQ representa el espacio tiempo como una fina red tejida con un numero finitos de lazos o bucles cuantizados que se denomina red de espin spin network SN Si incorporamos el tiempo a estas redes entonces tendremos una espuma de espin spin foam En otras palabras LQG plantea que a escalas muy pequenas a distancia de Planck el espacio tiempo esta formado por una red de lazos entretejidos en una especie de espuma Defiende que el espacio no es suave y continuo sino que consta de trozos indivisibles de 10 35 metros de diametro que constituyen una especie de atomos de espacio tiempo Estos atomos del espacio tiempo forman una malla densa en cambio incesante que en condiciones normales nunca apreciaremos el espaciado dentro de la malla es tan pequeno que nos parece ser un continuo La LQG define el espacio tiempo como una red de enlaces abstractos que conecta estos volumenes de espacio como si fueran los nodos enlazados de un grafo Las secuencias de enlaces o aristas conforman lazos los cuales constituyen los bucles de la LQG 3 Exitos editar Los exitos principales de la LQG son Implica una cuantizacion no perturbativa de la geometria del espacio 3D con operadores cuantizados de area y de volumen La LQG puede librarse de los infinitos y de las singularidades presentes en la relatividad general cuando se aplica al Big Bang Segun esta teoria las propias unidades de espacio sufren un analogo del principio de exclusion de Pauli y no pueden ocupar el mismo estado cuantico el mismo punto de espacio Por tanto existe un limite de compresion que no se puede cruzar y las singularidades simplemente no se dan nunca Esto significa que siempre se puede predecir la evolucion de un sistema de este tipo Mientras que las herramientas estandares de la fisica colapsan la LQG ha proporcionado modelos internamente consistentes de un Big Bounce en el tiempo que precedio al Big Bang Cuando se importan las tecnicas de la LQG a la cosmologia se encuentra que la singularidad inicial del universo el punto inicial del Big Bang no es un punto especial Permite el calculo de la entropia de agujeros negros plausibles en astrofisica La ley de Bekenstein Hawking indica que la entropia de un agujero negro es A 4 pero para encontrar el coeficiente 1 4 hay que fijar un parametro libre de la teoria para acomodar este valor y esto parece demasiado ad hoc No obstante los ultimos resultados indican actualmente que no hay que fijar dicho parametro para encontrar la proporcionalidad correcta entre entropia y area en un agujero negro Representa una prueba de facto de que no es necesario tener una teoria de Todo para tener un candidato razonable para una teoria cuantica de la gravedad Defectos editar Los defectos principales de LQG son El principal problema de la LQG es que no se sabe si cuando revertimos el proceso de convertir la relatividad general en una teoria cuantica volvemos a obtener relatividad general No tiene todavia un cuadro de la dinamica sino solamente de la cinematica No es todavia capaz de incorporar la fisica de particulas y por tanto no puede considerarse por el momento una teoria unificadora La LQG puede aceptar cualquier tipo de campo no gravitatorio viviendo sobre las redes de espin Asi que no hay restricciones ni unificaciones Sin embargo hay una unificacion sutil en la LQG ya que en esta teoria la gravedad se formula de manera identica al resto de interacciones del modelo estandar de la fisica de particulas No es capaz todavia de recuperar el limite clasico de acuerdo con el principio de correspondencia La granularidad del espacio tiempo predicha por la LQG resulta ser mayor que la medida gracias al satelite de la ESA INTEGRAL 4 10 48 m displaystyle 10 48 m nbsp frente a 10 34 m displaystyle 10 34 m nbsp de la escala de Planck Historia editarLa relatividad general es la teoria de la gravitacion publicada por Albert Einstein en 1915 Segun la relatividad general la fuerza de la gravedad es una manifestacion de la geometria local del espacio tiempo Matematicamente la teoria es modelada segun la geometria metrica de Riemann pero el grupo de Lorentz de las simetrias del espacio tiempo un ingrediente esencial de la propia teoria de Einstein de la relatividad especial sustituye al grupo de simetrias rotatorias del espacio La LQG hereda esta interpretacion geometrica de la gravedad y postula que una teoria cuantica de la gravedad es fundamentalmente una teoria cuantica del espacio tiempo En los anos 1920 el matematico frances Elie Cartan formulo la teoria de Einstein en el lenguaje de fibrados y conexiones una generalizacion de la geometria de Riemann a la cual Cartan hizo contribuciones importantes La asi llamada teoria de Einstein Cartan de la gravedad no solamente reformulo sino tambien generalizo la relatividad general y permitio espacio tiempos con torsion asi como con curvatura En la geometria de Cartan de fibrados el concepto de transporte paralelo es mas fundamental que el de distancia la pieza central de la geometria de Riemann Un similar desplazamiento conceptual ocurrio entre el intervalo invariante de la relatividad general de Einstein y el transporte paralelo en la teoria Einstein Cartan En la decada de 1960 el fisico ingles Roger Penrose exploro la idea del espacio presentandose como una estructura combinatoria cuantica Sus investigaciones dieron lugar al desarrollo de las redes de espin Spin Networks 5 Como esta era una teoria cuantica del grupo de rotaciones y no del grupo de Lorentz Penrose desarrollo los twistores El 3 de noviembre de 1986 se publicaba un articulo del fisico indio Abhay Ashtekar donde formulo las ecuaciones del campo de la relatividad general de Einstein usando las que han venido a ser conocidas como las variables de Ashtekar un enfoque particular de la teoria de Einstein Cartan con una conexion compleja 6 Usando esta reformulacion el pudo cuantificar la gravedad usando tecnicas bien conocidas de la teoria cuantica del campo de gauge En la formulacion de Ashtekar los objetos fundamentales son una regla para el transporte paralelo tecnicamente una conexion y un marco coordenado llamada tetrada en cada punto La cuantizacion de la gravedad en la formulacion de Ashtekar fue basada en los bucles de Wilson una tecnica desarrollada en los anos 1970 para estudiar el regimen de interaccion fuerte de la cromodinamica cuantica Es interesante en este contexto los bucles de Wilson tenian mal comportamiento en el caso de la teoria estandar cuantica del campo en el espacio de Minkowski i e chato y fue asi que no proporciono una cuantizacion no perturbativa de QCD Sin embargo como la formulacion de Ashtekar era substrato independiente era posible utilizar los bucles de Wilson como la base para la cuantizacion no perturbativa de la gravedad El 8 de diciembre de 1986 el fisico uruguayo Rodolfo Gambini en un articulo publicado junto con el catalan Antonio Trias propuso que las interacciones fisicas fundamentales se podian describir como interacciones entre bucles loops unidimensionales 7 8 Rodolfo Gambini y Jorge Pullin desarrollaron aun mas la LQG en su libro de 1996 Loops Knots Gauge Theories and Quantum Gravity La LQG se ha aplicado a la cosmologia los agujeros negros y las espumas de espin Rodolfo Gambini y sus colegas han estudiado los agujeros negros cuanticos en LQG 9 Alrededor de 1988 Carlo Rovelli y Lee Smolin del grupo de Ashtekar se interesaron en la propuesta de Gambini y tuvieron una reunion en Trento Italia iniciando un trabajo conjunto que llevo a la gravedad cuantica de bucles palabras del propio Gambini 8 10 11 En 1990 Rovelli y Smolin obtuvieron una base explicita de los estados de la geometria cuantica que resultaron venir etiquetados por las redes de espin de Penrose 12 En este contexto las redes de espin se presentaron como una generalizacion de los bucles de Wilson necesaria para ocuparse de los bucles que se intersecan mutuamente Matematicamente las SN redes de spin se relacionan con la teoria de representacion de grupos y se pueden utilizar construir invariantes de nudo tales como el polinomio de Jones Bucles de Wilson y redes de espin editar El desarrollo de una teoria cuantica de campos de una fuerza da lugar invariablemente a respuestas infinitas y por lo tanto inutiles Los fisicos han desarrollado tecnicas matematicas renormalizacion para eliminar estos infinitos que funcionan con las fuerzas nucleares fuertes y debiles y con las electromagneticas pero no con la gravedad Las maneras mas obvias de combinar los dos tales como tratar la gravedad como simplemente otro campo de particulas conduce rapidamente a lo que se conoce como el problema de la renormalizacion Las particulas portadoras de la gravedad se atraerian y si se agregan juntas todas las interacciones se termina con muchos resultados infinitos que no se puedan cancelar facilmente Esto contrasta con la electrodinamica cuantica donde las interacciones dan lugar a algunos resultados infinitos pero estos son lo suficientemente escasos en numero como para ser eliminables via renormalizacion Cuando se fuerza a la relatividad general a ser cuantica la LQG como la teoria de campos afirma que solo puedes obtener informacion en lineas de campo pero en este caso las lineas son cerradas son circulos y de ahi viene el nombre de bucle o lazo tecnicamente bucles de Wilson Esto implica una discretizacion efectiva del espacio tiempo en el que ya no se puede sondear en cualquier sitio Solo tiene sentido hablar de gravedad y por tanto de espacio tiempo por donde se propagan particulas y energias en esos lazos o bucles Los lazos no estan en ningun sitio sino que ellos mismos definen el espacio tiempo por el cual la materia se propaga No tiene sentido hablar de un espacio en el que estan los lazos ni de lo que hay fuera de los mismos Solo tiene sentido hablar de dichos lazos A nivel cuantico un estado cuantico del espacio esta dado por una configuracion de dichos lazos Pronto se descubrio que este procedimiento era ciertamente complicado a la hora de hacer calculos y para simplificarlos se utilizo las redes de espin fueron introducidos por Roger Penrose para dar una definicion cuantica del espacio Las redes de espin son simplemente grafos conjunto de lineas unidas en nodos donde cada linea del grafo tiene una etiqueta que puede tomar valores 1 2 1 3 2 2 5 2 Estas lineas tienen una orientacion es decir podemos decir si la linea entra a un nodo o sale del nodo dado Ademas los nodos tambien tienen informacion En ellos hay un objeto matematico que transforma los valores de las etiquetas entrantes en los valores de las etiquetas salientes correspondientes a las lineas entrantes y salientes de un nodo dado Esta es una caracteristica esencial de la teoria El punto esencial es que dado un conjunto de lazos siempre se puede encontrar una red de espin equivalente Los estados cuanticos del espacio tiempo o de la geometria siguiendo la teoria de la relatividad general vienen dados por una red de espin conjunto de lineas unidas en los nodos y las etiquetas de cada linea Es por eso que a veces se dice que las redes de espin representan un estado cuantico de la geometria y por eso a la LQG tambien se le llamar Geometria Cuantica El desarrollo de una teoria cuantica de la gravedad debe lograrse por diferentes medios que los que fueron utilizados para las otras fuerzas En la LQG la textura del espacio tiempo es una red espumosa de lazos que obran reciprocamente y que son descritos matematicamente por redes de espin Estos lazos son de alrededor de 10 35 metros de tamano llamada Escala de Planck Los lazos se anudan juntos con la formacion de bordes superficies y vertices al igual que las pompas de jabon ensamblandose juntas Es decir el espacio tiempo mismo esta cuantificado El dividir un lazo si se logra forma dos lazos cada uno con el tamano original En LQG las redes de espin representan los estados cuanticos de la geometria del espacio tiempo relativo Mirado de otra manera la teoria de la relatividad general de Einstein es como Einstein predijo una aproximacion clasica de una geometria cuantizada Caracteristicas editarLimite clasico editar Cualquier teoria exitosa de la gravedad cuantica debe proporcionar predicciones fisicas que emparejen de cerca la observacion conocida y reproducir los resultados de la teoria de campos cuanticos y de la gravedad Hasta la fecha la teoria de Einstein de la relatividad general es la teoria mas acertada de la gravedad Se ha mostrado que cuantificar las ecuaciones del campo de la relatividad general no recuperara necesariamente esas ecuaciones en el limite clasico Sigue siendo confuso si LQG da los resultados que emparejan la relatividad general en el dominio de las bajas energias macroscopico y astronomico Hasta la fecha LQG ha demostrado dar resultados concordantes con relatividad general en 1 1 y 2 1 dimensiones Hasta la fecha no se ha demostrado que LQG reproduzca gravedad clasica en 3 1 dimensiones Asi sigue siendo confuso si LQG combina con exito la mecanica cuantica con relatividad general Cosmologia cuantica editar Un principio importante en la cosmologia cuantica al cual LQG adhiere es que no hay observadores exteriores al universo Todos los observadores deben ser una parte del universo que estan observando Sin embargo porque los conos de luz limitan la informacion que esta disponible para cualquier observador la idea platonica de verdades absolutas no existe en un universo de LQG En su lugar existe una consistencia de verdades en que cada observador si es veraz reportara resultados consistentes pero no necesariamente iguales Otro principio importante gira alrededor de la constante cosmologica que es la densidad de la energia inherente a un vacio Ha habido propuestas para incluir una constante cosmologica positiva en LQG que implicaba un estado designado como el estado de Kodama por Hideo Kodama Algunos han argumentado por analogia con otras teorias que este estado es no fisico Este tema sigue sin resolverse Big Bang editar La LQG se ha asociado a un modelo en el que el Big Bang es precedido por una o varias fases previas de colapso y expansion en una especie de rebote llamado Big Bounce Gran Rebote LQG permite hacer calculos y computar lo que puede haber pasado antes del Big Bang e indican de forma rotunda que antes del Big Bang hubo otro universo que se contrajo y luego al rebotar dio lugar al nuestro Segun este modelo cosmologico simplificado basado en LQG si retrocedemos en el tiempo el Universo se hace cada vez mas denso hasta que no se puede comprimir mas pasandose luego a una fase de expansion hacia atras en el tiempo colapso en el sentido del tiempo habitual Los atomos del espacio tiempo forman una malla densa que cambia incesantemente A gran escala su dinamica da lugar a una evolucion del universo conforme a lo que dicta la relatividad general Pero cuando el espacio tiempo esta abarrotado de energia como ocurrio en el Big Bang la estructura fina del espacio tiempo constituye un factor a tener en cuenta y las predicciones de la LQG difieren de las de la relatividad general La gravedad en condiciones normales es una fuerza de atraccion Pero segun se desprende de la LQG la estructura atomica del espacio tiempo modifica la naturaleza de la gravedad a densidades de energia muy altas y la convierte en repulsiva 13 Un espacio cuantico tiene una capacidad finita de almacenar energia al igual que una esponja porosa tiene una capacidad finita de absorber agua Cuando las densidades energeticas son demasiado grandes aparecen las fuerzas de repulsion La relatividad general considera por el contrario que el espacio ademas de ser continuo puede almacenar cantidades ilimitadas de energia abriendo la puerta a la existencia de singularidades como los agujeros negros o el Big Bang Debido al cambio cuantico gravitatorio del balance de fuerzas en gravedad de bucles no puede aparecer ninguna singularidad ningun estado de densidad infinita 13 Segun este modelo la materia del universo temprano tuvo una densidad que aunque enorme era finita y equivalente a un billon de soles concentrados en el tamano de un proton En situaciones tan extremas la gravedad actuo de modo repulsivo y expandio el espacio A medida que la densidad se relajaba la gravedad paso a ser la fuerza de atraccion que todos conocemos Esta gravedad repulsiva inicial provoco la expansion del espacio a un ritmo acelerado tal como predicen las teorias de la inflacion las cuales hoy por hoy anaden la inflacion de forma ad hoc para ajustarse a las observaciones 13 Por tanto nuestro universo seria el resultado del rebote de un universo previo que colapso bajo los efectos de la gravedad sin pasar por una singularidad Las preguntas que surgen son muchas que era ese universo era igual que el nuestro pero colapsando de donde surgio tiene nuestro universo memoria sobre el universo previo Todas estas preguntas se estan investigando y no hay una respuesta clara Quizas el estudio en detalle de la radiacion cosmica de fondo nos de pistas al respecto y nos diga si esta teoria va por buen camino Permitiria someter esta teoria al escrutinio experimental y corroborar o refutar el modelo de evolucion del universo que se infiere de la LQG Posiblemente esta teoria cosmologica basada en LQG que se conoce como LQC afecte a la teoria inflacionaria y por tanto podra ser discriminada por observaciones cosmologicas que cada dia son mas precisas Contraste con la teoria de supercuerdas editar La LQG es una hipotesis mas conservadora que la teoria de supercuerdas que partiendo de las ecuaciones de Einstein tambien intenta fusionar las teorias de la relatividad y la mecanica cuantica aunque de una forma menos espectacular La LQG no considera mas dimensiones que las habituales y trata de incorporar la relatividad general Conserva muchas caracteristicas de la relatividad general y a la vez cuantiza el propio espacio tiempo En la teoria de supercuerdas hay 10500 universos posibles que se dan como resultado de explicar los aparentes valores arbitrarios del universo tales como la longitud de Planck o la masa y carga del electron Por otro lado la teoria de supercuerdas se desarrolla en un substrato espacio temporal fijo y no atiende a este substrato para explicar el desarrollo y comportamiento de las cuerdas La LQG si lo hace y por ello resulta un modelo que contiene de una forma mucho mas completa los aspectos cruciales sobre materia energia espacio y tiempo que han de conjugarse para crear una teoria del todo Dicho de otro modo la teoria de supercuerdas desarrolla su base en un marco espacio temporal fijo y que le es ajeno es substrato dependiente La LQG incluye ese marco en su modelo teorico es substrato independiente Estas teorias cuanticas de la gravedad surgieron desde dos puntos de vista de la fisica teorica actual La teoria de supercuerdas emergio de la comunidad de la fisica de particulas y fue formulada originalmente como una teoria que dependia de un espacio tiempo de base plano o curvado que obedecia las ecuaciones de Einstein Ahora se sabe que solo es una aproximacion de una teoria subyacente misteriosa Teoria M todavia no bien formulada y que por tanto puede ser substrato independiente o puede no serlo Por el contrario la LQG fue formulada con independencia del sustrato Sin embargo es dificil demostrar que la gravedad clasica emerge de la teoria Por esta razon la LQG y la teoria de supercuerdas parecen complementarias La teoria de supercuerdas recupera facilmente la gravedad clasica pero carece de una descripcion fundamental del substrato espacio temporal La LQG es una teoria independiente del substrato pero el limite clasico todavia no se ha probado manejable Esto ha hecho creer a algunos fisicos teoricos que la LQG y la teoria de supercuerdas pueden ser dos aspectos de una misma teoria subyacente y cuya sintesis conducira a una teoria completa de la gravedad cuantica Por el momento tan solo es una especulacion con poca evidencia pero ahora existe una esperanza para la unificacion de ambas teorias Hasta hace poco se creia que la LQG no podia ser formulada en un espacio tiempo con un numero de dimensiones mayores de cuatro Pero en 2011 se descubrio una version de la teoria que permite extender las tecnicas de LQG a un numero arbitrario de dimensiones Supergravedad cuantica de bucles o LQSG por Loop Quantum Supergravity 14 Ademas permite introducir la supersimetria en este contexto en dimensiones extra Esto puede ser util para ver si la LQG y la teoria de supercuerdas tienen algun punto en comun Posibles pruebas experimentales editarLQG puede hacer hipotesis que pueden ser experimentalmente verificables en el futuro cercano La trayectoria tomada por un foton con una geometria discreta del espacio tiempo seria diferente de la trayectoria tomada por el mismo foton a traves de un espacio tiempo continuo Normalmente tales diferencias deben ser insignificantes pero Giovanni Amelino Camelia aclaro que los fotones que han viajado desde galaxias distantes pueden revelar la estructura del espacio tiempo LQG predice que los fotones mas energeticos deben viajar levemente mas rapido que los fotones menos energeticos Este efecto seria demasiado pequeno para observarlo dentro de nuestra galaxia Sin embargo la luz que nos alcanza como explosiones de rayos gamma desde otras galaxias deben manifestar desplazamiento espectral variable en el tiempo Es decir las explosiones gammas distantes deben aparecer mas azuladas al comenzar y terminar mas rojizas Alternativamente los fotones altamente energicos de rafagas de rayos gamma deben llegar algo mas pronto que los menos energicos Los fisicos de LQG aguardan con impaciencia resultados de los experimentos espaciales de espectrometria de rayos gamma una mision lanzada en febrero de 2007 Lista de investigadores teoricos editarTeoricos de LQG Abhay Ashtekar John Baez Julian Barbour John Barrett Martin Bojowald Alejandro Corichi Louis Crane Laurent Freidel Rodolfo Gambini Giorgio Immirzi Christopher Isham Kirill Krasnov Jerzy Lewandowski Renate Loll Fotini Markopoulou Kalamara Donald Marolf Jorge Pullin Michael Reisenberger Carlo Rovelli Lee Smolin Thomas Thiemann Jose Antonio ZapataVease tambien editarGravedad cuantica Cosmologia cuantica de bucles Historia de la gravedad cuantica Mecanica cuantica Relatividad general Fisica teoricaReferencias editar A Ashtekar 1986 New variables for classical and quantum gravity Phys Rev Lett 57 2244 2247 Bojowald Martin 2010 Antes del Big Bang 1 ª edicion Barcelona Debate p 368 ISBN 9788483068489 Consultado el 2 de agosto de 2015 Carlos Rovelli 2003 Loop quantum gravity Quantum Gravity Physics World Integral challenges physics beyond Einstein www esa int en ingles Consultado el 3 de abril de 2021 R Penrose 1971 Angular momentum an approach to combinatorial space time in Quantum Theory and Beyond ed T Bastin Cambridge University Press Cambridge Ashtekar Abhay 3 de noviembre de 1986 New Variables for Classical and Quantum Gravity Physical Review Letters 57 18 2244 2247 doi 10 1103 PhysRevLett 57 2244 Consultado el 21 de agosto de 2022 Gambini Rodolfo Trias Antoni 8 de diciembre de 1986 Gauge dynamics in the C representation Nuclear Physics B en ingles 278 2 436 448 ISSN 0550 3213 doi 10 1016 0550 3213 86 90221 X Consultado el 21 de agosto de 2022 a b Teoria unificada del universo El Pais 21 de agosto de 1998 Archivado desde el original el 19 de diciembre de 2011 Consultado el 22 de agosto de 2022 Gambini Rodolfo Pullin Jorge Loops Knots Gaugue Theories and Quantum Gravity Cambridge monographs on matemathical physics Rovelli Carlo Smolin Lee 5 de septiembre de 1988 Knot Theory and Quantum Gravity Physical Review Letters 61 10 1155 1158 doi 10 1103 PhysRevLett 61 1155 Consultado el 21 de agosto de 2022 Si los argentinos tienen a Maldacena los uruguayos tienen a Gambini La Ciencia de la Mula Francis 14 de junio de 2009 Consultado el 21 de agosto de 2022 Rovelli Carlo Smolin Lee 5 de febrero de 1990 Loop space representation of quantum general relativity Nuclear Physics B en ingles 331 1 80 152 ISSN 0550 3213 doi 10 1016 0550 3213 90 90019 A Consultado el 21 de agosto de 2022 a b c Bojowald M 2013 Rebote del Universo Investigacion y Ciencia Temas 72 90 95 N Bodendorfer T Thiemann y A Thurn 2012 Towards Loop Quantum Supergravity LQSG Phys Lett B 711 205 211 articulo Arxiv 1 Bibliografia editar libros populares Julian Barbour The End of Time Lee Smolin Three Roads to Quantum Gravity trabajos introductorios John Baez y Javier Perez de Muniain Gauge Fields Knots and Quantum Gravity World Scientific 1994 ISBN 981 02 2034 0 Carlo Rovelli A Dialog on Quantum Gravity preprint available as hep th 0310077 Carlo Rovelli What is Time What is Space Di Renzo Editore Roma 2006 Libros avanzados reportes conferencias Robert M Wald Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics Chicago University Press 1994 ISBN 0 226 87027 8 Robert M Wald General Relativity Chicago University Press ISBN 0 226 87033 2 Steven Weinberg Gravitation and Cosmology principles and applications of the general theory of relativity Wiley 1972 ISBN 0 471 92567 5 Misner Thorne and Wheeler Gravitation Freeman 1973 ISBN 0 7167 0344 0 A Ashtekar Lectures on Non Perturbative Canonical Gravity World Scientific 1991 Rodolfo Gambini y Jorge Pullin Loops Knots Gauge Theories and Quantum Gravity John Baez ed Knots and Quantum GravityEnlaces externos editar Mas Alla de las Cuerdas Neofronteras Noticias de Ciencias y Tecnologia 2009Carlo Rovelli 1998 Loop Quantum Gravity nbsp Datos Q739962 Obtenido de https es wikipedia org w index php title Gravedad cuantica de bucles amp oldid 154557679, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos