fbpx
Wikipedia

Teoría de haces

En matemática, un haz F sobre un espacio topológico dado, X, proporciona, para cada conjunto abierto U de X, un conjunto F(U), de estructura más rica. A su vez dichas estructuras, F(U), son compatibles con la operación de restricción desde un conjunto abierto hacia subconjuntos más pequeños y con la operación de pegado de conjuntos abiertos para obtener un abierto mayor. Un prehaz es similar a un haz, pero con él puede no ser posible la operación de pegado. Los haces nos permiten discutir de manera refinada sobre lo que significa ser una propiedad local, tal y como hablamos de ello cuando lo aplicamos a una función.

Introducción

Los haces son usados en topología, geometría algebraica y geometría diferencial siempre que queremos guardar rastro de los datos algebraicos que varían con cada conjunto abierto del objeto geométrico dado. Son una herramienta global para estudiar objetos que varían localmente (i.e., dependiendo del conjunto abierto). Funcionan como instrumentos naturales para el estudio del comportamiento global de entidades que son de naturaleza local, como los conjuntos abiertos, o las funciones: continuas, analíticas, diferenciables...

Por considerar un ejemplo típico, sea un espacio topológico X y sea, para cada conjunto abierto U en X, el conjunto F(U), que consta de todas las funciones continuas U   R. Si V es un subconjunto abierto de U, entonces las funciones sobre U pueden restringirse a V, y tenemos una aplicación F(U)   F(V). El "pegado" se trata del siguiente proceso: supón que los Ui son conjuntos abiertos cuya unión es U, y para cada i cogemos un elemento fi   F(Ui), i.e. una función continua fi : Ui   R. Si estas funciones coinciden allá donde se solapen, entonces podemos pegarlas juntas de manera que nos den una única forma de conseguir una función continua f : U   R conincidente con todas las fi. La colección de conjuntos F(U) junto con las aplicaciones restricción F(U)   F(V) forman un haz de conjuntos sobre X. Realmente, los F(U) son anillos conmutativos y las aplicaciones de restricción son homomorfismos de anillos, y F es además un haz de anillos sobre X.

Un ejemplo muy parecido se obtiene considerando una variedad diferenciable X, y para cada conjunto abierto U de X, tomando el conjunto F(U) como el de las funciones diferenciables U   R. En este ejemplo va a funcionar también el pegado y tendremos un haz de anillos sobre X. Otro haz sobre X asigna a cada conjunto abierto U de X el espacio vectorial de todas los campos vectoriales diferenciables definidos sobre U. La restricción y el pegado funcionará como en el caso de las funciones, y obtendremos un haz de espacios vectoriales sobre la variedad X.

Historia

Los orígenes más primigenios de la teoría de haces son difíciles de discernir - seguramente son coextensivos con la idea de la continuación analítica. Tomó alrededor de 15 años para extraer una teoría de haces autosuficiente del trabajo fundacional en cohomología.

  • 1936 Eduard Čech introduce la construcción de Nervio de un recubrimiento abierto, que asocia un complejo simplicial a un recubrimiento abierto.
  • 1938 Hassler Whitney suministra una definición 'moderna' de la cohomología, resumiendo todo el trabajo realizado desde que Alexander y Kolmogórov definieran las cocadenas.
  • 1943 Steenrod publica sobre la homología con coeficientes locales.
  • 1945 Jean Leray publica trabajo realizado en un campo de prisioneros de guerra, motivado por las demostraciones sobre teoremas del punto fijo en su aplicación a la teoría de EDP (ecuaciones en derivadas parciales). Esto es el comienzo de la teoría de haces y de las secuencias espectrales.
  • 1947 Henri Cartan demuestra de nuevo el Teorema de de Rham mediante métodos de teoría de haces, en su correspondencia con André Weil. Leray da una definición de haz a través de los conjuntos cerrados (los antiguos carapaces).
  • 1948 El seminario de Cartan pone por primera vez la teoría de haces por escrito.
  • 1950 La 'segunda edición' del seminario de Cartan sobre teoría de haces: donde se usa la definición del espacio de haces (éspace étalé), con estructura de tallos (stalkwise).

Son introducidos los Soportes, y la cohomología con soportes. Las aplicaciones continuas hacen surgir las sucesiones espectrales. Al mismo tiempo Kiyoshi Oka introduce la idea (parecida a aquella) de un haz de ideales, en varias variables complejas.

  • 1951 El seminario de Cartan demuestra los teoremas A y B basados en la obra de Oka.
  • 1953 El teorema de finitud para haces coherentes en la teoría analítica es demostrado por Cartan y Serre, así como La dualidad de Serre.
  • 1954 El artículo de Serre Faisceaux algébriques cohérents (publicado en 1955) introduce los haces dentro de la geometría algebraica. Estas ideas son explotadas inmediatamente por Hirzebruch, quien escribe un libro fundamental sobre métodos topológicos.
  • 1955 Alexander Grothendieck en lecturas dadas en Kansas define la categoría abeliana y los prehaces, y mediante el uso de la resolución inyectiva permite usar directamente la cohomología de haces sobre todos los espacios topológicos, como funtores derivados.
  • 1957 El artículo de Grothendieck llamado Tohoku reescribe el álgebra homológica; prueba la dualidad de Grothendieck (i.e., dualidad de Serre para variedades singulares).
  • 1958 El libro de Godement sobre teoría de haces es publicado. Aproximadamente al mismo tiempo Mikio Satō propone las hiperfunciones, que terminan por verse "haz-teoréticamente".
  • 1957 progresivamente: Grothendieck extiende la teoría de haces ajustándola a las necesidades de la geometría algebraica, introduciendo los: esquemass y haces generales sobre ellos, cohomología local, la categoría derivada (esto con Verdier), y la Topología de Grothendieck. Allí surgen también su influyente y sintética idea de las 'seis operaciones' en álgebra homológica.

En este punto los haces se han convertido ya en una parte fundamental en el desarrollo de la matemática, y su uso no se restringe de ningún modo a la topología algebraica. Más tarde se descubrió que la lógica en las categorías de haces es intuicionista (se suele a menudo nombrar esta observación como semántica Kripke-Joyal, pero probablemente debiera ser atribuida a un mayor número de autores). Esto demuestra cómo algunas de las facetas de la teoría de haces puede ser remontada tan lejos como a Leibniz.

Definición formal

Definiremos los haces en dos pasos. El primero es introducir el concepto de prehaz, que captura la idea de asociar información local a un espacio topológico. El segundo paso es introducir un axioma adicional, llamado el axioma de pegado o el axioma de haz, que captura la idea de pegar información local para obtener información global.

Definición de prehaz

Sea X un espacio topológico, y C una categoría (a menudo la categoría de conjuntos, de grupos abelianos, de anillos conmutativos, o la de módulos sobre un anillo fijo). Un prehaz F de objetos en C sobre el espacio X (un C-prehaz sobre X) viene dado por los datos siguientes:

  • para cada conjunto abierto U en X, un objeto F(U) en C
  • para cada inclusión de conjuntos abiertos V   U, un morfismo F(U)   F(V) en la categoría C, que se llama la "restricción

de U a V". La escribiremos como resU,V. Se requieren dos propiedades:

  • para cada conjunto abierto U en X, tenemos resU,U =idF(U), i.e., la restricción de U a U es la identidad.
  • dados cualquiera tres conjuntos abiertos W   V   U, tenemos resV,W o resU,V =resU,W, i.e. la restricción de F(U) a F(V) y entonces a F(W) es lo mismo que la restricción de F(U) directamente a F(W).

Esta definición puede darse fácilmente en términos de la teoría de las categorías. Primero definimos la categoría de los conjuntos abiertos sobre X como la categoría TopX cuyos objetos son los conjuntos abiertos de X y cuyos morfismos son las inclusiones. TopX es entonces la categoría correspondiente al orden parcial   sobre los conjuntos abiertos de X. Un C-prehaz sobre X es entonces un funtor contravariante desde TopX a C.

Si F es un prehaz C-valuado sobre X, y U es un conjunto abierto de X, entonces F(U) se dice las secciones de F sobre U. (Esto es por analogía con las secciones de los "fiber bundles"; ver abajo) Si C es una categoría concreta, entonces cada elemento de F(U) es llamado una sección. F(U) a menudo es también denotado Γ(U,F).

El axioma de pegado

Los haces son prehaces sobre los cuales las secciones sobre conjuntos abiertos pueden ser pegadas para dar secciones sobre abiertos más grandes. Estableceremos primero el axioma de una manera que requiere que C sea una categoría concreta.

Sea U la unión de la colección de conjuntos abiertos {Ui}. Para cada Ui, escoge una sección fi sobre Ui. Diremos que los fi son compatibles si para todo i j,

resUi,Ui Uj(fi) =resUj,Ui Uj(fj).

Intuitivamente hablando, si las fi representan funciones, estamos diciendo que cualquiera de ellas coincidirá con otra allá donde se solapen. El axioma de haz dice que podemos obtener con los fi una sección única f sobre U cuya restricción a cada Ui es fi, i.e., resU,Ui(f)=fi. Algunas veces esto se dice con dos axiomas, uno garantizando la existencia y el otro la unicidad.

Parafraseando esta definición de manera que funcione en cualquier categoría, notamos que podemos escribir los objetos y los morfismos envueltos en ella en un diagrama parecido a este:

 

La primera aplicación aquí es el producto de las aplicaciones restricción resU,Ui,:F(U) F(Ui) y cada par de flechas representa las dos restricciones resUi,Ui Uj:Ui Ui Uj y resUj,Ui Uj:Uj Ui Uj. Vale la pena hacer notar que esas aplicaciones agotan todas las posibilidades en cuanto a las aplicaciones restricción entre U, los Ui, y los Ui Uj.

La condición de que F sea un haz es exactamente la de que F(U) es el límite del resto del diagrama. Esto sugiere que debemos parafrasear la noción de recubrimiento en un contexto categorial. Cuando hacemos esto, obtenemos un diagrama que semeja al de arriba:

 

(Es importante notar aquí que para formar los productos en el diagrama, debemos embeber la categoría TopX en una categoría completa) La condición de que U es la unión de los Ui es la de que U es un colímite del resto del diagrama.

El axioma de pegado es ahora el que F torna todos los colímites en límites.

Ejemplos

Aparte de los que ya hemos puesto, los haces de secciones son ejemplos importantes. Supón que E y X son espacios topológicos y π : E   X una aplicación continua. Para cada conjunto abierto U en X, sea F(U) el conjunto de todas las aplicaciones f : U   E tales que π(f(x)) = x para todo x en U. Tal función f es llamada sección de π. No es difícil comprobar que F es un haz de conjuntos sobre X. De hecho, cada haz de conjuntos sobre X es esencialmente de este tipo, para aplicaciones muy especiales π; ver abajo.

Dado un haz F sobre X, los elementos de F(X) son llamados también las secciones globales, terminología motivada por el ejemplo previo.

Otros ejemplos:

  • El haz constante.
  • Cualquier fibrado vectorial proporciona un haz de conjuntos, cogiendo las secciones.
  • Mira cómo los haces son usados en el artículo sobre Superficie de Riemann.
  • Espacios anillados son haces de anillos conmutativos; son especialmente importantes los espacios localmente anillados, donde todos los tallos (mirar más abajo) son anillos locales.
  • Los esquemas son espacios localmente anillados especiales, importantes en geometría algebraica; los haces de módulos son importantes en la teoría asociada.
  • Haces de rectas en el artículo : Simulación.

Enlaces externos

  •   Datos: Q595298

teoría, haces, debe, confundirse, este, artículo, sección, necesita, referencias, aparezcan, publicación, acreditada, este, aviso, puesto, noviembre, 2016, matemática, sobre, espacio, topológico, dado, proporciona, para, cada, conjunto, abierto, conjunto, estr. No debe confundirse con Haz Este articulo o seccion necesita referencias que aparezcan en una publicacion acreditada Este aviso fue puesto el 2 de noviembre de 2016 En matematica un haz F sobre un espacio topologico dado X proporciona para cada conjunto abierto U de X un conjunto F U de estructura mas rica A su vez dichas estructuras F U son compatibles con la operacion de restriccion desde un conjunto abierto hacia subconjuntos mas pequenos y con la operacion de pegado de conjuntos abiertos para obtener un abierto mayor Un prehaz es similar a un haz pero con el puede no ser posible la operacion de pegado Los haces nos permiten discutir de manera refinada sobre lo que significa ser una propiedad local tal y como hablamos de ello cuando lo aplicamos a una funcion Indice 1 Introduccion 2 Historia 3 Definicion formal 3 1 Definicion de prehaz 3 2 El axioma de pegado 4 Ejemplos 5 Enlaces externosIntroduccion EditarLos haces son usados en topologia geometria algebraica y geometria diferencial siempre que queremos guardar rastro de los datos algebraicos que varian con cada conjunto abierto del objeto geometrico dado Son una herramienta global para estudiar objetos que varian localmente i e dependiendo del conjunto abierto Funcionan como instrumentos naturales para el estudio del comportamiento global de entidades que son de naturaleza local como los conjuntos abiertos o las funciones continuas analiticas diferenciables Por considerar un ejemplo tipico sea un espacio topologico X y sea para cada conjunto abierto U en X el conjunto F U que consta de todas las funciones continuas U displaystyle rightarrow R Si V es un subconjunto abierto de U entonces las funciones sobre U pueden restringirse a V y tenemos una aplicacion F U displaystyle rightarrow F V El pegado se trata del siguiente proceso supon que los Ui son conjuntos abiertos cuya union es U y para cada i cogemos un elemento fi displaystyle in F Ui i e una funcion continua fi Ui displaystyle rightarrow R Si estas funciones coinciden alla donde se solapen entonces podemos pegarlas juntas de manera que nos den una unica forma de conseguir una funcion continua f U displaystyle rightarrow R conincidente con todas las fi La coleccion de conjuntos F U junto con las aplicaciones restriccion F U displaystyle rightarrow F V forman un haz de conjuntos sobre X Realmente los F U son anillos conmutativos y las aplicaciones de restriccion son homomorfismos de anillos y F es ademas un haz de anillos sobre X Un ejemplo muy parecido se obtiene considerando una variedad diferenciable X y para cada conjunto abierto U de X tomando el conjunto F U como el de las funciones diferenciables U displaystyle rightarrow R En este ejemplo va a funcionar tambien el pegado y tendremos un haz de anillos sobre X Otro haz sobre X asigna a cada conjunto abierto U de X el espacio vectorial de todas los campos vectoriales diferenciables definidos sobre U La restriccion y el pegado funcionara como en el caso de las funciones y obtendremos un haz de espacios vectoriales sobre la variedad X Historia EditarLos origenes mas primigenios de la teoria de haces son dificiles de discernir seguramente son coextensivos con la idea de la continuacion analitica Tomo alrededor de 15 anos para extraer una teoria de haces autosuficiente del trabajo fundacional en cohomologia 1936 Eduard Cech introduce la construccion de Nervio de un recubrimiento abierto que asocia un complejo simplicial a un recubrimiento abierto 1938 Hassler Whitney suministra una definicion moderna de la cohomologia resumiendo todo el trabajo realizado desde que Alexander y Kolmogorov definieran las cocadenas 1943 Steenrod publica sobre la homologia con coeficientes locales 1945 Jean Leray publica trabajo realizado en un campo de prisioneros de guerra motivado por las demostraciones sobre teoremas del punto fijo en su aplicacion a la teoria de EDP ecuaciones en derivadas parciales Esto es el comienzo de la teoria de haces y de las secuencias espectrales 1947 Henri Cartan demuestra de nuevo el Teorema de de Rham mediante metodos de teoria de haces en su correspondencia con Andre Weil Leray da una definicion de haz a traves de los conjuntos cerrados los antiguos carapaces 1948 El seminario de Cartan pone por primera vez la teoria de haces por escrito 1950 La segunda edicion del seminario de Cartan sobre teoria de haces donde se usa la definicion del espacio de haces espace etale con estructura de tallos stalkwise Son introducidos los Soportes y la cohomologia con soportes Las aplicaciones continuas hacen surgir las sucesiones espectrales Al mismo tiempo Kiyoshi Oka introduce la idea parecida a aquella de un haz de ideales en varias variables complejas 1951 El seminario de Cartan demuestra los teoremas A y B basados en la obra de Oka 1953 El teorema de finitud para haces coherentes en la teoria analitica es demostrado por Cartan y Serre asi como La dualidad de Serre 1954 El articulo de Serre Faisceaux algebriques coherents publicado en 1955 introduce los haces dentro de la geometria algebraica Estas ideas son explotadas inmediatamente por Hirzebruch quien escribe un libro fundamental sobre metodos topologicos 1955 Alexander Grothendieck en lecturas dadas en Kansas define la categoria abeliana y los prehaces y mediante el uso de la resolucion inyectiva permite usar directamente la cohomologia de haces sobre todos los espacios topologicos como funtores derivados 1957 El articulo de Grothendieck llamado Tohoku reescribe el algebra homologica prueba la dualidad de Grothendieck i e dualidad de Serre para variedades singulares 1958 El libro de Godement sobre teoria de haces es publicado Aproximadamente al mismo tiempo Mikio Satō propone las hiperfunciones que terminan por verse haz teoreticamente 1957 progresivamente Grothendieck extiende la teoria de haces ajustandola a las necesidades de la geometria algebraica introduciendo los esquemass y haces generales sobre ellos cohomologia local la categoria derivada esto con Verdier y la Topologia de Grothendieck Alli surgen tambien su influyente y sintetica idea de las seis operaciones en algebra homologica En este punto los haces se han convertido ya en una parte fundamental en el desarrollo de la matematica y su uso no se restringe de ningun modo a la topologia algebraica Mas tarde se descubrio que la logica en las categorias de haces es intuicionista se suele a menudo nombrar esta observacion como semantica Kripke Joyal pero probablemente debiera ser atribuida a un mayor numero de autores Esto demuestra como algunas de las facetas de la teoria de haces puede ser remontada tan lejos como a Leibniz Definicion formal EditarDefiniremos los haces en dos pasos El primero es introducir el concepto de prehaz que captura la idea de asociar informacion local a un espacio topologico El segundo paso es introducir un axioma adicional llamado el axioma de pegado o el axioma de haz que captura la idea de pegar informacion local para obtener informacion global Definicion de prehaz Editar Sea X un espacio topologico y C una categoria a menudo la categoria de conjuntos de grupos abelianos de anillos conmutativos o la de modulos sobre un anillo fijo Un prehaz F de objetos en C sobre el espacio X un C prehaz sobre X viene dado por los datos siguientes para cada conjunto abierto U en X un objeto F U en C para cada inclusion de conjuntos abiertos V displaystyle subset U un morfismo F U displaystyle rightarrow F V en la categoria C que se llama la restriccionde U a V La escribiremos como resU V Se requieren dos propiedades para cada conjunto abierto U en X tenemos resU U idF U i e la restriccion de U a U es la identidad dados cualquiera tres conjuntos abiertos W displaystyle subset V displaystyle subset U tenemos resV W o resU V resU W i e la restriccion de F U a F V y entonces a F W es lo mismo que la restriccion de F U directamente a F W Esta definicion puede darse facilmente en terminos de la teoria de las categorias Primero definimos la categoria de los conjuntos abiertos sobre X como la categoria TopX cuyos objetos son los conjuntos abiertos de X y cuyos morfismos son las inclusiones TopX es entonces la categoria correspondiente al orden parcial displaystyle subset sobre los conjuntos abiertos de X Un C prehaz sobre X es entonces un funtor contravariante desde TopX a C Si F es un prehaz C valuado sobre X y U es un conjunto abierto de X entonces F U se dice las secciones de F sobre U Esto es por analogia con las secciones de los fiber bundles ver abajo Si C es una categoria concreta entonces cada elemento de F U es llamado una seccion F U a menudo es tambien denotado G U F El axioma de pegado Editar Los haces son prehaces sobre los cuales las secciones sobre conjuntos abiertos pueden ser pegadas para dar secciones sobre abiertos mas grandes Estableceremos primero el axioma de una manera que requiere que C sea una categoria concreta Sea U la union de la coleccion de conjuntos abiertos Ui Para cada Ui escoge una seccion fi sobre Ui Diremos que los fi son compatibles si para todo i j resUi Ui displaystyle cap Uj fi resUj Ui displaystyle cap Uj fj Intuitivamente hablando si las fi representan funciones estamos diciendo que cualquiera de ellas coincidira con otra alla donde se solapen El axioma de haz dice que podemos obtener con los fi una seccion unica f sobre U cuya restriccion a cada Ui es fi i e resU Ui f fi Algunas veces esto se dice con dos axiomas uno garantizando la existencia y el otro la unicidad Parafraseando esta definicion de manera que funcione en cualquier categoria notamos que podemos escribir los objetos y los morfismos envueltos en ella en un diagrama parecido a este F U i F U i i j F U i U j displaystyle mathcal F U rightarrow prod i mathcal F U i rightarrow atop rightarrow prod i j mathcal F U i cap U j La primera aplicacion aqui es el producto de las aplicaciones restriccion resU Ui F U displaystyle rightarrow F Ui y cada par de flechas representa las dos restricciones resUi Ui displaystyle cap Uj Ui displaystyle rightarrow Ui displaystyle cap Uj y resUj Ui displaystyle cap Uj Uj displaystyle rightarrow Ui displaystyle cap Uj Vale la pena hacer notar que esas aplicaciones agotan todas las posibilidades en cuanto a las aplicaciones restriccion entre U los Ui y los Ui displaystyle cap Uj La condicion de que F sea un haz es exactamente la de que F U es el limite del resto del diagrama Esto sugiere que debemos parafrasear la nocion de recubrimiento en un contexto categorial Cuando hacemos esto obtenemos un diagrama que semeja al de arriba i j U i U j i U i U displaystyle prod i j U i cap U j rightarrow atop rightarrow prod i U i rightarrow U Es importante notar aqui que para formar los productos en el diagrama debemos embeber la categoria TopX en una categoria completa La condicion de que U es la union de los Ui es la de que U es un colimite del resto del diagrama El axioma de pegado es ahora el que F torna todos los colimites en limites Ejemplos EditarAparte de los que ya hemos puesto los haces de secciones son ejemplos importantes Supon que E y X son espacios topologicos y p E displaystyle rightarrow X una aplicacion continua Para cada conjunto abierto U en X sea F U el conjunto de todas las aplicaciones f U displaystyle rightarrow E tales que p f x x para todo x en U Tal funcion f es llamada seccion de p No es dificil comprobar que F es un haz de conjuntos sobre X De hecho cada haz de conjuntos sobre X es esencialmente de este tipo para aplicaciones muy especiales p ver abajo Dado un haz F sobre X los elementos de F X son llamados tambien las secciones globales terminologia motivada por el ejemplo previo Otros ejemplos El haz constante Cualquier fibrado vectorial proporciona un haz de conjuntos cogiendo las secciones Mira como los haces son usados en el articulo sobre Superficie de Riemann Espacios anillados son haces de anillos conmutativos son especialmente importantes los espacios localmente anillados donde todos los tallos mirar mas abajo son anillos locales Los esquemas son espacios localmente anillados especiales importantes en geometria algebraica los haces de modulos son importantes en la teoria asociada Haces de rectas en el articulo Simulacion Enlaces externos EditarEsta obra contiene una traduccion falta parte derivada de Sheaf de la Wikipedia en ingles concretamente de esta version publicada por sus editores bajo la Licencia de documentacion libre de GNU y la Licencia Creative Commons Atribucion CompartirIgual 3 0 Unported Datos Q595298Obtenido de https es wikipedia org w index php title Teoria de haces amp oldid 137682305, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos