fbpx
Wikipedia

Cerebelo

El cerebelo es una región del encéfalo cuya función principal es de integrar las vías sensitivas y las vías motoras. Existe una gran cantidad de haces nerviosos que conectan el cerebelo con otras estructuras encefálicas y con la médula espinal. El cerebelo integra toda la información recibida para precisar y controlar las órdenes que la corteza cerebral envía al aparato locomotor a través de las vías motoras. Es el regulador del temblor fisiológico.

Cerebelo

Encéfalo humano, con el cerebelo marcado en púrpura

Imagen de RMN de una sección sagital de un encéfalo humano. Cerebelo en púrpura.
Nombre y clasificación
Latín [TA]: cerebellum
TA A14.1.07.001
Gray pág.788
NeuroLex ID Cerebellum
MeSH Cerebellum
Información anatómica
Parte de Encéfalo
 Aviso médico 

Por ello, lesiones a nivel del cerebelo no suelen causar parálisis pero sí desórdenes relacionados con la ejecución de movimientos precisos, mantenimiento del equilibrio, la postura y aprendizaje motor. Los primeros estudios realizados por fisiólogos en el siglo XVIII indicaban que aquellos pacientes con daño cerebelar mostraban problemas de coordinación motora y movimiento. Durante el siglo XIX comenzaron a realizarse los primeros experimentos funcionales, causando lesiones o ablaciones cerebelares en animales. Los fisiólogos observaban que tales lesiones generaban movimientos extraños y torpes, descoordinación y debilidad muscular. Estas observaciones y estudios llevaron a la conclusión de que el cerebelo era un órgano encargado del control de la motricidad.[1]​ Sin embargo, las investigaciones modernas han mostrado que el cerebelo tiene un papel más amplio, estando así relacionado con ciertas funciones cognitivas como la atención y el procesamiento del lenguaje, la música, el aprendizaje y otros estímulos sensoriales temporales.

Fue descrito por primera vez por Herófilo en el siglo IV a. C.

Animación del cerebelo

Características generales

El cerebelo es un órgano impar y medio, situado en la fosa craneal posterior, dorsal al tronco del encéfalo e inferior al lóbulo occipital y ocular.

Desarrollo

 
División del tubo neural en vesículas encefálicas primarias. El cerebelo deriva del metencéfalo.

Al igual que el resto del sistema nervioso central y la piel, el cerebelo deriva de la capa ectodérmica del disco germinativo trilaminar.

Durante las fases más tempranas del desarrollo embrionario, el tercio cefálico del tubo neural presenta tres dilataciones (vesículas encefálicas primarias) lo que nos permite dividirlo en tres segmentos distintos: prosencéfalo, mesencéfalo y rombencéfalo. El rombencéfalo es el segmento más caudal, y cuando el embrión tiene 5 semanas se divide en dos porciones: el metencéfalo, y el mielencéfalo. El metencéfalo es la porción más cefálica y dará lugar a la protuberancia (puente) y al cerebelo, mientras que del mielencéfalo se originará la médula oblongada (bulbo raquídeo). El límite entre estas dos porciones está marcado por la curvatura protuberencial.

Al igual que todas las estructuras que derivan del tubo neural, el metencéfalo está constituido por placas alares y basales separadas por el surco limitante. Las placas alares contienen núcleos sensitivos que se dividen en tres grupos: el grupo aferente somático lateral, el grupo aferente visceral especial y el grupo aferente visceral general. Las placas basales contienen núcleos motores que se dividen en tres grupos: el grupo eferente somático medial, el grupo eferente visceral especial y el grupo eferente visceral general.

 
Visión posterior del mesencéfalo y del rombencéfalo. El rombencéfalo ya está divido en mielencéfalo y metencéfalo, y se ven los primeros esbozos de lo que será el cerebelo (placa cerebelosa).

Las porciones dorsolaterales de las placas alares se incurvan en sentido medial para formar los labios rómbicos. En la porción caudal del mesencéfalo, los labios rómbicos están muy separados, pero en la porción cefálica se aproximan a la línea media. Al ir profundizando el pliegue protuberencial, los labios rómbicos se comprimen en dirección cefalo-caudal y forman la placa cerebelosa. A las 12 semanas del desarrollo, en la placa cerebelosa se aprecia la existencia de tres porciones: el vermis, en la línea media, y dos hemisferios, a ambos lados. Al poco tiempo, una fisura transversal separa el nódulo del resto del vermis y los flóculos del resto de los hemisferios.

Inicialmente, la placa cerebelosa está compuesta por tres capas, que de profunda a superficial son: capa neuroepitelial, capa del manto y capa marginal. Aproximadamente a las 12 semanas del desarrollo, algunas células originadas en la capa neuroepitelial emigran hacia la zona más superficial de la capa marginal. Estas células conservan la capacidad de dividirse y empiezan a proliferar en la superficie donde acaban formando la capa granulosa externa. En el embrión de 6 meses, la capa granulosa externa comienza a diferenciarse en diversos tipos celulares que emigran hacia el interior para pasar entre las células de Purkinje y dar origen a la capa granular interna. La capa granulosa externa termina por quedarse sin células y da origen a la capa molecular. Las células en cesta y las células estrelladas provienen de células que proliferan en la sustancia blanca (capa marginal).

Los núcleos cerebelosos profundos, como el núcleo dentado, se sitúan en su posición definitiva antes del nacimiento mientras que la corteza del cerebelo alcanza su desarrollo completo después del nacimiento.

Origen y características de las células progenitoras

Contrario a la idea anatómica clásica; el cerebelo adulto no proviene únicamente del metencefalo. Los estudios de Hallonet y Nicole M. Le Douarin a principios de la década de los noventa mostraron que las células progenitoras del cerebelo provienen de la región caudal del mesensefalo y la rostral del metencéfalo.[2]​ Para mostrarlo, crearon diferentes quimeras de pollo (Gallus gullus) y codorniz (Corurnir coturnir juponica), con injertos de las regiones metencefalicas y mesensefálicas de interés. Debido a que las células de codorniz presentan un núcleo en interfase con heterocromatina condensada, estas células son fácilmente diferenciables de las células de pollo luego de una tinción de Feulgen (tiñe el DNA) (Ver enlace externo). Haciendo uso de esta metodología, Hallonet y Le Douarin mostraron que las células mediorostrales del cerebelo adulto provienen del área caudal del mesencéfalo, mientras que el resto de las células progenitoras del cerebelo tienen origen en el área rostral del metencefalo. Los autores hacen énfasis en el origen estrictamente metencefálico de las células de la capa granular externa (EGL), que dará lugar a las células granulares en etapas posteriores del desarrollo. Las demás células del cerebelo (células de Purkinje, por ejemplo) provienen de las vesículas mesencefálicas y metencefálicas.

Gao y Hatten querían mostar la potencialidad de las células progenitoras provenientes de la capa granular externa (EGL) y compararla con la potencialidad de las células progenitoras de la zona ventral (VZ). Para ello, aislaron células precursoras de estas zonas a partir de ratones E13, luego las implantaron en la capa granular externa de ratones postnatales y observaron los tipos celulares en los cuales se diferenciaban estas células. Se observó que las células progenitoras de la capa granular externa (EGL) eran unipotentes, produciendo únicamente células granulares. En contraste las células provenientes de la zona ventral se diferenciaron en neuronas de Purkinje, interneuronas, astroglia y células granulares, lo cual evidencia las restricciones que se dan durante el desarrollo dependiendo de los contextos espaciales y temporales en los cuales se desarrollan las células.[3]

Control genético del desarrollo del cerebelo

Una de las ventajas de la teoría evolutiva en la biología es la posibilidad de formulación de hipótesis en otros grupos de organismos a partir del conocimiento en un grupo particular. El cerebelo es ejemplo perfecto de lo anterior. Debido a la gran facilidad de obtener mutantes en organismos como Drosophila, muchos genes involucrados en la identidad de segmentos fueron identificados en la segunda mitad del siglo XX.[4]​ Debido a que estos genes eran capaces de establecer la identidad antero-posterior de los segmentos en Drosophila, varios investigadores propusieron la hipótesis que los homólogos en mamíferos podrían controlar los patrones de desarrollo. Los genes candidatos eran En (Engrailed), wingless y genes Pax. Al buscar sus homólogos en vertebrados y analizar los mutantes se encontró una ruta muy fina del control de desarrollo espacial y temporal del cerebelo en ratones.

Las mutaciones en el gen (-/-) generan un fenotipo que prácticamente no desarrolla cerebelo. Mientras que mutaciones en el gen En-2 generan un fenotipo menos severo, con daños en la formación de las estructuras foliares de los lóbulos cerebelosos. Mutantes condicionales para En-1 activados en el día E-9 cuya expresión de En-2 es normal, presentan fenotipos casi normales. Esto sugiere que En1 determina el «Territorio» del cerebelo en etapas tempranas, mientras que En2 es requerido en estadios posteriores.[5][6]​ Debido al efecto regulatorio de Wnt-1 (homólogo de wingless) y genes Pax sobre Engrailed, era predecible el fenotipo de mutantes para estos genes. Mutantes homocigotos de Wnt-1 mostraron la pérdida completa del cerebelo, lo cual se correlaciona con la pérdida de expresión de En en el «territorio cerebeloso».[6]

Programas de desarrollo en el cerebelo

La transición célula progenitora a neurona madura, implica una serie de cambios morfológicos y moleculares altamente regulada espacial y temporalmente. Estos cambios incluyen el arresto del ciclo mitótico, la formación de axón y dendritas, la expresión de proteínas específicas como proteínas canal, en algunos casos migraciones y finalmente el establecimiento de conectividad (sinapsis) con otras neuronas. A pesar de ser rutinas que incluyen la mayoría de estos procesos, distintos tipos celulares presentan sus programas en diferente orden. Por ejemplo, las células de Purkinje al igual que células de la corteza cerebral migran justo después de salir del ciclo celular y forman conexiones axonales en etapas posteriores del desarrollo. Por el contrario, las células precursoras de células granulares inician el crecimiento axonal al salir del ciclo celular y posteriormente inician su migración a la capa interna (IGL).[6]​ A continuación se muestran algunas características del desarrollo de las células granulares del cerebelo.

Células granulares

Los patrones de expresión génica durante el desarrollo de las células granulares, permite establecer cuatro etapas: la neurogénesis, el inicio de la diferenciación neuronal, el crecimiento axonal y migración, y, finalmente, la formación de conexiones sinápticas. En la figura 1 se muestran los marcadores específicos de cada etapa.

Proliferación

El proceso de proliferación ocurre principalmente en la capa externa del EGL (oEGL) durante las tres primeras semanas postnatales en ratón. Los primeros estudios de proliferación in vitro mostraron que estas células tienen la capacidad proliferativa en ausencia de mitógenos, sugiriendo actividad autocrina en la regulación de la proliferación celular.[7]​ Más recientemente se han mostrado algunas moléculas de señalización cuya relación con la proliferación es más clara. Wechsler y Scott de la universidad de Stanford mostraron la expresión de mensajeros de Shh en células de Purkinje a nivel somático y dendrítico, por su parte las células granulares expresaban el gen ptc (inhibidor de la ruta shh en ausencia de Shh) y los genes gli1/2 que codifican factores de transcripción corriente abajo en la cascada de señalización de Shh. Luego evaluaron el papel que juega Shh en la proliferación de las células granulares, encontrando que la presencia de este factor incrementa la proliferación de estas células 100 veces. Este efecto fue específico para células granulares (no se vieron incrementos significativos en la proliferación de células glia). Para dar validez biológica a los resultados in vitro, los investigadores inhibieron la actividad de Shh con la expresión de anticuerpos anti-Shh por parte de células de hibridoma inyectadas en los animales en el periodo postnatal inicial.[8][9]​ Dichos experimentos causaron una notable disminución en el grosor de la capa granular externa (EGL), al igual que disminución en el número de células. Ello permite concluir el efecto causal de la señalización de Shh en el estadio proliferativo de las células granulares. La presencia de ptc2 en las células granulares es de relevancia, puesto que las células granulares con la ruta de señalización Shh activa no entran en la etapa de diferenciación celular, incluso mutantes para ptc generan meduloblastoma en ratones y en humanos. Por lo tanto, la actividad de Shh es esencial en etapas iniciales del desarrollo (proliferación) de las células granulares pero su inhibición y regulación posterior es necesaria para continuar el curso del desarrollo normal de estas células. Un artículo reciente sobre el tema, que habla sobre Shh y ATF5 en el control de la proliferación de células granulares puede ser consultado[10]

Diferenciación

Dando continuidad al proceso, las neuronas granulares deben terminar la proliferación celular inducida por agentes mitógenos como Shh. Sato y colaboradores mostraron el efecto antagónico de JASP1 sobre Shh a través de la modulación de la actividad de JNK.La activación de esta ruta de señalización por el factor de crecimiento fibroblástico FGF-2 produce una colocalización de JASP1 y las formas fosforiladas de JNK y ERK en la membrana celular,[11]​ que posteriormente dará lugar a la inhibición de la actividad mitógena de Shh permitiendo salir del ciclo celular. Ello es evidenciado por un decrecimiento en la población de células positivas para el factor Ki67 (proliferación) y el aumento de células positivas p27-Kip1 (represor del ciclo celular) y BrdU.[12]

Otro gen implicado en la interfase diferenciación-migración es el gen weaver. Mutantes para este gen tienen proliferación de las células precursoras granulares normal (GCPs), sin embargo estas células no pueden salir del ciclo celular y terminan muriendo. Estas células pueden expresar algunos marcadores neuronales como N-CAM, L1 y MAP-2, pero la expresión de genes tardíos como TAG-1 y astrotactina es eliminada.[13]

Migración

Las neuronas granulares inmaduras que inician la diferenciación celular, comienzan la formación de un axón con la forma característica de T (ubicado hacia lo que será la capa molecular). Este estadio del desarrollo es identificable por la presencia de TAG-1 en el axón en formación. Del otro extremo, se inician translocaciones sucesivas y discretas del núcleo; este proceso de migración desde el EGL hasta el IGL atravesando la capa de células de Purkinje (PCL) implica la interacción y contacto directo entre células gliales de Berman y las neuronas granuales. En 1988, a través de técnicas inmunológicas y de microscopía Edmonson y colaboradores descubrieron la proteína de membrana astrotactina (ASTN1), una glicoproteína de 100 kDa cuya función es estabilizar las uniones temporales entre la astroglia y las neuronas granulares. En este artículo se muestra como los mutantes weaver, mencionados en el apartado anterior no expresan esta proteína y paralelamente son incapaces de unirse a las células gliales de Bergman e iniciar la migración.[14]

Estudios recientes realizados por el grupo de la Dr.Hatten han demostrado la actividad no redundante de la ASTN2. Esta proteína fue descubierta a partir de análisis bioinformáticos de homología. Increíblemente (como la misma autora dice), esta proteína no es expuesta a la superficie celular como su homóloga ASTN1, y por lo tanto no puede tener una función directa en la adhesión neuron-glia. En una primera fase del estudio se mostró el control dinámico en la exocitosis endocitosis de vesículas con ASTN1, esta glicoproteína es exocitada en el área distal del proceso líder (proceso citoplasmático que define la dirección de migración) donde es requerido un punto de adhesión para aplicar las fuerzas que conducen la translocación somática. Una vez se ha dado este movimiento se requiere de ASTN1 en la nueva frontera de migración y la membrana con ASTN1 que se encuentra cerca al núcleo es endocitada para su posterior reciclaje. La ASTN2 interactúa físcamente con la ASTN1 y parece regular la cantidad de ASTN1 que es exportada a la membrana.[15]

 
Tinción de Nissl de cerebelo maduro donde se diferencia la capa molecular(ML), la capa celular de Purkinje (PCL) y la capa granular interna con neuronas granulares(100x)
 
Ampliación que permite comparar el tamaño y morfología de las células de Purkinje(grandes y con gran arborización dendrítrica) y las neuronas granulares (pequeñas, redondas de coloración violeta oscura)(400x)

Además de las interacciones celulares glía-neurona, las células granulares deben establecer una polaridad que dé dirección a la migración y organizar los componentes motores que ejecutan el desplazamiento. Al respecto, Solecki y colaboradores han trabajado en el control de componentes citoesqueléticos en el proceso de migración. En primer lugar se ensambla una caja de microtúbulos alrededor del núcleo, ello es coordinado por el centrosoma. Los movimientos discretos del núcleo son precedidos por el avance del centrosoma en la dirección del proceso líder, lo cual es coordinado molecularmente por el complejo Par6 (actualmente se realizan estudios sobre GTPases que interactúan con el complejo Par6, que puedan contribuir en la explicación de la polaridad en la migración).[16]​ Uno de los mecanismos moleculares encargados directamente en el movimiento es la activación motores actomiosínicos.[17]

Establecimiento de conexiones sinápticas

Terminada la migración, las neuronas se localizan en la capa granular interna, listas para el proceso que las convertirá en neuronas funcionales: las conexiones sinápticas. Los axones con forma de T de la capa molecular dan origen a conexiones con las dendritas de las células de Purkinje, mientras que las fibras musgosas forman terminales nerviosas alrededor de los somas de las neuronas granulares (glomérulos sinápticos).Otro cambio que ocurre en la maduración de las células granulares es la expresión de la subunidad α6 del receptor GABA (Hay que recordar que la modulación electrofisiológica depende de los receptores canal activos, como el receptor GABA) y la expresión de la enzima deshidrogenasa de ácido glutámico (cataliza la descarboxilación del glutamato para sintetizar GABA).[6]​ Piper y colaboradores ha identificado un factor de transcripción que gatilla la expresión de la subunidad α6 del receptor GABA en estas células,[18]​ haciendo pensar que estos cambios en el desarrollo están controlados por cascadas divergentes (la activación de pocos factores de transcripción es responsable de un perfil de expresión genética muy distinto). En las figuras 2 y 3 se muestran cortes de cerebelo adulto, donde se puede identificar la capa granular, la capa decélulas de purkinje y la capa granular interna (IGL)después de la migración y establecimiento de conexiones sinápticas.

Evolución filogenética

El cerebelo aparece en todos los vertebrados pero con diferente grado de desarrollo: muy reducido en peces, anfibios y aves, alcanza su máximo tamaño en los primates especialmente en el hombre.

Anatomía

El cerebelo se encuentra pegado a la pared posterior del tronco del encéfalo y está incluido dentro de un estuche osteofibroso —la celda cerebelosa o subtentorial— formado por una pared superior y otra inferior. La pared superior está constituida por una prolongación de la duramadre denominada tienda del cerebelo y la pared inferior la forman las fosas cerebelosas del hueso occipital recubiertas por la duramadre. Normalmente, el cerebelo de un varón adulto pesa unos 150 g (gramos) y mide 10 cm (centímetros) de ancho, 5 cm de alto y 6 cm en sentido antero-posterior. En los niños la relación entre el volumen del cerebelo y del cerebro es de 1 a 20, mientras que en adultos es de 1 a 8.

Descripción externa

El cerebelo está conformado por dos hemisferios separados por un vermis, tiene forma de cono truncado aplastado en sentido supero-inferior en el cual se pueden diferenciar tres caras: superior, inferior y anterior.

Cara superior

 
Visión superior del cerebelo humano..

La cara superior tiene la forma de un tejido con dos vertientes laterales y está en contacto con la tienda del cerebelo. En la parte central, presenta una elevación alargada en sentido antero-posterior que recibe el nombre de vermis superior. A ambos lados del vermis superior se extienden dos superficie inclinadas y casi planas que constituyen las caras superiores de los hemisferios cerebelosos. La cara superior está separada de la cara inferior por el borde circunferencial del cerebelo. En una vista superior, el borde circunferencial presenta dos escotaduras: una anterior en relación con el tronco del encéfalo, y otra posterior en relación con la hoz del cerebelo. El borde circunferencial del cerebelo está recorrido longitudinalmente por una fisura profunda denominada fisura prima o surco primario.

Cara inferior

 
Visión inferior del cerebelo humano. Donde se ven la cara inferior y la cara anterior del cerebelo.

La cara inferior está directamente apoyada sobre la duramadre que recubre las fosas cerebelosas. Muestra un amplio surco en la línea media denominado vallécula o cisura media que alberga la hoz del cerebelo y en cuyo fondo se encuentra el vermis inferior que es la continuación del superior. Lateralmente a la cisura media se localizan las caras inferiores de las hemisferios cerebelosos, que son convexas hacia abajo. En la parte más anterior y a ambos lados del vermis inferior, los hemisferios cerebelosos presentan una prominencia ovoidea denominada amígdala cerebelosa. Estas amígdalas guardan una estrecha relación con el bulbo raquídeo.

Cara anterior

La cara anterior está íntimamente relacionada con la cara posterior del tronco del encéfalo y para poder verla es necesario seccionar los tres pares de pedúnculos que la unen a ella. Presenta una depresión central que se corresponde con el techo del IV ventrículo y está delimitada por los pedúnculos de ambos lados y por los velos medulares superior e inferior. Por encima de esta depresión asoma el extremo anterior del vermis superior o língula, y por debajo se ve el extremo anterior del vermis inferior o nódulo. A ambos lados del nódulo, y por debajo de los pedúnculos cerebelosos inferiores, hay unas prominencias denominadas flóculos. El nódulo y los folículos están unidos entre sí por el pedúnculo del floculo que, en parte, corre sobre el velo medular inferior.

Divisiones

Hay tres maneras diferentes de dividir el cerebelo: morfológicamente, filogenéticamente y funcionalmente.

Morfológica

 
Sección sagital de encéfalo humano. 1:Língula; 2:Lobulillo central; 3:Culmen; 4:Fisura prima; 5:Declive; 6:Folium; 7:Túber; 8:Pirámide; 9:Úvula; 10:Nódulo (lóbulo floculonodular); 11:Amígdala cerebelosa; A:Lóbulo anterior; B:Lóbulo posterior.

Clásicamente se realiza una división morfológica que es meramente descriptiva de la superficie del cerebelo, y no tiene base funcional ni ontogénica ni ninguna aplicación en la práctica clínica.

La superficie del cerebelo se encuentra surcada por muchas fisuras transversales más o menos paralelas entre sí. Entre ellas hay dos que destacan por ser las más profundas y nos sirven para dividirlo en lóbulos. Una es la fisura prima o primaria que recorre la cara superior y la divide aproximadamente en dos mitades iguales, y la otra es la fisura posterolateral o dorsolateral que se localiza en la cara anterior en posición caudal respecto del nódulo y los flóculos.

Estas fisuras delimitan los tres lóbulos del cerebelo: el anterior, el posterior y el floculonodular. Cada uno de estos lóbulos incluye una porción que forma parte del vermis y otra que forma parte de los hemisferios cerebelosos. La porción del vermis que corresponde a cada lóbulo se subdivide en segmentos a los que, generalmente, se asocia un par de lobulillos situados en los hemisferios cerebelosos. La subdivisión dentro de cada uno de los lóbulos viene determinada por la existencia otras fisuras transversales de menor profundidad.

El lóbulo anterior se sitúa por delante de la fisura prima y abarca parte de la cara anterior y parte de la cara superior. Se subdivide en:

  • Língula (I), que es la porción más anterior del vermis y se une al velo medular superior.
  • Lobulillo central (II y III), que se sitúa justo por encima de la língula y se prolonga a ambos lados mediante las alas del lobulillo central (H II y H III). La fisura que lo separa de la língula recibe el nombre de fisura precentral.
  • Culmen (IV y V), que es la porción más craneal de todo el vermis y se asocia lateralmente con la porción anterior de los lobulillos cuadrangulares (H IV y H V). La fisura que lo separa del lobulillo central se denomina postcentral.

El lóbulo posterior se sitúa entre las fisuras prima y posterolateral y abarca parte de la cara superior y parte de la cara inferior. Se subdivide en:

  • Declive (VI), que desciende desde el culmen hacia atrás y se asocia lateralmente al lobulillo simple o porción inferoposterior del lobulillo cuadrangular (H VI).
  • Folium u hoja del vermis (VII-A), que es una estrecha lámina de unión entre los lobulillos semilunares superiores (o anseriformes; H VII-A) izquierdo y derecho.
  • Túber o tubérculo del vermis (VII-B), que se asocia lateralmente a los lobulillos semilunares inferiores (H VII-A) y a los lobulillos gráciles (delgados o paramedianos; H VII-B), y se sitúa justo por debajo de la fisura horizontal que lo separa del folium.
  • Pirámide del vermis (VIII), que se sitúa por delante del túber y se asocia con los lobulillos digástricos (H VIII-A y B) izquierdo y derecho. La fisura que la separa del túber se llama prepiramidal y la fisura que la separa de la úvula se llama postpiramidal o secundaria.
  • Úvula del vermis (IX), que se encuentra entre las dos amígdalas cerebelosas (H IX) justo por encima de la pirámide.

El lóbulo floculonodular se sitúa por delante de la fisura posterolateral y como su propio nombre indica está formado por el nódulo (X) -que corresponde al vermis- y los flóculos (H X) -que corresponden a los hemisferios-, unidos por el pedúnculo del flóculo.

El término cuerpo del cerebelo se utiliza para denominar a la totalidad del cerebelo, a excepción del lóbulo floculonodular.

El vermis superior está constituido por la língula, el lobulillo central, el culmen, el declive y el folium. El vermis inferior está constituido por el túber, la pirámide, la úvula y el nódulo.

Algunos autores en vez de distinguir tres lóbulos distinguen cuatro: el anterior, el medio, el posterior y el floculonodular. La diferencia radica en que dividen al lóbulo posterior en dos mediante la fisura prepiramidal, de tal forma que por encima de ella se extiende el lóbulo medio y por debajo el lóbulo posterior.

Filogenética

Desde el punto de vista filogenético, el cerebelo puede dividirse en tres porciones: arquicerebelo, paleocerebelo y neocerebelo. Esta división es de gran interés porque cada una de las porciones posee cierta identidad funcional y clínica.

El arquicerebelo. Es la porción filogenéticamente más antigua y se corresponde con el lóbulo floculonodular. Surge durante el desarrollo filogenético al mismo tiempo que el aparato vestibular del oído interno. La mayoría de aferencias que recibe provienen de los núcleos vestibulares y se corresponde en gran medida con el vestíbulocerebelo. Tiene una función de equilibrio.

El paleocerebelo. Es más moderno que el arqueocerebelo y está integrado por la pirámide, la úvula, el lobulillo central con las alas, el culmen y el lobulillo cuadrangular. La mayoría de las aferencias que recibe provienen de la médula espinal y tiene cierta correspondencia con el espinocerebelo. Tiene una función de control postural.

El neocerebelo. Es la parte más moderna y está formado por la totalidad del lóbulo posterior a excepción de la pirámide y la úvula. La mayoría de las aferencias que recibe provienen de la corteza cerebral a través de los núcleos del puente y se identifica con el cerebrocerebelo. Tiene una función de coordinación motora (movimientos voluntarios).

Representación topográfica del cuerpo

Del mismo modo que la corteza somatosensitiva, la corteza motora, los ganglios basales, los núcleos rojos y la formación reticular poseen una representación topográfica de las diferentes partes del cuerpo, esto sucede también en el caso de la corteza cerebelosa. El tronco y el cuello así como las porciones proximales de las extremidades quedan situadas en la región perteneciente al vermis. En cambio, las regiones faciales y las porciones distales de las extremidades se localizan en las bandas paravermianas. Las porciones laterales de los hemisferios cerebelosos (cerebrocerebelo) al igual que el lóbulo floculonodular (vestibulocerebelo), no poseen una representación topográfica del cuerpo.

Estas representaciones topográficas reciben aferencias desde todas las porciones respectivas del cuerpo y también desde las áreas motoras correspondientes en la corteza cerebral y en el tronco del encéfalo. A su vez, devuelven señales motoras a las misma áreas respectivas de la corteza motora y también a las regiones topográficas oportunas del núcleo rojo y de la formación reticular en el tronco del encéfalo.

Estructura interna

De una forma similar al cerebro, el cerebelo puede dividirse en sustancia gris y sustancia blanca. La sustancia gris se dispone en superficie, donde forma la corteza cerebelosa, y en el interior, donde constituye los núcleos profundos. La sustancia blanca se localiza en la parte interna, envolviendo por completo a los núcleos profundos.

Corteza cerebelosa

La corteza cerebelosa tiene una superficie muy extensa, unos 500 cm² (centímetros cuadrados) gracias a los numerosos pliegues o circunvoluciones (folia cerebelli) predominantemente transversales que aumentan unas tres veces su área. Los abundantes surcos y fisuras le dan a la superficie un aspecto rugoso característico.

La corteza está conformada por multitud de unidades histofuncionales conocidas como laminillas cerebelosas. En un corte sagital de una circunvolución del cerebelo visto al microscopio, se puede observar que está integrada por multitud de microcircunvoluciones. Estas microcircunvoluciones son las laminillas cerebelosas, que están constituidas por una fina lámina de sustancia blanca recubierta de sustancia gris.

La sustancia gris periférica de la laminilla cerebelosa tiene un espesor de alrededor de 1 mm (milímetro). Posee una estructura histológica, homogénea en todas sus regiones, constituida por tres capas en las que se distinguen siete tipos fundamentales de neuronas. Al igual que el resto del sistema nervioso, la corteza cerebelosa también posee células gliales y vasos sanguíneos.

Capas de la corteza
 
Esquema de la estructura de la corteza cerebelosa..

En la corteza cerebelosa, de profundo a superficial, se puede distinguir las siguientes capas: capa de células granulares, capa media o de células de Purkinje y capa molecular o plexiforme.

La capa granular es la capa más profunda de la corteza cerebelosa y limita en su zona interna con la sustancia blanca. Debe su nombre a que en ella predominan un tipo de pequeñas neuronas intrínsecas denominadas granos o células granulares del cerebelo. Debido a las características tintoriales de los núcleos de estas células, la capa granular presenta un aspecto linfocitoide (basófilo), aunque de cuando en cuando se pueden apreciar unos pequeños espacios acelulares eosinófilos denominados islotes protoplásmicos. Tiene una anchura variable de 500 en la convexidad a 100 μm (micrómetros) en el surco, siendo la capa de mayor espesor de la corteza cerebelosa.

La capa de las células de Purkinje está constituida por los somas de las células de Purkinje que se disponen en una formando una lámina monocelular. A pocos aumentos presenta una mayor densidad celular en la convexidad de la laminilla que en los surcos. Algunos autores no consideran que las células de Purkinje formen una capa definida y dividen la corteza cerebelosa solo en dos capas: granular y molecular.

La capa molecular recibe su nombre porque contiene principalmente prolongaciones celulares y pocos somas neuronales. Tiene un carácter tintorial eosinófilo (adquiere color rosáceo en los cortes teñidos con hematoxilina-eosina). Su espesor aproximado es de unos 300 a 400 μm y su superficie se halla cubierta por la piamadre.

Tipos neuronales
 
Dibujo de las células de Purkinje (A) y las células granulares (B) en la corteza cerebelosa de una paloma, por Santiago Ramón y Cajal en 1899. Instituto Santiago Ramón y Cajal, Madrid (España).

Las neuronas de la corteza cerebelosa se clasifican en: neuronas principales o de proyección y las intrínsecas o interneuronas. Las principales son aquellas cuyos axones salen de la corteza para alcanzar los núcleos cerebelosos profundos o los núcleos vestibulares. Las intrínsecas son las que extienden sus axones exclusivamente por la corteza. También tenemos que tener en cuenta las fibras aferentes extrínsecas que llegan a la corteza, entre las que destacan las fibras musgosas y las trepadoras.

Las neuronas principales son las células de Purkinje cuya disposición, forma y tamaño son homogéneos en toda la corteza cerebelosa. Se ha calculado que en el cerebelo humano existen unos 30 millones de estas neuronas. Su soma tiene un diámetro de entre 40 y 80 μm (micrómetros). De la parte superior del cuerpo neuronal parte un grueso tronco dendrítico que se ramifica profusamente en ramas de primer, segundo y tercer orden, de forma que constituyen un denso árbol dendrítico característico de estas neuronas. Este árbol dendrítico se extiende por todo el espesor de la capa molecular, con la particularidad de que se arboriza prácticamente en un solo plano, perpendicular al eje transversal de la laminilla. De esta forma en secciones parasagitales se aprecia en toda su extensión las ramificaciones de estas neuronas, mientras que en secciones transversales se observa su arborización como unas pocas y estrechas ramas verticales. Las dendritas se hallan cubiertas de espinas, de modo que se ha calculado que cada célula de Purkinje puede tener de 30 000 a 60 000 espinas. De la parte inferior del soma se origina el axón que, cerca de su origen, se mieliniza, atraviesa la capa de células granulares y, tras emitir colaterales, ingresa en la sustancia blanca. Desde aquí los axones de las células de Purkinje se dirigen hacia los núcleos cerebelosos y vestibulares donde terminan. Las recurrentes axónicas vuelven a la capa de células de Purkinje en cuyas proximidades se arborizan formando los plexos supragangliónico e infragangliónico. Ultraestructuralmente, las células de Purkinje se caracterizan porque su soma muestra abundante retículo endoplásmico rugoso y un aparato de Golgi muy desarrollado. Tanto en el soma como en las dendritas y el axón aparecen frecuentemente cisternas membranosas aplanadas pertenecientes al retículo endoplásmico liso justo por debajo de las membrana (cisternas hipolemnales). Estas cisternas hipolemnales son características de este tipo celular, aunque puede hallarse algunas de ellas en otros tipos de neuronas de gran tamaño.

Las neuronas intrínsecas se distribuyen por las capas granular y molecular. En la capa granular se encuentran tres tipos de células: las células granulares, las grandes células estrelladas —células de Golgi y de Lugaro— y las células monodendríticas o monopolares en penacho. En la capa molecular se hallan las células estrelladas pequeñas —células estrelladas y células en cesta—.

Las células granulares o granos del cerebelo, son las neuronas de menor tamaño de todo el sistema nervioso humano y su soma mide de 5 a 8 μm de diámetro. Se hallan densamente empaquetadas en la capa granular. Son muy numerosas, calculándose que en el cerebelo humano hay unos 50 000 millones de estas neuronas. El soma no posee apenas grumos de Nissl y está ocupado casi por completo por el núcleo, que presenta cromatina densa, lo que provoca una gran cromofilia y es responsable del aspecto linfocitoide de la célula. Los cuerpos neuronales no están recubiertos de glía y se sitúan muy próximos entre sí pero sin presentar sinapsis. Del soma parten cuatro a seis dendritas cortas, de unos 30 μm de longitud, con un trayecto algo flexuoso y sin ramificaciones, que presentan en su interior neurotúbulos y neurofilamentos. Estas dendritas terminan en varias dilataciones que recuerdan a los dedos de una mano, que confluyen en los islotes protoplásmicos y mediante las cuales establece sinapsis con las fibras musgosas. Del soma, o de una de sus dendritas, parte el axón, amielínico en todo su trayecto, que asciende por la capa molecular siguiendo un trayecto ligeramente curvo. Una vez alcanzada la superficie de la capa molecular, el axón se ramifica en T dando origen a dos fibras denominadas fibras paralelas. Estas fibras paralelas llevan un trayecto transversal, es decir paralelo al eje de la laminilla y perpendicular a la arborización dendríticas de las células de Purkinje. Las fibras paralelas llegan a medir de 2 a 3 mm (milímetros) de longitud, lo que resulta extraordinario para una neurona con un soma tan pequeño. Normalmente, los granos más profundos son los que tienen los axones más gruesos y dan origen a las fibras paralelas más profundas. Mediante las fibras paralelas, las células granulares, hacen sinapsis en passant con las espinas dendríticas de las células de Purkinje, de forma que una sola células granular puede contactar con un número variable (50 a 100) de células de Purkinje y, a su vez, cada una de estas recibe impulsos de unas 200 000 a 300 000 fibras paralelas. Esta disposición recuerda a la de los postes y los cables de un tendido eléctrico. Además las fibras paralelas hacen también sinapsis "en passant" sobre las dendritas de las células de Golgi, las células en cesta y las estrelladas. Las células granulares reciben sus aferencias de las rosetas de las fibras musgosas y de los axones de las células de Golgi. Ambos tipos de terminales hacen sinapsis sobre las varicosidades digitiformes de las células granulares formando, en conjunto, lo que se denomina glomérulo cerebeloso.

Bajo el nombre de grandes células estrelladas se incluyen a todas aquellas neuronas, distintas de los granos y de las células monodendríticas en penacho, que se sitúan en la capa granular.

Las células de Golgi son de un tamaño algo menor a las células de Purkinje y su número es similar al de estas últimas neuronas. Su soma tiene forma estrellada y se halla preferentemente situado en la zona superficial de la capa de células granulares. Contiene abundantes grumos de Nissl y neurofibrillas, y un retículo endoplásmico liso y un aparto de Golgi casi tan ricos como los de la célula de Purkinje; en cambio, las cisternas hipolemnales son muy escasas. Presenta un núcleo escotado, con cromatina laxa y un prominente nucléolo excéntrico. Sus dendritas, en número de cuatro o cinco, parten en dirección horizontal o descendente, se incurvan y se dicotamizan adoptando en conjunto la forma de un ramillete no muy tupido, que se proyecta hacia la capa molecular. Las espinas dendríticas no son muy abundantes. A medida que nos alejamos del soma, las dendritas van disminuyen su contenido en orgánulos y en las regiones más distales solo hay haces de neurotúbulos y algo de retículo endoplásmico liso. A diferencia de la célula de Purkinje, el campo dendrítico de la célula de Golgi se dispone en las tres dimensiones y comprende un amplio territorio abarcando un área de unas 20 células de Purkinje. De la región basal de la célula o de uno de los troncos dendríticos principales parte un axón con forma de plexo ramificado, extraordinariamente denso, situado en la capa de células granulares. El plexo axónico de las células de Golgi presenta tres tipos básicos de arborización con una correspondencia funcional perfecta. En el primer tipo, el plexo axónico cubriría un campo similar al campo dendrítico; en el segundo tipo, el axón se extendería mucho más pero sin salirse de la laminilla; en el tercer tipo, se originan dos plexos, uno en la propia laminilla y otro en la vecina. El plexo axónico acaba en numerosos grupos de terminaciones arracimados que confluyen en los islotes protoplásmicos y hacen sinapsis con las dendritas de las células granulares. Las células de Golgi reciben sus aferencias de las fibras musgosas y las fibras trepadoras y, en menor proporción, de otras neuronas como las células granulares. Un tipo característico de sinapsis son las axo-somáticas formadas por una dilatación de las fibras musgosas que se incrusta en cuerpo de una célula de Golgi, quedando casi envuelta por su citoplasma.

Las células de Lugaro no son tan conocidas ni están tan estudiadas como otros tipos neuronales del cerebelo. Se caracterizan por tener un gran soma fusiforme localizado justo por debajo de la capa de células de Purkinje. Tienen largas dendritas opositopolares rectilíneas o en abanico, que se extienden siguiendo un plano transversal y cubriendo un campo que alberga 1 o 2 hileras completas de células de Purkinje. Su axón se bifurca en un amplio plexo arrosariado que se extiende desde la zona superior de la capa granular hasta la superficie de la capa molecular, dispuesto en un plano sagital.

Aparte de las células de Golgi y de Lugaro, hay otros tipos de células que también son grandes células estrelladas. Se trata de elementos aberrantes y, por lo tanto, muy infrecuentes y con escaso significado funcional. Son células de Golgi, células de Purkinje y neuronas de proyección de los núcleos profundos, en una situación ectópica.

Las células monodendríticas en penacho son un nuevo tipo celular descrito recientemente. Se encuentran en la capa granular, presentan un soma esférico y un único tronco dendrítico que termina en una corta arborización en penacho.

Las células estrelladas pequeñas pueden ser superficiales (células estrelladas) o profundas (células en cesta).

Las células en cesta son un tipo especial de células estrelladas pequeñas a las que Cajal denominó «pequeñas estrelladas profundas». En el cerebelo humano, hay alrededor de 90 millones de células en cesta. Se caracterizan porque su soma tiene forma triangular o estrellada con unos 10 a 20 μm de diámetro y se sitúa en la mitad interna de la capa molecular justo por encima de las células de Purkinje. Tiene una núcleo lobulado y excéntrico, y su citoplasma posee unas pocos orgánulos concentradas en el polo opuesto al núcleo. Los grumos de Nissl y las cisternas hipolemnales son escasas, y el aparato de Golgi y el retículo endoplásmico liso están poco desarrollados. Sus dendritas pueden ser descendentes aunque lo normal es que asciendan hasta el tercio superior de la capa molecular, miden entre 100 y 200 μm de longitud, y se orientan en el mismo plano, aproximadamente, que las células de Purkinje. Las dendritas son rectilíneas, casi sin ramificaciones y con espinas, aunque mucho menos abundantes y más groseras que las de las células de Purkinje. Tienen abundantes neurotúbulos, neurofilamentos y retículo endoplásmico liso hasta en sus porciones más distales, y mitocondrias, retículo endoplásmico rugoso y aparato de Golgi en los principales tronco dendríticos. El axón, que puede alcanzar 1 mm (milímetro) de longitud, tras recorrer un trayecto horizontal en el plano sagital, aumenta de calibre, emite colaterales a la capa molecular y finaliza en una serie de terminales que rodean los somas de las células de Purkinje estableciendo numerosos contactos sinápticos. Estos terminales axónicos forman una especie de cesta -por lo que estas neuronas reciben su característico nombre- confluyendo sus extremos en la base del soma de la célula de Purkinje donde forman un pincel que rodea el segmento inicial del axón. Cada axón de una célula en cesta puede dar origen a unas diez cestas perisomáticas, mientras que varias células en cesta contribuyen a formar los nidos pericelulares de una célula de Purkinje. En contraposición a las otras neuronas del cerebelo, los campos axónicos de las células en cesta presentan una notable superposición. Las aferencias de las células en cesta provienen principalmente de las fibras trepadoras y paralelas, así como de células estrelladas, de colaterales del plexo supragangliónico de las células de Purkinje y de otras células en cesta.

Dentro de las células estrelladas se distinguen varios tipos diferentes, aunque su morfología general es esencialmente similar en todas ellas. Su soma es estrellado o poligonal y se sitúa en la parte externa de la capa molecular. Tiene un núcleo con cromatina laxa y un citoplasma con escasos orgánulos. Su axón, después de un tramo inicial de 5 a 6 μm de longitud, se ramifica cerca del soma formando un plexo que termina haciendo sinapsis sobre diferentes zonas de la célula de Purkinje y sobre otras interneuronas. Sus dendritas se originan de cinco o seis troncos principales y se ramifican en el plano transversal formando un plexo varicoso provisto de espinas que se extiende por la capa molecular recibiendo sinapsis de las fibras paralelas y trepadoras además de otras células estrelladas y de células en cesta. Además hay otras células estrelladas que son algo más grandes y presentan un aspecto muy similar al de las células en cesta llegando a participar en la formación de las cestas perisomáticas aunque sin formar parte del pincel.

Fibras extrínsecas

Las fibras extrínsecas son los axones mielínicos aferentes que alcanzan la corteza cerebelosa desde otras regiones del sistema nervioso central. Las más importantes son las fibras musgosas y las trepadoras.

Las fibras musgosas son gruesas fibras mielínicas que proceden de numerosas áreas del sistema nervioso como son el ganglio y núcleos vestibulares, la médula espinal, la formación reticular y los núcleos del puente. A través de estas fibras el cerebelo recibe información procedente de, prácticamente, todo el sistema nervioso incluida la corteza cerebral. Entran principalmente por los pedúnculos cerebelosos medio y superior, y dan colaterales para los núcleos profundos, distribuyéndose a continuación por toda la corteza cerebelosa. Las fibras musgosas al llegar a la capa granular siguen un trayecto tortuoso y se dividen en varias ramas que presentan dilataciones arborizadas y varicosas parecidas al musgo y denominadas rosetas o rosáceas. Cada fibra musgosa da origen a unas 20 rosetas que se localizan tanto en el curso de la fibra como en sus terminaciones y bifurcaciones. Estas rosetas hacen sinapsis sobre las dilataciones digitiformes de las células granulares y los axones de las células de Golgi, formando los denominados glomérulos cerebelosos. Además hacen sinapsis con el soma de las células de Golgi.

Las fibras musgosas son gruesas, con abundantes neurotúbulos, neurofilamentos y mitocondrias. Están envueltas en una gruesa vaina de mielina en cuyos nodos de Ranvier se localizan las rosetas.

Las fibras trepadoras son los axones de las neuronas de proyección del núcleo olivar inferior desde donde penetran en el cerebelo por el pedúnculo inferior. Una única neurona del núcleo olivar inferior da origen a unas diez fibras trepadoras. Tienen menor diámetro que las musgosas. Al llegar al cerebelo, estas fibras dan colaterales para los núcleos profundos y luego se distribuyen por toda la corteza cerebelosa donde pierden la mielina. Penetran en la capa granular en línea recta y sin varicosidades dando una o dos colaterales. Alcanzar la capa de células de Purkinje donde cada fibra se superpone a varias células de Purkinje ascendiendo sobre ellas a la vez que se ramifica. Hay una fibra trepadora por cada 5 a 10 células de Purkinje que realiza unas 300 sinapsis con cada neurona. El destino de las colaterales de la capa granular son las dendritas y los somas de las células de Golgi.

Las fibras trepadoras en su porción más distal se hacen finas y amielínicas, con algunos neurofilamentos, pocas mitocondrias y abundantes sinapsis "en passant" con las dendritas de las células de Purkinje. También presentan unos botones muy densos y repletos de vesículas redondeadas que demuestran la existencia de sinapsis entre estas fibras y las dendritas de las células estrelladas y las células en cesta.

Además de las musgosas y las trepadoras, la corteza cerebelosa recibe otras fibras nerviosas aferentes entre las que destacan las procedentes de locus caeruleus, que son noradrenérgicas y se distribuyen por las tres capas, y las que se originan en los núcleos del rafe, que envían serotonina a la capa de células granulares y a la capa molecular.

Glia

En la corteza cerebelosa predominan los astrocitos protoplásmicos entre los que destaca un tipo peculiar de astrocito denominado glia de Bergmann. El soma de esta célula tiene forma irregular y se halla entre las células de Purkinje desde donde parten de dos a tres prolongaciones con gruesas excrecencias protoplásmicas que se extienden por toda la capa molecular y alcanzan la piamadre. Una vez alcanzada la piamadre se adosan a ella mediante unos ensanchamientos que forman la capa limitante de Cajal. Otro tipo especial de astrocitos son las células de Fañanás cuyos somas se sitúan en la capa molecular y sus expansiones no alcanzan la piamadre. Tanto las células de Fañanás como la glia de Bergmann no presentan ninguna pecularidad ultraestructural, expresando ambas positividad para el anticuerpo de la proteína gliofibrilar ácida (GFAP).

En la capa granular se pueden observar astrocitos protoplasmáticos que no aíslan todas las neuronas y que parecen formar círculos alrededor de los glomérulos cerebelosos. Así mismo, existen oligodendrocitos en la capa molecular pero no en la granular.

Núcleos profundos

En el interior de la sustancia blanca podemos encontrar 4 pares de núcleos de sustancia gris, que de medial a lateral son: el núcleo del fastigio (o del techo), el globoso, el emboliforme y el dentado. El emboliforme y el globoso está muy relacionados funcionalmente y en conjunto forman el núcleo interpuesto. Los núcleos vestibulares del bulbo raquídeo también funcionan en ciertos aspectos como si fueran núcleos cerebelosos profundos debido a sus conexiones directas con la corteza del lóbulo floculonodular.

El núcleo del fastigio es una masa gruesa con forma de cometa, ubicada casi en la línea media, justo por encima del techo del IV ventrículo del cual está separado por una delgada capa de sustancia blanca. El núcleo globoso es alargado en sentido anteroposterior y se sitúa entre el núcleo del fastigio y el emboliforme. El núcleo emboliforme tiene forma de coma, con la parte gruesa dirigida hacia delante y se sitúa junto al hilio del núcleo dentado.

El núcleo dentado es el de mayor tamaño y se ha calculado que tiene unas 250 000 neuronas. Es de color gris amarillento y tiene forma de bolsa con pliegues abierta hacia delante y hacia la línea media. La abertura se denomina hilio del núcleo dentado y por él salen la mayor parte de las fibras que forman el pedúnculo cerebeloso superior. En el núcleo dentado se distinguen al menos dos tipos de neuronas: las grandes o de proyección y las pequeñas o interneuronas. Pero los circuitos sinápticos de este núcleo no están claramente establecidos. Tanto las neuronas de proyección como las interneuronas tienen prolongaciones no muy numerosas, largas y poco ramificadas, que les dan un aspecto general estrellado.

El núcleo dentado, como el resto de los núcleos cerebelosos, además de recibir colaterales de fibras que desde otros centros nerviosos llegan al cerebelo, reciben los axones de las células de Purkinje. Cada uno de estos axones finaliza en un dilatado plexo terminal sobre unas 30 neuronas de los núcleos cerebelosos. Los axones de las neuronas de proyección se dirigen a través de los pedúnculos hacia centros nerviosos específicos. No hay conexiones directas de la corteza cerebelosa con el exterior, excepto por algunos axones de las células de Purkinje que alcanzan directamente los núcleos vestibulares.

Sustancia blanca

En un corte sagital del cerebelo, la sustancia blanca adopta una disposición arborescente por lo que a veces se la conoce como árbol de la vida del cerebelo o arbor vitae. Está formada por una masa voluminosa central, denominada cuerpo o centro medular, de la que parten prolongaciones hacia las circunvoluciones del cerebelo denominadas láminas blancas. El cuerpo medular se continúa hacia delante directamente con los pedúnculos, que también están constituidos de sustancia blanca.

Desde el punto de vista histológico, la sustancia blanca del cerebelo está constituida por axones junto con astrocitos fibrosos y abundantes oligodendrocitos productores de la envoltura mielínica. Los axones de la sustancia blanca son tanto fibras eferentes y aferentes como fibras intrínsecas que conectan diferentes áreas corticales entre sí. Las fibras aferentes de la corteza corresponden a axones de las células de Purkinje mientras que las de los núcleos profundos corresponden a axones de las neuronas de proyección de dichos núcleos. Las aferencias corresponden a las fibras musgosas, las trepadoras y las que provienen de los sistemas noradrenérgico y serotoninérgico. Entre las fibras intrínsecas o propias se distinguen dos tipos: las fibras comisurales y las arqueadas o de asociación. Las comisurales cruzan la línea media y conectan las mitades opuestas del cerebelo mientras que las arquedas conectan circunvaluciones cerebelosas adyacentes entre sí.

Sustancia gris

La sustancia gris (o materia gris) corresponde a aquellas zonas del sistema nervioso central de color grisáceo integradas principalmente por somas neuronales y dendritas carentes de mielina junto con células gliales (neuroglia). En la médula espinal se aprecia en su centro y hacia los laterales, en forma de mariposa o letra H, mientras que en el cerebro ocupa la zona externa, con excepción de los internos ganglios basales que sirven como estaciones de relevo. En el cerebro se dispone en su superficie y forma la corteza cerebral, que corresponde a la organización más compleja de todo el sistema nervioso.

Conexiones cerebelosas

Al cerebelo llegan aferencias de todas las vías motoras y de todas las sensitivas, incluyendo la olfatoria[19]​ y de él parten eferencias para controlar todas las vías motoras descendentes. Las eferencias no suelen hacer sinapsis directamente sobre las motoneuronas de la vía final común excepto en las de los músculos extrínsecos del globo ocular. Las eferencias normalmente actúan sobre los núcleos motores del tronco del encéfalo. El número de fibras aferentes cerebelosas es más de 40 veces superior al de fibras eferentes. Todas las conexiones del cerebelo pasan por los pedúnculos.

A continuación se expondrán las principales conexiones que establece el cerebelo ordenadas siguiendo su división funcional. Hay que tener en cuenta que las fibras aferentes, al contrario que las eferentes, no terminan sobre la corteza cerebelosa siguiendo de manera estricta la división funcional.

Aferencias del vestíbulocerebelo

Mayoritariamente provienen del sistema vestibular mediante dos tractos: el vestibulocerebeloso directo o de Edinger y el vestíbulocerebeloso indirecto. También recibe algunas fibras del tracto corticopónticocerebeloso que provienen de la corteza visual del lóbulo occipital (fibras occipitopónticocerebelosas).

El tracto vestibulocerebeloso directo o de Edinger está formado por los axones de las neuronas localizadas en el ganglio vestibular o de Scarpa, que llegan preferentemente al nódulo y algunas a la banda vermiana. No pasa por los núcleos vestibulares, no se decusa en su trayecto y entra directamente por el pedúnculo inferior. Transmite información sobre la posición de la cabeza y las aceleraciones lineales y angulares que sufre el cuerpo.

El tracto vestibulocerebeloso indirecto está formado por los axones de las neuronas asentadas en los núcleos vestibulares superior y medial, que van a terminar en los flóculos y, en menor medida, en la banda vermiana. No se decusa en su trayecto y entra por el pedúnculo inferior. Transmite información sobre la posición de la cabeza y las aceleraciones lineales y angulares que sufre el cuerpo.

Eferencias del vestíbulocerebelo

Los principales tractos de fibras que parten del vestíbulocerebelo son: el cerebelovestibular, el floculooculomotor y el uncinado de Russell.

El tracto cerebelovestibular está formado por fibras directas y cruzadas que se origina en los flóculos y que salen del cerebelo por el pedúnculo inferior para alcanzar los núcleos vestibulares medial y lateral. Regula la actividad de los tractos vestibuloespinales medial y lateral.

El tracto floculoculomotor se origina en los flóculos, se decusa en pleno cerebelo, sale por el pedúnculo superior y asciende por el tronco del encéfalo hasta llegar al núcleo del nervio oculomotor (o motor ocular común). Controla los movimientos del globo ocular.

El tracto uncinado de Russell se origina en los flóculos, se cruza y se dirige cranealmente hacia el pedúnculo cerebeloso superior. Pero antes de alcanzar ese pedúnculo, cambia bruscamente de dirección formando una especie de gancho y termina saliendo por el inferior. Acaba en los núcleos vestibulares. En su trayecto en el cerebelo emite colaterales que salen por el pedúnculo superior y alcanzan los núcleos de los nervios motores oculares, la formación reticular y el hipotálamo. Controla los movimientos del globo ocular y la actividad de los tractos vestíbuloespinales.

Aferencias del espinocerebelo

Las aferencias del espinocerebelo proceden de tres zonas del neuroeje: la médula espinal, el bulbo raquídeo y el mesencéfalo.

A nivel de la médula espinal las aferencias llegan por medio de los tractos espinocerebelosos posterior y anterior. Estos tractos son capaces de transmitir impulsos nerviosos más rápido que cualquier otra vía del SNC alcanzando una velocidad de 120 m/s (metros por segundo). Esta rapidez es necesaria para que llegue al cerebelo la información sobre los cambios ocurridos en los grupos musculares periféricos y poder coordinarlos a tiempo.

El tracto espinocerebeloso anterior (ventral) o de Gowers se origina en la médula, en neuronas que se asientan en la zona lateral de la base del asta posterior, entre los últimos segmentos lumbares y los sacrococcígeos. Algunas de sus fibras cruzan la comisura gris para ascender por el cordón lateral del lado contrario, donde se sitúa próximo a la superficie medular. Las pocas fibras que no se cruzan ascienden por el cordón lateral del mismo lado. Todas sus fibras atraviesan el bulbo y el puente, y llegan hasta la zona más caudal del mesencéfalo donde cambian bruscamente de dirección para entrar al cerebelo por el pedúnculo superior. Alcanza el vermis y las bandas paravermianas de ambos lados. Transmite información propioceptiva inconsciente y exterioceptiva de la extremidad inferior.

El tracto espinocerebeloso posterior (dorsal) o de Flechsing está formado por axones de neuronas cuyo soma se localiza en la columna torácica o núcleo de Stilling-Clarke. Asciende por el cordón lateral pegado a la superficie y justo por detrás del tracto espinocerebeloso anterior. Al alcanzar el bulbo penetra en el cerebelo por el pedúnculo inferior y llega hasta el vermis y la banda paravermiana del mismo lado de su origen. Transmite información propioceptiva inconsciente y exteroceptiva procedente del tronco y la extremidad inferior.

A nivel del bulbo raquídeo las aferencias llegan por medio de los tractos cuneocerebeloso, olivocerebeloso y reticulocerebeloso.

El tracto cuneocerebeloso está formado por los axones de las neuronas que asientan en el núcleo cuneiforme accesorio (fibras arqueadas externas posteriores). Asciende por el bulbo raquídeo sin decusarse y mezclado con el tracto espinocerebeloso posterior. Entra por el pedúnculo cerebeloso inferior y acaba en el vermis y en la banda paravermiana del mismo lado. Transmite la sensibilidad propioceptiva inconsciente y exteroceptiva de la mitad superior del cuerpo.

El tracto olivocerebeloso es la conexión más importante que se establece entre bulbo raquídeo y cerebelo. Está formado por axones de las neuronas del núcleo olivar inferior y de los núcleos olivares accesorios. Estos núcleos reciben información somatoestésica, visual y de la corteza cerebral además de recibir aferencias vestibulares y del propio cerebelo. Al poco de originarse, el tracto olivocerebeloso se decusa totalmente y entra en el cerebelo por el pedúnculo inferior. Termina proporcionando fibras trepadoras para toda la corteza cerebelosa. Transmite al cerebelo la información recibida por los núcleos olivares.

El tracto reticulocerebeloso está formado por axones de neuronas localizadas en la formación reticular bulbar y póntica. Parte de las fibras se cruzan y otra parte van directas. Entra por el pedúnculo cerebeloso inferior y alcanza principalmente el espinocerebelo aunque también manda algunas fibras para el cerebrocerebelo. Transmite información compleja, tanto de la periferia como de la corteza cerebral y otras partes del sistema nervioso central.

A nivel del mesencéfalo las aferencias llegan por medio de los tractos tectocerebeloso, trigeminocerebeloso y rubrocerebeloso.

El tracto tectocerebeloso está formado por los axones de las neuronas de los tubérculo cuadrigéminos superiores e inferiores. Entran en el cerebelo a través del pedúnculo superior del mismo lado y terminan en la parte media del vermis. Transmite información visual y acústica proveniente de la corteza cerebral.

El tracto trigeminocerebeloso está formado por axones de neuronas del núcleo mesencefálico del nervio trigémino que entran al cerebelo a través del pedúnculo superior sin decusarse por el camino. Terminan en el vermis y en la banda vermiana del mismo lado de su origen. Transmite información propioceptiva del macizo craneofacial.

El tracto rubrocerebeloso está formado por axones de neuronas asentadas la porción parvocelular del núcleo rojo que se decusan en su totalidad antes de alcanzar el cerebelo por el pedúnculo superior.

Eferencias del espinocerebelo

Las principales referencias que parten del espinocerebelo son: el tracto interpuestorreticular, el tracto interpuestoolivar, el tracto interpuestotectal y el tracto interpuestorrúbrico.

El tracto interpuestorreticular se origina en el núcleo interpuesto, sus fibras se decusan parcialmente y salen del cerebelo por los pedúnculos inferiores para alcanzar los núcleos de la formación reticular.

El tracto interpuestoolivar sale por el pedúnculo cerebeloso superior, se decusa en su totalidad a nivel del mesencéfalo y desciende por el tronco del encéfalo para alcanzar el núcleo olivar inferior.

El tracto interpuestotectal se decusa parcialmente antes de salir por el pedúnculo cerebeloso superior y ascender por el tronco del encéfalo hasta alcanzar los tubérculos cuadrigéminos superior e inferiores.

El tracto interpuestorrúbrico es la eferencia más importante del espinocerebelo y principal vía de descarga del núcleo interpuesto. Las fibras que lo conforman salen del cerebelo por el pedúnculo superior, se decusan en su totalidad en el mesencéfalo y alcanzan el núcleo rojo contralateral. Desde el núcleo rojo parten axones hacia el núcleo ventral intermedio del tálamo que, a su vez, envía axones para la corteza cerebral motora y sensorial. Controla la actividad de las vías motoras que descienden hasta la médula espinal.

Aferencias del cerebrocerebelo

Todas las aferencias que recibe el cerebrocerebelo forman parte del tracto corticoponticocerebeloso. Este tracto se origina en una amplia zona de la corteza cerebral que abarca los lóbulos frontal, parietal, occipital y temporal, y antes de entrar en el cerebelo hace sinapsis en los núcleos del puente.

La mayoría de las fibras que van desde la corteza hacia los núcleos del puente son colaterales de axones que se dirigen hacia otras zonas del encéfalo o hacia la médula espinal y cuyo cuerpo neuronal se sitúa en la capa V del cortex cerebral. Estas fibras se pueden dividir, según su origen, en: frontopónticas, parietopónticas, occipitopónticas y temporopónticas.

Las fibras frontopónticas se originan en las cortezas motora y premotora, y pasan por el brazo anterior de la cápsula interna. En el mesencéfalo, discurren por la base de los pedúnculos cerebrales medialmente al tracto corticonuclear. Terminan en los núcleos del puente más mediales.

Las fibras parietopónticas se originan en las áreas somatosensitivas primaria y secundaria y en áreas visuales. Pasan por el brazo posterior de la cápsula interna y luego por la base de los pedúnculos cereberales lateralmente al tracto corticoespinal. Terminan en los núcleos del puente más laterales.

Las fibras occipitopónticas se originan en áreas secundarias relacionadas con el procesamiento de estímulos visuales del movimiento (corriente magnocelular de la vía óptica). Pasan por la porción retrolenticular de la cápsula interna y luego por la base de los pedúnculos cereberales lateralmente al tracto corticoespinal. Terminan en los núcleos del puente más laterales.

Las fibras temporopónticas pasan por la porción sublenticular de la cápsula interna y a nivel del mesencéfalo se colocan lateralmente al tracto corticoespinal. Termina en los núcleos del puente más laterales.

Las fibras que van desde los núcleos del puente al cerebelo (fibras pontocerebelosas) siguen un trayecto horizontal por la protuberancia, se decusan y entran por el pedúnculo medio. Terminan en la corteza de los hemisferios y en el núcleo globoso.

Eferencias del cerebrocerebelo

La mayoría de las eferencias del cerebrocerebelo salen por el tracto dentadotalámico. Este tracto está formado por los axones de las neuronas localizadas en el núcleo dentado, que salen del cerebelo por el pedúnculo superior. Se decusan en la porción caudal del mesencéfalo (decusación de Wernekink) y terminan en el núcleo ventral intermedio del tálamo. Desde el tálamo parten fibras tálamocorticales que alcanzan las misma áreas de la corteza cerebral de las que partieron las aferencias corticoponticocerebelosas.

Existe un grupo de fibras denominadas dentadorrúbricas, que partiendo del núcleo dentado salen por el pedúnculo cerebeloso superior, se decusan y alcanzan el núcleo rojo contralateral.

Aferencias procedentes de los sistemas monoaminérgicos

El cerebelo, al igual que otras partes del SNC, recibe fibras de los sistemas neuroquímicos moduladores. Concretamente de dos de los sistemas monoaminérgicos: el noradrenégico y el serotoninérgico.

El sistema noradrenérgico manda el tracto caeruleocerebeloso desde el grupo A6 (que coincide con el locus caeruleus) hacia el cerebelo. Este tracto penetra por el pedúnculo superior y termina distribuido por todos los núcleos y la corteza. Sus fibras no se comportan como fibras musgosas ni como trepadoras sino como proyecciones difusas.

El tracto serotoninérgico cerebeloso se origina en los grupos B5 y B6, entra por el pedúnculo medio y termina distribuido por todos los núcleos y la corteza. Sus fibras acaban en proyecciones difusas.

Pedúnculos

El cerebelo se fija a la cara posterior del tronco del encéfalo mediante 3 pares de pedúnculos por los que discurren todas las fibras nerviosas que entran y salen de él. Hay dos pedúnculos inferiores, dos pedúnculos medios y dos pedúnculos superiores.

Pedúnculos cerebelosos inferiores

Los pedúnculos cerebelosos inferiores o cuerpos restiformes conectan el cerebelo con la parte superior del bulbo raquídeo. Entre ellos se extiende el velo medular inferior. Por ellos entran las fibras del tracto espinocerebeloso dorsal, las del tracto cuneocerebeloso, las de los tractos vestibulocerebelosos, las del tracto reticulocerebeloso y las fibras trepadoras provenientes del núcleo olivar inferior y accesorios (tracto olivocerebeloso). A través de ellos salen las fibras del tracto cerebelovestibular, las del tracto uncinado de Russell y las del tracto interpuestorreticular.

Pedúnculos cerebelosos medios

Los pedúnculos cerebelosos medios o pontinos conectan el cerebelo con la protuberancia o puente. Son los más grandes y están separados de los pedúnculos superiores por el surco interpeduncular. Constituyen las caras laterales de la protuberancia. Por ellos entran las fibras del tracto corticopontocerebeloso y las del tracto serotoninérgico cerebeloso. A través de ellos no salen fibras eferentes importantes.

Las fibras de los pedúnculos medios se organizan en tres fascículos: superior, inferior y profundo.

El fascículo superior, el más superficial, deriva de las fibras transversales superiores de la protuberancia. Se dirige dorsal y lateralmente, cruzando superficialmente a los otros dos fascículos. Se distribuye principalmente por los lobulillos de la cara inferior de los hemisferios cerebelosos y por las porciones adyacentes de la cara superior.

El fascículo inferior está constituido por las fibras transversales inferiores de la protuberancia. Pasa profundamente al fascículo superior y se continúa hacia atrás y hacia abajo más o menos paralelo a él. Se distribuye por los lobulillos de la cara inferior en las porciones cercanas al vermis.

El fascículo profundo incluye la mayor parte de las fibras transversas profundas de la protuberancia. En sus primeros tramos está cubierta por los fascículos inferior y superior, pero termina por cruzarse oblicuamente y aparece al lado medial del fascículo superior, de quien recibe un paquete de fibras. Sus fibras se disgregan y acaban en los lobulillos de la parte anterior del cara superior. Las fibras de este fascículo cubren a las del cuerpo restiforme.

Pedúnculos cerebelosos superiores

Los pedúnculos cerebelosos superiores conectan el cerebelo con el mesencéfalo. Entre estos dos pedúnculos se extiende el velo medular superior. Por ellos entran las fibras del tracto espinocerebeloso ventral, las del tracto tectocerebeloso, las del tracto trigeminocerebeloso, las del tracto rubrocerebeloso y las del tracto caeruleocerebeloso. A través de ellos salen las fibras del tracto floculooculomotor, las del interpuestoolivar, las del interpuestorrúbrico, las del interpuestotectal, las del tracto dentadotalámico, las dentadorrúbricas y las colaterales del uncinado de Russell.

Irrigación arterial

Hay tres pares de arterias principales que irrigan el cerebelo: las arterias cerebelosas superiores (SCA), las arterias cerebelosas inferoanteriores (AICA) y las arterias cerebelosas inferoposteriores (PICA).

Arteria cerebelosa superior

Se origina de la arteria basilar justo por debajo del lugar donde esta se divide en sus dos ramas terminales. Se dirige lateralmente y hacia atrás contorneando el pedúnculo cerebeloso correspondiente, a la altura del surco pontomesencefálico. Pasa inmediatamente por debajo del nervio motor ocular común (III) y atraviesa la cisterna ambiens acompañando al nervio troclear (IV). Sus ramas terminales discurren por la piamadre, entre la tienda del cerebelo y la cara superior del cerebelo. Se anastomosa con las arterias cerebelosas inferiores. Irriga la corteza cerebelosa de la cara superior y los núcleos profundos, así como los pedúnculos cerebeloso superiores y medios.

Cuando contornea el mesencéfalo, la arteria cerebelosa superior da la arteria romboidal que sigue el pedúnculo cerebeloso superior y penetra en el interior del cerebelo para irrigar a los núcleos profundos. También da varias ramas colaterales que llegan hasta la glándula pineal, el velo medular superior y la tela coroidea del III ventrículo.

Arteria cerebelosa anteroinferior

Se origina de la arteria basilar justo por encima del lugar donde esta se forma por la unión de las dos arterias vertebrales. Se dirige lateralmente y hacia atrás, contorneando la cara lateral del puente justo por debajo del origen aparente del nervio trigémino (V). Sigue su trayecto por el borde inferior del pedúnculo cerebeloso medio. Irriga la porción anterior de la cara inferior del cerebelo, así como los nervios facial (VII) y vestibulococlear (VIII). Sus ramas terminales se anastomosan con las de las arterias cerebelosas inferoposterior y superior.

En algunas personas, la arteria cerebelosa inferior emite la arteria laberíntica o auditiva interna (en otras personas la arteria laberíntica se origina en la arteria basilar). Esta rama acompaña al nervio vestíbulococlear (VIII) a través del conducto auditivo interno hasta alcanzar el oído medio.

Arteria cerebelosa posteroinferior

Se origina de las arterias vertebrales justo por debajo del lugar donde estas se unen para formar la arteria basilar. Se dirige hacia atrás rodeando la parte superior del bulbo raquídeo y pasando entre el origen del nervio vago (X) y el nervio accesorio (XI). Sigue su trayecto sobre el pedúnculo cerebeloso inferior y cuando alcanza la cara inferior del cerebelo se divide en dos ramas terminales: una medial y otra lateral. La rama medial se continúa hacia atrás por la cisura media, entre los dos hemisferios cerebelosos. La rama lateral se distribuye por la superficie inferior de los hemisferios hasta llegar al borde circunferencial, donde se anastomosa con las arterias cerebelosas inferoanterior y superior.

Irriga la parte posterior de la cara inferior del cerebelo, el pedúnculo cerebeloso inferior, el núcleo ambiguo, el núcleo motor del nervio vago, el núcleo espinal del nervio trigémino, el núcleo solitario, los núcleos vestibulares y los núcleos cocleares.

Sus ramas colaterales más importantes son la rama coroidea del IV ventrículo y las ramas bulbares medial y lateral. La primera contribuye al plexo coroideo del IV ventrículo, y las otras dos irrigan el bulbo raquídeo y el pedúnculo cerebeloso inferior.

Drenaje venoso

Las principales venas que drenan la sangre del cerebelo son: las venas superiores del cerebelo, la vena superior del vermis, la vena precentral del cerebelo, las venas inferiores del cerebelo, la vena inferior del vermis y las venas petrosas. Todas ellas terminan por enviar la sangre a senos venosos de la duramadre.

Las venas superiores del cerebelo recogen la sangre de la porción lateral de la cara superior de los hemisferios cerebelosos y normalmente desembocan en el seno transverso.

La vena superior del vermis recoge la sangre del vermis superior y desemboca en el seno recto a través de la vena cerebral interna o la vena cerebral magna (vena de Galeno).

La vena precentral del cerebelo recoge la sangre de la língula y del lobulillo central, y desemboca en la vena cerebral magna.

Las venas inferiores del cerebelo recogen la sangre de la porción lateral de la cara inferior de los hemisferios cerebelosos y desembocan en los senos transverso, occipital y petroso superior.

La vena inferior del vermis recoge la sangre del vermis inferior y desemboca directamente en el seno recto.

Las venas petrosas recogen la sangre de la región del flóculo y desembocan en el seno petroso inferior o en el superior.

Sistematización de las caras del cerebelo
  1. superior lóbulo occipital
  2. anterior tallo cerebral
  3. posterior protuberancia occipital interna bordes laterales
  4. inferior fosa cerebelosa
  5. lingula espino-talámico-dorsal vía propioseptiva inconsciente del dolor brazos y piernas

Circuitos neuronales

En conjunto, las conexiones neuronales del cerebelo se pueden dividir en: axones aferentes, que transmiten la información de otras partes del SNC al cerebelo; circuitos cerebelosos intrínsecos —corticales y nucleares—, que integran y procesan la información; y axones eferentes, que transmiten la información procesada a otras partes del SNC.

Los axones o fibras aferentes alcanzan la corteza cerebelosa tras dar colaterales para los núcleos cerebelosos profundos o para los núcleos vestibulares. A su vez, la información es procesada en los circuitos intrínsecos de la corteza cerebelosa, y el resultado, en forma de impulsos nerviosos, es enviado por los axones de las células de Purkinje a los núcleos profundos. En estos núcleos la información también se procesa y de ellos parten las fibras eferentes del cerebelo tanto en dirección ascendente, hacia el tálamo y corteza, como descendente, hacia la médula espinal.

De esta forma el circuito funcional básico del cerebelo que constituido por dos arcos: uno principal o excitador, que pasa por los núcleos profundos, y otros secundario o inhibidor, que pasa por la corteza y regula al anterior. Este circuito se repite unas 30 millones de veces en todo el cerebelo y está formado por una sola célula de Purkinje y la neurona nuclear de proyección correspondiente más las interneuronas relacionadas con ellas.

El circuito funcional básico y los elementos celulares que lo conforman son idénticos en todas las partes del cerebelo, por este motivo se considera que la información se procesa de forma similar en todo el cerebelo.

Circuitos neuronales de los núcleos profundos: arco principal

El arco principal está constituido por las ramas colaterales de las fibras musgosas y trepadoras, que terminan en las neuronas de los núcleos profundos. Los axones de las neuronas de proyección de los núcleos profundos salen del cerebelo a través de los pedúnculos para terminar en diferentes núcleos del tronco del encéfalo y en el tálamo.

En los núcleos profundos se encuentran principalmente sinapsis axodendríticas y algunas axosomáticas, aunque también existen disposiciones más complejas como sinapsis en serie y tríadas. La sinapsis más frecuente es la sinapsis axodendrítica excitadora que se establece entre un terminal de las colaterales axónicas de las fibras musgosas o trepadoras —como elemento presináptico— y una dendrita de una neurona de proyección o una interneurona de los núcleos profundos —elemento postsináptico—. Las colaterales de las fibras musgosas y las fibras trepadoras usan como neurotransmisor principal el glutamato, aunque también pueden utilizar otros neurotransmisores (en espacial las fibras musgosas). Los circuitos sinápticos que se realizan entre las propias neuronas de los núcleos profundos son poco conocidos.

Desde el punto de vista funcional, los núcleos profundos del cerebelo poseen dos tipos básicos de neurona de proyección: unas neuronas gabaérgicas (inhibidoras) y pequeñas que mandan su axón hacia el núcleo olivar inferior, y otras neuronas glutaminérgicas (excitadoras) que mandan sus axones a otros centros nerviosos.

Las neuronas de proyección de los núcleos profundos en condiciones normales disparan permanentemente potenciales de acción a una frecuencia de más de 100 por segundo. Esta frecuencia puede modularse al alza o a la baja dependiendo de las señales excitadoras e inhibidoras que le lleguen a la neurona. Las señales excitadoras provienen principalmente de las colaterales axónicas de las fibras musgosas y trepadoras, mientras que las señales inhibidoras provienen de los axones de las células de Purkinje, que forman parte del arco secundario. El equilibrio entre estos dos efectos es ligeramente favorable a la excitación, lo que explica por qué la frecuencia de descargas de las neuronas de proyección se mantiene relativamente constante a un nivel moderado de estimulación continúa.

Circuitos neuronales de la corteza cerebelosa: arco secundario

El arco secundario pasa a través de la corteza cerebelosa y está constituido en torno a una pieza neural fundamental: la célula de Purkinje. En la célula de Purkinje terminan dos tipos de circuitos: los circuitos excitadores o principales, que son los que la estimulan, y los circuitos inhibidores, formados por interneuronas inhibidoras. Finalmente, los axones de las células de Purkinje se proyectan sobre las neuronas de los núcleos cerebelosos y vestibulares, ejerciendo sobre ellos una acción inhibitoria mediante sinapsis gabaérgicas. De esta forma se modula y regula el arco principal excitador.

A todo esto hay que añadir que las terminaciones noradrenérgicas que llegan al cerebelo liberan un neurotransmisor de forma difusa que produce una hiperpolarización de las células de Purkinje.

Circuitos excitadores

Las células de Purkinje pueden ser estimuladas por dos vías distintas: mediante las fibras trepadoras (vía directa) o mediante las fibras musgosas (vía indirecta).

Las fibras trepadoras, al terminar sobre el soma y el árbol dendrítico de las células de Purkinje, producen una estimulación directa y muy específica mediante sinapsis tipo I de Gray que utilizan como neurotransmisor el glutamato. Al formar múltiples contactos con cada célula de Purkinje, una sola fibra trepadora produce una acción excitadora mucho más eficaz que las fibras musgosas.

Las fibras musgosas no actúan de forma directa sobre las células de Purkinje sino que lo hacen a través de unas interneuronas excitatorias, las células granulares. La presencia de interneuronas excitatorias es muy infrecuente en el sistema nervioso y es característica de la corteza cerebelosa. A nivel del glomérulo cerebeloso, las fibras musgosas hacen sinapsis tipo I de Gray (excitadoras) sobre las dendritas de las células granulares y los impulsos son vehiculados por las fibras paralelas hasta alcanzar las dendritas de las células de Purkinje. Las fibras paralelas presentan sinapsis que contienen vesículas esféricas con glutamato y conformación tipo I de Gray, lo que concuerda con su carácter excitador. En conjunto, las fibras musgosas actúan sobre las células de Purkinje con mucha convergencia y divergencia, estableciendo conexiones más inespecíficas que las fibras trepadoras.

Las células de Purkinje no cumplen el principio que dice que todos los potenciales de acción producidos por una neurona son iguales porque presenta dos tipos de potenciales de acción distintos dependiendo de la vía por la cual sean estimuladas. Si se estimulan de manera directa a través de las fibras trepadoras, generan una despolarización prolongada y un potencial de acción de pico complejo con una frecuencia de descarga de 3 o 4 Hz. Al ser estimuladas por la vía indirecta a través de las fibras musgosas generan un potencial de acción breve denominado pico sencillo, con una frecuencia de descarga de 100 a 200 Hz. Para generar un pico sencillo es necesaria la suma temporal y espacial de la estimulación producida por varias fibras paralelas. Todo esto demuestra que la información aportada por los dos tipos de fibras extrínsecas que llegan al cerebelo es diferente y es procesada de manera distinta.

Circuitos inhibidores

Los circuitos inhibidores están constituidos por los tres tipos fundamentales de interneuronas inhibitorias: las células de Golgi, las células estrelladas y las células en cesta. Pueden actuar directamente sobre las células de Purkinje —como lo hacen las células estrelladas y las células en cesta— o indirectamente a través de las células granulares —como lo hacen las células de Golgi—. Todas estas interneuronas utilizan GABA como neurotransmisor inhibidor.

Las células estrelladas y las células en cesta son estimuladas por las fibras paralelas de los granos, que previamente han sido estimuladas por las fibras musgosas, y son las encargadas de modular la activación de las células de Purkinje por las fibras trepadoras produciendo un fenómeno de inhibición lateral. Esta inhibición lateral hace más precisa la señal que llega a las células de Purkinje de la misma manera que otros mecanismos de inhibición lateral acentúan el contraste de las señales en otros muchos circuitos neuronales de sistema nervioso.

Las células de Golgi reciben estímulos excitatorios de las fibras paralelas y, en menor cantidad, de las fibras trepadoras y musgosas. Actúan a nivel de los glomérulos cerebelosos haciendo sinapsis tipo II de Gray (inhibitaria) sobre las dendritas de las granos. Mediante estas sinpasis modulan la activación de las células granulares por las fibras musgosas y, por consiguiente, regulan la actividad de las células de Purkinje. De esta forma, las células de Golgi crean un circuito de retroalimentación negativa para las células granulares.

Señales de salida

Depresión a largo plazo de las células de Purkinje: aprendizaje motor

Teorías sobre la función cerebelosa

Modelado de la función cerebelosa

Patología

Clásicamente las lesiones del cerebelo se manifiestan clínicamente por:

  • Hipotonía: Se caracteriza por una resistencia disminuida a la palpación o manipulación pasiva de los músculos; por lo general, se acompaña de reflejos osteotendinosos disminuidos y de tipo pendular, junto a un llamativo fenómeno de rebote en la prueba de Stewart-Holmes.
  • Ataxia o descoordinación de los movimientos voluntarios: La alteración de la coordinación de los movimientos voluntarios da lugar a la aparición de hipermetría, asinergia, discronometría y adiadococinesia. En las pruebas cerebelosas (dedo-nariz o talón-rodilla), la velocidad y el inicio del movimiento no se encuentran afectos, pero cuando el dedo o el talón se aproximan a la nariz o la rodilla, sobrepasan su destino o corrigen la maniobra excesivamente (hipermetría). La asinergia consiste en una descomposición del movimiento en sus partes constituyentes.

Todos estos trastornos se observan mejor cuanto más rápidamente se ejecutan las maniobras. La adiadococinesia indica una dificultad o la imposibilidad para ejecutar movimientos alternativos rápidos (prueba de las marionetas).

  • Alteración del equilibrio y de la marcha: la alteración de la estática provoca inestabilidad en ortostatismo, por lo que el paciente debe ampliar su base de sustentación (separa los pies); al permanecer de pie y al andar su cuerpo presenta frecuentes oscilaciones. A diferencia de los trastornos vestibulares, estas alteraciones no se modifican al cerrar los ojos. La marcha es característica y semeja la de un borracho (marcha de ebrio), titubeante, con los pies separados y desviándose hacia el lado de la lesión.
  • Temblor intencional: grueso y evidente al intentar un movimiento (temblor intencional o de acción).Hay que tener en cuenta que el cerebelo regula el temblor fisiológico, por tanto, su lesión provoca este tipo de temblor. Incluso, hay otros tipos de temblor relacionados directamente con el cerebelo: temblor holocraneal o de negación, temblor mixto,y temblor distónico, etc.
  • Otros: palabra escandida, explosiva, nistagmus, fatigabilidad, etc.

Síndrome cerebeloso

La enfermedad o lesión de la totalidad o de una gran parte del cerebelo es lo que se conoce como síndrome cerebeloso. Las lesiones selectivas del cerebelo son extremadamente raras.

Síndrome cerebeloso de vermis

La causa más frecuente es el meduloblastoma del vermis en los niños.

El compromiso del lóbulo floculonodular produce signos y síntomas relacionados con el sistema vestibular. Dado que el vermis es único e influye sobre las estructuras de la línea media, la descoordinación muscular afecta a la cabeza y el tronco, y no a las extremidades. Se produce una tendencia a la caída hacia delante o hacia atrás, así como dificultad para mantener la cabeza quieta y en posición erecta.

También puede haber dificultad para mantener el tronco erecto.

Síndrome cerebeloso hemisférico

La causa de este síndrome puede ser un tumor o una isquemia en un hemisferio cerebeloso. En general, los síntomas y signos son unilaterales y afectan a los músculos ipsilaterales al hemisferio cerebeloso enfermo. Están alterados los movimientos de las extremidades, especialmente de los brazos y piernas, donde la hipermetría y la descomposición del movimiento son muy evidentes

A menudo, se produce oscilación y caída hacia el lado de la lesión. También son hallazgos frecuentes la disartria y el nistagmo.

Etiología del síndrome cerebeloso

 
Accidente cerebrovascular de fosa posterior que afectó el cerebelo por hemorragia.

Las etiología más frecuentes de síndromes cerebelosos son:

  • Vasculares:
    • Insuficiencia vertebro-basilar
    • Infartos
    • Hemorragias
    • Trombosis
  • Tumorales:
  • Traumáticas:
    • Contusión
    • Laceración
    • Hematomas
  • Tóxicas:
    • Alcohol
    • Drogas
    • Hidantoinatos
  • Infecciosas:
    • Cerebelitis virosicas
    • Cerebelitis supuradas
    • Absceso
    • Tuberculomas
  • Degenerativas:
    • Enfermedad de Friedrich
    • Enfermedad de Pierre-Marie
    • Esclerosis múltiple
  • Autoinmune:
  • Malformaciones:

Véase también

Referencias

  1. Fine EJ, Ionita CC, Lohr L (2002). «The history of the development of the cerebellar examination». Semin Neurol 22 (4): 375-84. PMID 12539058. 
  2. Hallonet, M. E. R. and Le Douarin, N. M. (1993), Tracing Neuroepithelial Cells of the Mesencephalic and Metencephalic Alar Plates During Cerebellar Ontogeny in Quail – chick Chimaeras. European Journal of Neuroscience, 5: 1145–1155.
  3. M E Hatten, and N Heintz. Mechanisms of Neural Patterning and Specification in the Development Cerebellum. Annual Review of Neuroscience. Vol. 18: 385-408 (fecha de publicación del volumen: marzo de 1995).
  4. Nusslein-Volhard, C. and Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature 287: 795-801.
  5. Sgaier, S.K Et al. Genetic subdivision of the tectum and cerebellum into functionally related regions based on differential sensitivity to engrailed proteins. Development 2007 134:2325-2335.
  6. Ver ref 3
  7. Gao WO, Heintz N, Hatten ME. Cerebellar granule cell neurogenesis is regulated by cell-cell interactions in vitro. Neuron. 1991 May;6(5):705-15.
  8. Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron. 1999 Jan;22(1):103-14.
  9. Hatten ME. Neuron. 1999 Jan;22(1):2-3. Expansion of CNS Precursor Pools: A New Role For Sonic Hedgehog.
  10. Lee HY, Angelastro JM, Kenney AM, Mason CA, Greene LA. Reciprocal actions of ATF5 and Shh in proliferation of cerebellar granule neuron progenitor cells. Dev Neurobiol. 2011 Sep 19. doi: 10.1002/dneu.20979.
  11. Sato T, Enkhbat A, Yoshioka K. Role of plasma membrane localization of the scaffold protein JSAP1 during differentiationof cerebellar granule cell precursors. Genes Cells. 2011 Jan;16(1):58-68. doi: 10.1111/j.1365-2443.2010.01465.x. Epub 2010 Dec 13.
  12. Sato T, Torashima T, Sugihara K, Hirai H, Asano M, Yoshioka K. The scaffold protein JSAP1 regulates proliferation and differentiation of cerebellar granulecell precursors by modulating JNK signaling. Mol Cell Neurosci. 2008 Dec;39(4):569-78. Epub 2008 Aug 30.
  13. Wei-Qiang Gao, Xiao-Lin Liu, Mary E. Hatten. The weaver gene encodes a nonautonomous signal for CNS neuronal differentiation. Vol. 68, Issue 5, 6 de marzo de 1992, pp. 841-854.
  14. James C. Edmondson, Ronald K. H. Liem, Joan E. Kuster, and Mary E. Hatten. Astrotactin: a novel neuronal cell surface antigen that mediates neuron- astroglial interactions in cerebellar microcultures. J. Cell Biol. 1988 February 1; 106(2): 505–517.
  15. Perrin M. Wilson, Robert H. Fryer, Yin Fang, and Mary E. Hatten. Astn2, A Novel Member of the Astrotactin Gene Family, Regulates the Trafficking of ASTN1 during Glial-Guided Neuronal Migration. The Journal of Neuroscience, 23 June 2010, 30(25): 8529-8540.
  16. David J Solecki, Lynn Model, Jedidiah Gaetz, Tarun M Kapoor & Mary E Hatten. Par6 signaling controls glial-guided neuronal migration. Nature Neuroscience 7, 1195 - 1203 (2004).
  17. David J. Solecki, Niraj Trivedi, Eve-Ellen Govek, Ryan A. Kerekes, Shaun S. Gleason, Mary E. Hatten. Myosin II Motors and F-Actin Dynamics Drive the Coordinated Movement of the Centrosome and Soma during CNS Glial-Guided Neuronal Migration. Neuron. Vol. 63, Issue 1, 16 de julio de 2009, pp. 63-80.
  18. Piper M, Harris L, Barry G, Heng YH, Plachez C, Gronostajski RM, Richards LJ. Nuclear factor one X regulates the development of multiple cellular populations in the postnatal cerebellum. J Comp Neurol. 2011 Dec 1;519(17):3532-48.
  19. L.I. García, P. Garcia-Banuelos, G.E. Aranda-Abreu, G. Herrera-Meza, G.A. Coria-Avila, J. Manzo. «Activation of the cerebellum by olfactory stimulation in sexually naive male rats». Neurologia, Elsevier. PMID 24704247. doi:10.1016/j.nrl.2014.02.002. Consultado el 5 de noviembre de 2016. 

Bibliografía

  • GUYTON, A.C. & HALL, J.E. Tratado de fisiología médica Elseveir. 11.ª ed. Madrid, 2006
  • OJEDA, J.L & ICARDO, J.M. Neuroanatomía humana Masson. 1.ª ed. Barcelona, 2005
  • FENEIS, H. & DAUBERG, W. Nomenclatura anatómica ilustrada Masson. 4.ª ed. Barcelona, 2000
  • NETTER F.H. Atlas de anatomía humana Masson. 3.ª ed. Barcelona, 2003
  • KANDEL E.R, SCHWARTZ J.H, JESSELL T.M. Principios de neurociencia McGraw-Hill. 4.ª ed. Madrid, 2001
  • SADLER, T.W. Embriología médica Panamericana. 9.ª ed. Buenos Aires, 2004
  • BUSTAMANTE, J. "Neuroanatomía funcional y clínica" Celsus. 4.ª ed. Bogotá, 2007
  • Histología humana. Universidad de Salamanaca
  • VI Congreso Virtual Hispanoamericano de Anatomía Patológica [2]
  • Gray's Anatomy of the Human Body

Lectura adicional

  • Ito M. Cerebellum and Neural Control. New York: Raven Press; 1984. ISBN 0-89004-106-7.
  • Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science, 4th ed. McGraw-Hill, Nueva York (2000). ISBN 0-8385-7701-6.
  • Llinás, R, Sotelo C. The Cerebellum Revisited. New York: Springer; 1992. ISBN 0-387-97693-0.
  • Parent A, Carpenter MB. Carpenter's Human Neuroanatomy. 9th ed. Philadelphia: Williams and Wilkins; 1995. ISBN 0-683-06752-4.

Enlaces externos

  • LOGICORTEX: Página en español con información actualizada sobre neuropsicología clínica y cognitiva (anatomía, procesos cognitivos, patologías, descargas gratuitas, enlaces...).
  • en la Universidad Stanford.
  • Cerebelo y Esclerosis múltiple
  • Imágenes del cerebelo
  • Cortes histológicos de cerebelo de primate
  • Anatomía y Fisiología del cerebelo
  • Developmental Biology cinema:En este enlace encontrará información y videos relacionados al procedimiento reportado por Le Douarin (Quimeras de pollo y codorniz).
  •   Datos: Q130983
  •   Multimedia: Cerebellum

cerebelo, cerebelo, región, encéfalo, cuya, función, principal, integrar, vías, sensitivas, vías, motoras, existe, gran, cantidad, haces, nerviosos, conectan, cerebelo, otras, estructuras, encefálicas, médula, espinal, cerebelo, integra, toda, información, rec. El cerebelo es una region del encefalo cuya funcion principal es de integrar las vias sensitivas y las vias motoras Existe una gran cantidad de haces nerviosos que conectan el cerebelo con otras estructuras encefalicas y con la medula espinal El cerebelo integra toda la informacion recibida para precisar y controlar las ordenes que la corteza cerebral envia al aparato locomotor a traves de las vias motoras Es el regulador del temblor fisiologico CerebeloEncefalo humano con el cerebelo marcado en purpuraImagen de RMN de una seccion sagital de un encefalo humano Cerebelo en purpura Nombre y clasificacionLatin TA cerebellumTAA14 1 07 001Graypag 788NeuroLex IDCerebellumMeSHCerebellumInformacion anatomicaParte deEncefalo Aviso medico editar datos en Wikidata Por ello lesiones a nivel del cerebelo no suelen causar paralisis pero si desordenes relacionados con la ejecucion de movimientos precisos mantenimiento del equilibrio la postura y aprendizaje motor Los primeros estudios realizados por fisiologos en el siglo XVIII indicaban que aquellos pacientes con dano cerebelar mostraban problemas de coordinacion motora y movimiento Durante el siglo XIX comenzaron a realizarse los primeros experimentos funcionales causando lesiones o ablaciones cerebelares en animales Los fisiologos observaban que tales lesiones generaban movimientos extranos y torpes descoordinacion y debilidad muscular Estas observaciones y estudios llevaron a la conclusion de que el cerebelo era un organo encargado del control de la motricidad 1 Sin embargo las investigaciones modernas han mostrado que el cerebelo tiene un papel mas amplio estando asi relacionado con ciertas funciones cognitivas como la atencion y el procesamiento del lenguaje la musica el aprendizaje y otros estimulos sensoriales temporales Fue descrito por primera vez por Herofilo en el siglo IV a C Animacion del cerebelo Indice 1 Caracteristicas generales 2 Desarrollo 3 Evolucion filogenetica 4 Anatomia 4 1 Descripcion externa 4 1 1 Cara superior 4 1 2 Cara inferior 4 1 3 Cara anterior 4 2 Divisiones 4 2 1 Morfologica 4 2 2 Filogenetica 4 3 Representacion topografica del cuerpo 4 4 Estructura interna 4 4 1 Corteza cerebelosa 4 4 1 1 Capas de la corteza 4 4 1 2 Tipos neuronales 4 4 1 3 Fibras extrinsecas 4 4 1 4 Glia 4 4 2 Nucleos profundos 4 4 3 Sustancia blanca 4 4 4 Sustancia gris 4 5 Conexiones cerebelosas 4 5 1 Aferencias del vestibulocerebelo 4 5 2 Eferencias del vestibulocerebelo 4 5 3 Aferencias del espinocerebelo 4 5 4 Eferencias del espinocerebelo 4 5 5 Aferencias del cerebrocerebelo 4 5 6 Eferencias del cerebrocerebelo 4 5 7 Aferencias procedentes de los sistemas monoaminergicos 4 6 Pedunculos 4 6 1 Pedunculos cerebelosos inferiores 4 6 2 Pedunculos cerebelosos medios 4 6 3 Pedunculos cerebelosos superiores 4 7 Irrigacion arterial 4 7 1 Arteria cerebelosa superior 4 7 2 Arteria cerebelosa anteroinferior 4 7 3 Arteria cerebelosa posteroinferior 4 8 Drenaje venoso 5 Circuitos neuronales 5 1 Circuitos neuronales de los nucleos profundos arco principal 5 2 Circuitos neuronales de la corteza cerebelosa arco secundario 5 2 1 Circuitos excitadores 5 2 2 Circuitos inhibidores 5 3 Senales de salida 5 4 Depresion a largo plazo de las celulas de Purkinje aprendizaje motor 6 Teorias sobre la funcion cerebelosa 6 1 Modelado de la funcion cerebelosa 7 Patologia 7 1 Sindrome cerebeloso 7 1 1 Sindrome cerebeloso de vermis 7 1 2 Sindrome cerebeloso hemisferico 7 1 3 Etiologia del sindrome cerebeloso 8 Vease tambien 9 Referencias 10 Bibliografia 11 Lectura adicional 12 Enlaces externosCaracteristicas generales EditarEl cerebelo es un organo impar y medio situado en la fosa craneal posterior dorsal al tronco del encefalo e inferior al lobulo occipital y ocular Desarrollo Editar Division del tubo neural en vesiculas encefalicas primarias El cerebelo deriva del metencefalo Al igual que el resto del sistema nervioso central y la piel el cerebelo deriva de la capa ectodermica del disco germinativo trilaminar Durante las fases mas tempranas del desarrollo embrionario el tercio cefalico del tubo neural presenta tres dilataciones vesiculas encefalicas primarias lo que nos permite dividirlo en tres segmentos distintos prosencefalo mesencefalo y rombencefalo El rombencefalo es el segmento mas caudal y cuando el embrion tiene 5 semanas se divide en dos porciones el metencefalo y el mielencefalo El metencefalo es la porcion mas cefalica y dara lugar a la protuberancia puente y al cerebelo mientras que del mielencefalo se originara la medula oblongada bulbo raquideo El limite entre estas dos porciones esta marcado por la curvatura protuberencial Al igual que todas las estructuras que derivan del tubo neural el metencefalo esta constituido por placas alares y basales separadas por el surco limitante Las placas alares contienen nucleos sensitivos que se dividen en tres grupos el grupo aferente somatico lateral el grupo aferente visceral especial y el grupo aferente visceral general Las placas basales contienen nucleos motores que se dividen en tres grupos el grupo eferente somatico medial el grupo eferente visceral especial y el grupo eferente visceral general Vision posterior del mesencefalo y del rombencefalo El rombencefalo ya esta divido en mielencefalo y metencefalo y se ven los primeros esbozos de lo que sera el cerebelo placa cerebelosa Las porciones dorsolaterales de las placas alares se incurvan en sentido medial para formar los labios rombicos En la porcion caudal del mesencefalo los labios rombicos estan muy separados pero en la porcion cefalica se aproximan a la linea media Al ir profundizando el pliegue protuberencial los labios rombicos se comprimen en direccion cefalo caudal y forman la placa cerebelosa A las 12 semanas del desarrollo en la placa cerebelosa se aprecia la existencia de tres porciones el vermis en la linea media y dos hemisferios a ambos lados Al poco tiempo una fisura transversal separa el nodulo del resto del vermis y los floculos del resto de los hemisferios Inicialmente la placa cerebelosa esta compuesta por tres capas que de profunda a superficial son capa neuroepitelial capa del manto y capa marginal Aproximadamente a las 12 semanas del desarrollo algunas celulas originadas en la capa neuroepitelial emigran hacia la zona mas superficial de la capa marginal Estas celulas conservan la capacidad de dividirse y empiezan a proliferar en la superficie donde acaban formando la capa granulosa externa En el embrion de 6 meses la capa granulosa externa comienza a diferenciarse en diversos tipos celulares que emigran hacia el interior para pasar entre las celulas de Purkinje y dar origen a la capa granular interna La capa granulosa externa termina por quedarse sin celulas y da origen a la capa molecular Las celulas en cesta y las celulas estrelladas provienen de celulas que proliferan en la sustancia blanca capa marginal Los nucleos cerebelosos profundos como el nucleo dentado se situan en su posicion definitiva antes del nacimiento mientras que la corteza del cerebelo alcanza su desarrollo completo despues del nacimiento Origen y caracteristicas de las celulas progenitorasContrario a la idea anatomica clasica el cerebelo adulto no proviene unicamente del metencefalo Los estudios de Hallonet y Nicole M Le Douarin a principios de la decada de los noventa mostraron que las celulas progenitoras del cerebelo provienen de la region caudal del mesensefalo y la rostral del metencefalo 2 Para mostrarlo crearon diferentes quimeras de pollo Gallus gullus y codorniz Corurnir coturnir juponica con injertos de las regiones metencefalicas y mesensefalicas de interes Debido a que las celulas de codorniz presentan un nucleo en interfase con heterocromatina condensada estas celulas son facilmente diferenciables de las celulas de pollo luego de una tincion de Feulgen tine el DNA Ver enlace externo Haciendo uso de esta metodologia Hallonet y Le Douarin mostraron que las celulas mediorostrales del cerebelo adulto provienen del area caudal del mesencefalo mientras que el resto de las celulas progenitoras del cerebelo tienen origen en el area rostral del metencefalo Los autores hacen enfasis en el origen estrictamente metencefalico de las celulas de la capa granular externa EGL que dara lugar a las celulas granulares en etapas posteriores del desarrollo Las demas celulas del cerebelo celulas de Purkinje por ejemplo provienen de las vesiculas mesencefalicas y metencefalicas Gao y Hatten querian mostar la potencialidad de las celulas progenitoras provenientes de la capa granular externa EGL y compararla con la potencialidad de las celulas progenitoras de la zona ventral VZ Para ello aislaron celulas precursoras de estas zonas a partir de ratones E13 luego las implantaron en la capa granular externa de ratones postnatales y observaron los tipos celulares en los cuales se diferenciaban estas celulas Se observo que las celulas progenitoras de la capa granular externa EGL eran unipotentes produciendo unicamente celulas granulares En contraste las celulas provenientes de la zona ventral se diferenciaron en neuronas de Purkinje interneuronas astroglia y celulas granulares lo cual evidencia las restricciones que se dan durante el desarrollo dependiendo de los contextos espaciales y temporales en los cuales se desarrollan las celulas 3 Control genetico del desarrollo del cerebeloUna de las ventajas de la teoria evolutiva en la biologia es la posibilidad de formulacion de hipotesis en otros grupos de organismos a partir del conocimiento en un grupo particular El cerebelo es ejemplo perfecto de lo anterior Debido a la gran facilidad de obtener mutantes en organismos como Drosophila muchos genes involucrados en la identidad de segmentos fueron identificados en la segunda mitad del siglo XX 4 Debido a que estos genes eran capaces de establecer la identidad antero posterior de los segmentos en Drosophila varios investigadores propusieron la hipotesis que los homologos en mamiferos podrian controlar los patrones de desarrollo Los genes candidatos eran En Engrailed wingless y genes Pax Al buscar sus homologos en vertebrados y analizar los mutantes se encontro una ruta muy fina del control de desarrollo espacial y temporal del cerebelo en ratones Las mutaciones en el gen generan un fenotipo que practicamente no desarrolla cerebelo Mientras que mutaciones en el gen En 2 generan un fenotipo menos severo con danos en la formacion de las estructuras foliares de los lobulos cerebelosos Mutantes condicionales para En 1 activados en el dia E 9 cuya expresion de En 2 es normal presentan fenotipos casi normales Esto sugiere que En1 determina el Territorio del cerebelo en etapas tempranas mientras que En2 es requerido en estadios posteriores 5 6 Debido al efecto regulatorio de Wnt 1 homologo de wingless y genes Pax sobre Engrailed era predecible el fenotipo de mutantes para estos genes Mutantes homocigotos de Wnt 1 mostraron la perdida completa del cerebelo lo cual se correlaciona con la perdida de expresion de En en el territorio cerebeloso 6 Programas de desarrollo en el cerebeloLa transicion celula progenitora a neurona madura implica una serie de cambios morfologicos y moleculares altamente regulada espacial y temporalmente Estos cambios incluyen el arresto del ciclo mitotico la formacion de axon y dendritas la expresion de proteinas especificas como proteinas canal en algunos casos migraciones y finalmente el establecimiento de conectividad sinapsis con otras neuronas A pesar de ser rutinas que incluyen la mayoria de estos procesos distintos tipos celulares presentan sus programas en diferente orden Por ejemplo las celulas de Purkinje al igual que celulas de la corteza cerebral migran justo despues de salir del ciclo celular y forman conexiones axonales en etapas posteriores del desarrollo Por el contrario las celulas precursoras de celulas granulares inician el crecimiento axonal al salir del ciclo celular y posteriormente inician su migracion a la capa interna IGL 6 A continuacion se muestran algunas caracteristicas del desarrollo de las celulas granulares del cerebelo Celulas granularesLos patrones de expresion genica durante el desarrollo de las celulas granulares permite establecer cuatro etapas la neurogenesis el inicio de la diferenciacion neuronal el crecimiento axonal y migracion y finalmente la formacion de conexiones sinapticas En la figura 1 se muestran los marcadores especificos de cada etapa ProliferacionEl proceso de proliferacion ocurre principalmente en la capa externa del EGL oEGL durante las tres primeras semanas postnatales en raton Los primeros estudios de proliferacion in vitro mostraron que estas celulas tienen la capacidad proliferativa en ausencia de mitogenos sugiriendo actividad autocrina en la regulacion de la proliferacion celular 7 Mas recientemente se han mostrado algunas moleculas de senalizacion cuya relacion con la proliferacion es mas clara Wechsler y Scott de la universidad de Stanford mostraron la expresion de mensajeros de Shh en celulas de Purkinje a nivel somatico y dendritico por su parte las celulas granulares expresaban el gen ptc inhibidor de la ruta shh en ausencia de Shh y los genes gli1 2 que codifican factores de transcripcion corriente abajo en la cascada de senalizacion de Shh Luego evaluaron el papel que juega Shh en la proliferacion de las celulas granulares encontrando que la presencia de este factor incrementa la proliferacion de estas celulas 100 veces Este efecto fue especifico para celulas granulares no se vieron incrementos significativos en la proliferacion de celulas glia Para dar validez biologica a los resultados in vitro los investigadores inhibieron la actividad de Shh con la expresion de anticuerpos anti Shh por parte de celulas de hibridoma inyectadas en los animales en el periodo postnatal inicial 8 9 Dichos experimentos causaron una notable disminucion en el grosor de la capa granular externa EGL al igual que disminucion en el numero de celulas Ello permite concluir el efecto causal de la senalizacion de Shh en el estadio proliferativo de las celulas granulares La presencia de ptc2 en las celulas granulares es de relevancia puesto que las celulas granulares con la ruta de senalizacion Shh activa no entran en la etapa de diferenciacion celular incluso mutantes para ptc generan meduloblastoma en ratones y en humanos Por lo tanto la actividad de Shh es esencial en etapas iniciales del desarrollo proliferacion de las celulas granulares pero su inhibicion y regulacion posterior es necesaria para continuar el curso del desarrollo normal de estas celulas Un articulo reciente sobre el tema que habla sobre Shh y ATF5 en el control de la proliferacion de celulas granulares puede ser consultado 10 DiferenciacionDando continuidad al proceso las neuronas granulares deben terminar la proliferacion celular inducida por agentes mitogenos como Shh Sato y colaboradores mostraron el efecto antagonico de JASP1 sobre Shh a traves de la modulacion de la actividad de JNK La activacion de esta ruta de senalizacion por el factor de crecimiento fibroblastico FGF 2 produce una colocalizacion de JASP1 y las formas fosforiladas de JNK y ERK en la membrana celular 11 que posteriormente dara lugar a la inhibicion de la actividad mitogena de Shh permitiendo salir del ciclo celular Ello es evidenciado por un decrecimiento en la poblacion de celulas positivas para el factor Ki67 proliferacion y el aumento de celulas positivas p27 Kip1 represor del ciclo celular y BrdU 12 Otro gen implicado en la interfase diferenciacion migracion es el gen weaver Mutantes para este gen tienen proliferacion de las celulas precursoras granulares normal GCPs sin embargo estas celulas no pueden salir del ciclo celular y terminan muriendo Estas celulas pueden expresar algunos marcadores neuronales como N CAM L1 y MAP 2 pero la expresion de genes tardios como TAG 1 y astrotactina es eliminada 13 MigracionLas neuronas granulares inmaduras que inician la diferenciacion celular comienzan la formacion de un axon con la forma caracteristica de T ubicado hacia lo que sera la capa molecular Este estadio del desarrollo es identificable por la presencia de TAG 1 en el axon en formacion Del otro extremo se inician translocaciones sucesivas y discretas del nucleo este proceso de migracion desde el EGL hasta el IGL atravesando la capa de celulas de Purkinje PCL implica la interaccion y contacto directo entre celulas gliales de Berman y las neuronas granuales En 1988 a traves de tecnicas inmunologicas y de microscopia Edmonson y colaboradores descubrieron la proteina de membrana astrotactina ASTN1 una glicoproteina de 100 kDa cuya funcion es estabilizar las uniones temporales entre la astroglia y las neuronas granulares En este articulo se muestra como los mutantes weaver mencionados en el apartado anterior no expresan esta proteina y paralelamente son incapaces de unirse a las celulas gliales de Bergman e iniciar la migracion 14 Estudios recientes realizados por el grupo de la Dr Hatten han demostrado la actividad no redundante de la ASTN2 Esta proteina fue descubierta a partir de analisis bioinformaticos de homologia Increiblemente como la misma autora dice esta proteina no es expuesta a la superficie celular como su homologa ASTN1 y por lo tanto no puede tener una funcion directa en la adhesion neuron glia En una primera fase del estudio se mostro el control dinamico en la exocitosis endocitosis de vesiculas con ASTN1 esta glicoproteina es exocitada en el area distal del proceso lider proceso citoplasmatico que define la direccion de migracion donde es requerido un punto de adhesion para aplicar las fuerzas que conducen la translocacion somatica Una vez se ha dado este movimiento se requiere de ASTN1 en la nueva frontera de migracion y la membrana con ASTN1 que se encuentra cerca al nucleo es endocitada para su posterior reciclaje La ASTN2 interactua fiscamente con la ASTN1 y parece regular la cantidad de ASTN1 que es exportada a la membrana 15 Tincion de Nissl de cerebelo maduro donde se diferencia la capa molecular ML la capa celular de Purkinje PCL y la capa granular interna con neuronas granulares 100x Ampliacion que permite comparar el tamano y morfologia de las celulas de Purkinje grandes y con gran arborizacion dendritrica y las neuronas granulares pequenas redondas de coloracion violeta oscura 400x Ademas de las interacciones celulares glia neurona las celulas granulares deben establecer una polaridad que de direccion a la migracion y organizar los componentes motores que ejecutan el desplazamiento Al respecto Solecki y colaboradores han trabajado en el control de componentes citoesqueleticos en el proceso de migracion En primer lugar se ensambla una caja de microtubulos alrededor del nucleo ello es coordinado por el centrosoma Los movimientos discretos del nucleo son precedidos por el avance del centrosoma en la direccion del proceso lider lo cual es coordinado molecularmente por el complejo Par6 actualmente se realizan estudios sobre GTPases que interactuan con el complejo Par6 que puedan contribuir en la explicacion de la polaridad en la migracion 16 Uno de los mecanismos moleculares encargados directamente en el movimiento es la activacion motores actomiosinicos 17 Establecimiento de conexiones sinapticasTerminada la migracion las neuronas se localizan en la capa granular interna listas para el proceso que las convertira en neuronas funcionales las conexiones sinapticas Los axones con forma de T de la capa molecular dan origen a conexiones con las dendritas de las celulas de Purkinje mientras que las fibras musgosas forman terminales nerviosas alrededor de los somas de las neuronas granulares glomerulos sinapticos Otro cambio que ocurre en la maduracion de las celulas granulares es la expresion de la subunidad a6 del receptor GABA Hay que recordar que la modulacion electrofisiologica depende de los receptores canal activos como el receptor GABA y la expresion de la enzima deshidrogenasa de acido glutamico cataliza la descarboxilacion del glutamato para sintetizar GABA 6 Piper y colaboradores ha identificado un factor de transcripcion que gatilla la expresion de la subunidad a6 del receptor GABA en estas celulas 18 haciendo pensar que estos cambios en el desarrollo estan controlados por cascadas divergentes la activacion de pocos factores de transcripcion es responsable de un perfil de expresion genetica muy distinto En las figuras 2 y 3 se muestran cortes de cerebelo adulto donde se puede identificar la capa granular la capa decelulas de purkinje y la capa granular interna IGL despues de la migracion y establecimiento de conexiones sinapticas Evolucion filogenetica EditarEl cerebelo aparece en todos los vertebrados pero con diferente grado de desarrollo muy reducido en peces anfibios y aves alcanza su maximo tamano en los primates especialmente en el hombre Anatomia EditarEl cerebelo se encuentra pegado a la pared posterior del tronco del encefalo y esta incluido dentro de un estuche osteofibroso la celda cerebelosa o subtentorial formado por una pared superior y otra inferior La pared superior esta constituida por una prolongacion de la duramadre denominada tienda del cerebelo y la pared inferior la forman las fosas cerebelosas del hueso occipital recubiertas por la duramadre Normalmente el cerebelo de un varon adulto pesa unos 150 g gramos y mide 10 cm centimetros de ancho 5 cm de alto y 6 cm en sentido antero posterior En los ninos la relacion entre el volumen del cerebelo y del cerebro es de 1 a 20 mientras que en adultos es de 1 a 8 Descripcion externa Editar El cerebelo esta conformado por dos hemisferios separados por un vermis tiene forma de cono truncado aplastado en sentido supero inferior en el cual se pueden diferenciar tres caras superior inferior y anterior Cara superior Editar Vision superior del cerebelo humano La cara superior tiene la forma de un tejido con dos vertientes laterales y esta en contacto con la tienda del cerebelo En la parte central presenta una elevacion alargada en sentido antero posterior que recibe el nombre de vermis superior A ambos lados del vermis superior se extienden dos superficie inclinadas y casi planas que constituyen las caras superiores de los hemisferios cerebelosos La cara superior esta separada de la cara inferior por el borde circunferencial del cerebelo En una vista superior el borde circunferencial presenta dos escotaduras una anterior en relacion con el tronco del encefalo y otra posterior en relacion con la hoz del cerebelo El borde circunferencial del cerebelo esta recorrido longitudinalmente por una fisura profunda denominada fisura prima o surco primario Cara inferior Editar Vision inferior del cerebelo humano Donde se ven la cara inferior y la cara anterior del cerebelo La cara inferior esta directamente apoyada sobre la duramadre que recubre las fosas cerebelosas Muestra un amplio surco en la linea media denominado vallecula o cisura media que alberga la hoz del cerebelo y en cuyo fondo se encuentra el vermis inferior que es la continuacion del superior Lateralmente a la cisura media se localizan las caras inferiores de las hemisferios cerebelosos que son convexas hacia abajo En la parte mas anterior y a ambos lados del vermis inferior los hemisferios cerebelosos presentan una prominencia ovoidea denominada amigdala cerebelosa Estas amigdalas guardan una estrecha relacion con el bulbo raquideo Cara anterior Editar La cara anterior esta intimamente relacionada con la cara posterior del tronco del encefalo y para poder verla es necesario seccionar los tres pares de pedunculos que la unen a ella Presenta una depresion central que se corresponde con el techo del IV ventriculo y esta delimitada por los pedunculos de ambos lados y por los velos medulares superior e inferior Por encima de esta depresion asoma el extremo anterior del vermis superior o lingula y por debajo se ve el extremo anterior del vermis inferior o nodulo A ambos lados del nodulo y por debajo de los pedunculos cerebelosos inferiores hay unas prominencias denominadas floculos El nodulo y los foliculos estan unidos entre si por el pedunculo del floculo que en parte corre sobre el velo medular inferior Divisiones Editar Hay tres maneras diferentes de dividir el cerebelo morfologicamente filogeneticamente y funcionalmente Morfologica Editar Seccion sagital de encefalo humano 1 Lingula 2 Lobulillo central 3 Culmen 4 Fisura prima 5 Declive 6 Folium 7 Tuber 8 Piramide 9 Uvula 10 Nodulo lobulo floculonodular 11 Amigdala cerebelosa A Lobulo anterior B Lobulo posterior Clasicamente se realiza una division morfologica que es meramente descriptiva de la superficie del cerebelo y no tiene base funcional ni ontogenica ni ninguna aplicacion en la practica clinica La superficie del cerebelo se encuentra surcada por muchas fisuras transversales mas o menos paralelas entre si Entre ellas hay dos que destacan por ser las mas profundas y nos sirven para dividirlo en lobulos Una es la fisura prima o primaria que recorre la cara superior y la divide aproximadamente en dos mitades iguales y la otra es la fisura posterolateral o dorsolateral que se localiza en la cara anterior en posicion caudal respecto del nodulo y los floculos Estas fisuras delimitan los tres lobulos del cerebelo el anterior el posterior y el floculonodular Cada uno de estos lobulos incluye una porcion que forma parte del vermis y otra que forma parte de los hemisferios cerebelosos La porcion del vermis que corresponde a cada lobulo se subdivide en segmentos a los que generalmente se asocia un par de lobulillos situados en los hemisferios cerebelosos La subdivision dentro de cada uno de los lobulos viene determinada por la existencia otras fisuras transversales de menor profundidad El lobulo anterior se situa por delante de la fisura prima y abarca parte de la cara anterior y parte de la cara superior Se subdivide en Lingula I que es la porcion mas anterior del vermis y se une al velo medular superior Lobulillo central II y III que se situa justo por encima de la lingula y se prolonga a ambos lados mediante las alas del lobulillo central H II y H III La fisura que lo separa de la lingula recibe el nombre de fisura precentral Culmen IV y V que es la porcion mas craneal de todo el vermis y se asocia lateralmente con la porcion anterior de los lobulillos cuadrangulares H IV y H V La fisura que lo separa del lobulillo central se denomina postcentral El lobulo posterior se situa entre las fisuras prima y posterolateral y abarca parte de la cara superior y parte de la cara inferior Se subdivide en Declive VI que desciende desde el culmen hacia atras y se asocia lateralmente al lobulillo simple o porcion inferoposterior del lobulillo cuadrangular H VI Folium u hoja del vermis VII A que es una estrecha lamina de union entre los lobulillos semilunares superiores o anseriformes H VII A izquierdo y derecho Tuber o tuberculo del vermis VII B que se asocia lateralmente a los lobulillos semilunares inferiores H VII A y a los lobulillos graciles delgados o paramedianos H VII B y se situa justo por debajo de la fisura horizontal que lo separa del folium Piramide del vermis VIII que se situa por delante del tuber y se asocia con los lobulillos digastricos H VIII A y B izquierdo y derecho La fisura que la separa del tuber se llama prepiramidal y la fisura que la separa de la uvula se llama postpiramidal o secundaria Uvula del vermis IX que se encuentra entre las dos amigdalas cerebelosas H IX justo por encima de la piramide El lobulo floculonodular se situa por delante de la fisura posterolateral y como su propio nombre indica esta formado por el nodulo X que corresponde al vermis y los floculos H X que corresponden a los hemisferios unidos por el pedunculo del floculo El termino cuerpo del cerebelo se utiliza para denominar a la totalidad del cerebelo a excepcion del lobulo floculonodular El vermis superior esta constituido por la lingula el lobulillo central el culmen el declive y el folium El vermis inferior esta constituido por el tuber la piramide la uvula y el nodulo Algunos autores en vez de distinguir tres lobulos distinguen cuatro el anterior el medio el posterior y el floculonodular La diferencia radica en que dividen al lobulo posterior en dos mediante la fisura prepiramidal de tal forma que por encima de ella se extiende el lobulo medio y por debajo el lobulo posterior Filogenetica Editar Desde el punto de vista filogenetico el cerebelo puede dividirse en tres porciones arquicerebelo paleocerebelo y neocerebelo Esta division es de gran interes porque cada una de las porciones posee cierta identidad funcional y clinica El arquicerebelo Es la porcion filogeneticamente mas antigua y se corresponde con el lobulo floculonodular Surge durante el desarrollo filogenetico al mismo tiempo que el aparato vestibular del oido interno La mayoria de aferencias que recibe provienen de los nucleos vestibulares y se corresponde en gran medida con el vestibulocerebelo Tiene una funcion de equilibrio El paleocerebelo Es mas moderno que el arqueocerebelo y esta integrado por la piramide la uvula el lobulillo central con las alas el culmen y el lobulillo cuadrangular La mayoria de las aferencias que recibe provienen de la medula espinal y tiene cierta correspondencia con el espinocerebelo Tiene una funcion de control postural El neocerebelo Es la parte mas moderna y esta formado por la totalidad del lobulo posterior a excepcion de la piramide y la uvula La mayoria de las aferencias que recibe provienen de la corteza cerebral a traves de los nucleos del puente y se identifica con el cerebrocerebelo Tiene una funcion de coordinacion motora movimientos voluntarios Representacion topografica del cuerpo Editar Del mismo modo que la corteza somatosensitiva la corteza motora los ganglios basales los nucleos rojos y la formacion reticular poseen una representacion topografica de las diferentes partes del cuerpo esto sucede tambien en el caso de la corteza cerebelosa El tronco y el cuello asi como las porciones proximales de las extremidades quedan situadas en la region perteneciente al vermis En cambio las regiones faciales y las porciones distales de las extremidades se localizan en las bandas paravermianas Las porciones laterales de los hemisferios cerebelosos cerebrocerebelo al igual que el lobulo floculonodular vestibulocerebelo no poseen una representacion topografica del cuerpo Estas representaciones topograficas reciben aferencias desde todas las porciones respectivas del cuerpo y tambien desde las areas motoras correspondientes en la corteza cerebral y en el tronco del encefalo A su vez devuelven senales motoras a las misma areas respectivas de la corteza motora y tambien a las regiones topograficas oportunas del nucleo rojo y de la formacion reticular en el tronco del encefalo Estructura interna Editar De una forma similar al cerebro el cerebelo puede dividirse en sustancia gris y sustancia blanca La sustancia gris se dispone en superficie donde forma la corteza cerebelosa y en el interior donde constituye los nucleos profundos La sustancia blanca se localiza en la parte interna envolviendo por completo a los nucleos profundos Corteza cerebelosa Editar La corteza cerebelosa tiene una superficie muy extensa unos 500 cm centimetros cuadrados gracias a los numerosos pliegues o circunvoluciones folia cerebelli predominantemente transversales que aumentan unas tres veces su area Los abundantes surcos y fisuras le dan a la superficie un aspecto rugoso caracteristico La corteza esta conformada por multitud de unidades histofuncionales conocidas como laminillas cerebelosas En un corte sagital de una circunvolucion del cerebelo visto al microscopio se puede observar que esta integrada por multitud de microcircunvoluciones Estas microcircunvoluciones son las laminillas cerebelosas que estan constituidas por una fina lamina de sustancia blanca recubierta de sustancia gris La sustancia gris periferica de la laminilla cerebelosa tiene un espesor de alrededor de 1 mm milimetro Posee una estructura histologica homogenea en todas sus regiones constituida por tres capas en las que se distinguen siete tipos fundamentales de neuronas Al igual que el resto del sistema nervioso la corteza cerebelosa tambien posee celulas gliales y vasos sanguineos Capas de la corteza Editar Esquema de la estructura de la corteza cerebelosa En la corteza cerebelosa de profundo a superficial se puede distinguir las siguientes capas capa de celulas granulares capa media o de celulas de Purkinje y capa molecular o plexiforme La capa granular es la capa mas profunda de la corteza cerebelosa y limita en su zona interna con la sustancia blanca Debe su nombre a que en ella predominan un tipo de pequenas neuronas intrinsecas denominadas granos o celulas granulares del cerebelo Debido a las caracteristicas tintoriales de los nucleos de estas celulas la capa granular presenta un aspecto linfocitoide basofilo aunque de cuando en cuando se pueden apreciar unos pequenos espacios acelulares eosinofilos denominados islotes protoplasmicos Tiene una anchura variable de 500 en la convexidad a 100 mm micrometros en el surco siendo la capa de mayor espesor de la corteza cerebelosa La capa de las celulas de Purkinje esta constituida por los somas de las celulas de Purkinje que se disponen en una formando una lamina monocelular A pocos aumentos presenta una mayor densidad celular en la convexidad de la laminilla que en los surcos Algunos autores no consideran que las celulas de Purkinje formen una capa definida y dividen la corteza cerebelosa solo en dos capas granular y molecular La capa molecular recibe su nombre porque contiene principalmente prolongaciones celulares y pocos somas neuronales Tiene un caracter tintorial eosinofilo adquiere color rosaceo en los cortes tenidos con hematoxilina eosina Su espesor aproximado es de unos 300 a 400 mm y su superficie se halla cubierta por la piamadre Tipos neuronales Editar Dibujo de las celulas de Purkinje A y las celulas granulares B en la corteza cerebelosa de una paloma por Santiago Ramon y Cajal en 1899 Instituto Santiago Ramon y Cajal Madrid Espana Las neuronas de la corteza cerebelosa se clasifican en neuronas principales o de proyeccion y las intrinsecas o interneuronas Las principales son aquellas cuyos axones salen de la corteza para alcanzar los nucleos cerebelosos profundos o los nucleos vestibulares Las intrinsecas son las que extienden sus axones exclusivamente por la corteza Tambien tenemos que tener en cuenta las fibras aferentes extrinsecas que llegan a la corteza entre las que destacan las fibras musgosas y las trepadoras Las neuronas principales son las celulas de Purkinje cuya disposicion forma y tamano son homogeneos en toda la corteza cerebelosa Se ha calculado que en el cerebelo humano existen unos 30 millones de estas neuronas Su soma tiene un diametro de entre 40 y 80 mm micrometros De la parte superior del cuerpo neuronal parte un grueso tronco dendritico que se ramifica profusamente en ramas de primer segundo y tercer orden de forma que constituyen un denso arbol dendritico caracteristico de estas neuronas Este arbol dendritico se extiende por todo el espesor de la capa molecular con la particularidad de que se arboriza practicamente en un solo plano perpendicular al eje transversal de la laminilla De esta forma en secciones parasagitales se aprecia en toda su extension las ramificaciones de estas neuronas mientras que en secciones transversales se observa su arborizacion como unas pocas y estrechas ramas verticales Las dendritas se hallan cubiertas de espinas de modo que se ha calculado que cada celula de Purkinje puede tener de 30 000 a 60 000 espinas De la parte inferior del soma se origina el axon que cerca de su origen se mieliniza atraviesa la capa de celulas granulares y tras emitir colaterales ingresa en la sustancia blanca Desde aqui los axones de las celulas de Purkinje se dirigen hacia los nucleos cerebelosos y vestibulares donde terminan Las recurrentes axonicas vuelven a la capa de celulas de Purkinje en cuyas proximidades se arborizan formando los plexos supraganglionico e infraganglionico Ultraestructuralmente las celulas de Purkinje se caracterizan porque su soma muestra abundante reticulo endoplasmico rugoso y un aparato de Golgi muy desarrollado Tanto en el soma como en las dendritas y el axon aparecen frecuentemente cisternas membranosas aplanadas pertenecientes al reticulo endoplasmico liso justo por debajo de las membrana cisternas hipolemnales Estas cisternas hipolemnales son caracteristicas de este tipo celular aunque puede hallarse algunas de ellas en otros tipos de neuronas de gran tamano Las neuronas intrinsecas se distribuyen por las capas granular y molecular En la capa granular se encuentran tres tipos de celulas las celulas granulares las grandes celulas estrelladas celulas de Golgi y de Lugaro y las celulas monodendriticas o monopolares en penacho En la capa molecular se hallan las celulas estrelladas pequenas celulas estrelladas y celulas en cesta Las celulas granulares o granos del cerebelo son las neuronas de menor tamano de todo el sistema nervioso humano y su soma mide de 5 a 8 mm de diametro Se hallan densamente empaquetadas en la capa granular Son muy numerosas calculandose que en el cerebelo humano hay unos 50 000 millones de estas neuronas El soma no posee apenas grumos de Nissl y esta ocupado casi por completo por el nucleo que presenta cromatina densa lo que provoca una gran cromofilia y es responsable del aspecto linfocitoide de la celula Los cuerpos neuronales no estan recubiertos de glia y se situan muy proximos entre si pero sin presentar sinapsis Del soma parten cuatro a seis dendritas cortas de unos 30 mm de longitud con un trayecto algo flexuoso y sin ramificaciones que presentan en su interior neurotubulos y neurofilamentos Estas dendritas terminan en varias dilataciones que recuerdan a los dedos de una mano que confluyen en los islotes protoplasmicos y mediante las cuales establece sinapsis con las fibras musgosas Del soma o de una de sus dendritas parte el axon amielinico en todo su trayecto que asciende por la capa molecular siguiendo un trayecto ligeramente curvo Una vez alcanzada la superficie de la capa molecular el axon se ramifica en T dando origen a dos fibras denominadas fibras paralelas Estas fibras paralelas llevan un trayecto transversal es decir paralelo al eje de la laminilla y perpendicular a la arborizacion dendriticas de las celulas de Purkinje Las fibras paralelas llegan a medir de 2 a 3 mm milimetros de longitud lo que resulta extraordinario para una neurona con un soma tan pequeno Normalmente los granos mas profundos son los que tienen los axones mas gruesos y dan origen a las fibras paralelas mas profundas Mediante las fibras paralelas las celulas granulares hacen sinapsis en passant con las espinas dendriticas de las celulas de Purkinje de forma que una sola celulas granular puede contactar con un numero variable 50 a 100 de celulas de Purkinje y a su vez cada una de estas recibe impulsos de unas 200 000 a 300 000 fibras paralelas Esta disposicion recuerda a la de los postes y los cables de un tendido electrico Ademas las fibras paralelas hacen tambien sinapsis en passant sobre las dendritas de las celulas de Golgi las celulas en cesta y las estrelladas Las celulas granulares reciben sus aferencias de las rosetas de las fibras musgosas y de los axones de las celulas de Golgi Ambos tipos de terminales hacen sinapsis sobre las varicosidades digitiformes de las celulas granulares formando en conjunto lo que se denomina glomerulo cerebeloso Bajo el nombre de grandes celulas estrelladas se incluyen a todas aquellas neuronas distintas de los granos y de las celulas monodendriticas en penacho que se situan en la capa granular Las celulas de Golgi son de un tamano algo menor a las celulas de Purkinje y su numero es similar al de estas ultimas neuronas Su soma tiene forma estrellada y se halla preferentemente situado en la zona superficial de la capa de celulas granulares Contiene abundantes grumos de Nissl y neurofibrillas y un reticulo endoplasmico liso y un aparto de Golgi casi tan ricos como los de la celula de Purkinje en cambio las cisternas hipolemnales son muy escasas Presenta un nucleo escotado con cromatina laxa y un prominente nucleolo excentrico Sus dendritas en numero de cuatro o cinco parten en direccion horizontal o descendente se incurvan y se dicotamizan adoptando en conjunto la forma de un ramillete no muy tupido que se proyecta hacia la capa molecular Las espinas dendriticas no son muy abundantes A medida que nos alejamos del soma las dendritas van disminuyen su contenido en organulos y en las regiones mas distales solo hay haces de neurotubulos y algo de reticulo endoplasmico liso A diferencia de la celula de Purkinje el campo dendritico de la celula de Golgi se dispone en las tres dimensiones y comprende un amplio territorio abarcando un area de unas 20 celulas de Purkinje De la region basal de la celula o de uno de los troncos dendriticos principales parte un axon con forma de plexo ramificado extraordinariamente denso situado en la capa de celulas granulares El plexo axonico de las celulas de Golgi presenta tres tipos basicos de arborizacion con una correspondencia funcional perfecta En el primer tipo el plexo axonico cubriria un campo similar al campo dendritico en el segundo tipo el axon se extenderia mucho mas pero sin salirse de la laminilla en el tercer tipo se originan dos plexos uno en la propia laminilla y otro en la vecina El plexo axonico acaba en numerosos grupos de terminaciones arracimados que confluyen en los islotes protoplasmicos y hacen sinapsis con las dendritas de las celulas granulares Las celulas de Golgi reciben sus aferencias de las fibras musgosas y las fibras trepadoras y en menor proporcion de otras neuronas como las celulas granulares Un tipo caracteristico de sinapsis son las axo somaticas formadas por una dilatacion de las fibras musgosas que se incrusta en cuerpo de una celula de Golgi quedando casi envuelta por su citoplasma Las celulas de Lugaro no son tan conocidas ni estan tan estudiadas como otros tipos neuronales del cerebelo Se caracterizan por tener un gran soma fusiforme localizado justo por debajo de la capa de celulas de Purkinje Tienen largas dendritas opositopolares rectilineas o en abanico que se extienden siguiendo un plano transversal y cubriendo un campo que alberga 1 o 2 hileras completas de celulas de Purkinje Su axon se bifurca en un amplio plexo arrosariado que se extiende desde la zona superior de la capa granular hasta la superficie de la capa molecular dispuesto en un plano sagital Aparte de las celulas de Golgi y de Lugaro hay otros tipos de celulas que tambien son grandes celulas estrelladas Se trata de elementos aberrantes y por lo tanto muy infrecuentes y con escaso significado funcional Son celulas de Golgi celulas de Purkinje y neuronas de proyeccion de los nucleos profundos en una situacion ectopica Las celulas monodendriticas en penacho son un nuevo tipo celular descrito recientemente Se encuentran en la capa granular presentan un soma esferico y un unico tronco dendritico que termina en una corta arborizacion en penacho Las celulas estrelladas pequenas pueden ser superficiales celulas estrelladas o profundas celulas en cesta Las celulas en cesta son un tipo especial de celulas estrelladas pequenas a las que Cajal denomino pequenas estrelladas profundas En el cerebelo humano hay alrededor de 90 millones de celulas en cesta Se caracterizan porque su soma tiene forma triangular o estrellada con unos 10 a 20 mm de diametro y se situa en la mitad interna de la capa molecular justo por encima de las celulas de Purkinje Tiene una nucleo lobulado y excentrico y su citoplasma posee unas pocos organulos concentradas en el polo opuesto al nucleo Los grumos de Nissl y las cisternas hipolemnales son escasas y el aparato de Golgi y el reticulo endoplasmico liso estan poco desarrollados Sus dendritas pueden ser descendentes aunque lo normal es que asciendan hasta el tercio superior de la capa molecular miden entre 100 y 200 mm de longitud y se orientan en el mismo plano aproximadamente que las celulas de Purkinje Las dendritas son rectilineas casi sin ramificaciones y con espinas aunque mucho menos abundantes y mas groseras que las de las celulas de Purkinje Tienen abundantes neurotubulos neurofilamentos y reticulo endoplasmico liso hasta en sus porciones mas distales y mitocondrias reticulo endoplasmico rugoso y aparato de Golgi en los principales tronco dendriticos El axon que puede alcanzar 1 mm milimetro de longitud tras recorrer un trayecto horizontal en el plano sagital aumenta de calibre emite colaterales a la capa molecular y finaliza en una serie de terminales que rodean los somas de las celulas de Purkinje estableciendo numerosos contactos sinapticos Estos terminales axonicos forman una especie de cesta por lo que estas neuronas reciben su caracteristico nombre confluyendo sus extremos en la base del soma de la celula de Purkinje donde forman un pincel que rodea el segmento inicial del axon Cada axon de una celula en cesta puede dar origen a unas diez cestas perisomaticas mientras que varias celulas en cesta contribuyen a formar los nidos pericelulares de una celula de Purkinje En contraposicion a las otras neuronas del cerebelo los campos axonicos de las celulas en cesta presentan una notable superposicion Las aferencias de las celulas en cesta provienen principalmente de las fibras trepadoras y paralelas asi como de celulas estrelladas de colaterales del plexo supraganglionico de las celulas de Purkinje y de otras celulas en cesta Dentro de las celulas estrelladas se distinguen varios tipos diferentes aunque su morfologia general es esencialmente similar en todas ellas Su soma es estrellado o poligonal y se situa en la parte externa de la capa molecular Tiene un nucleo con cromatina laxa y un citoplasma con escasos organulos Su axon despues de un tramo inicial de 5 a 6 mm de longitud se ramifica cerca del soma formando un plexo que termina haciendo sinapsis sobre diferentes zonas de la celula de Purkinje y sobre otras interneuronas Sus dendritas se originan de cinco o seis troncos principales y se ramifican en el plano transversal formando un plexo varicoso provisto de espinas que se extiende por la capa molecular recibiendo sinapsis de las fibras paralelas y trepadoras ademas de otras celulas estrelladas y de celulas en cesta Ademas hay otras celulas estrelladas que son algo mas grandes y presentan un aspecto muy similar al de las celulas en cesta llegando a participar en la formacion de las cestas perisomaticas aunque sin formar parte del pincel Fibras extrinsecas Editar Las fibras extrinsecas son los axones mielinicos aferentes que alcanzan la corteza cerebelosa desde otras regiones del sistema nervioso central Las mas importantes son las fibras musgosas y las trepadoras Las fibras musgosas son gruesas fibras mielinicas que proceden de numerosas areas del sistema nervioso como son el ganglio y nucleos vestibulares la medula espinal la formacion reticular y los nucleos del puente A traves de estas fibras el cerebelo recibe informacion procedente de practicamente todo el sistema nervioso incluida la corteza cerebral Entran principalmente por los pedunculos cerebelosos medio y superior y dan colaterales para los nucleos profundos distribuyendose a continuacion por toda la corteza cerebelosa Las fibras musgosas al llegar a la capa granular siguen un trayecto tortuoso y se dividen en varias ramas que presentan dilataciones arborizadas y varicosas parecidas al musgo y denominadas rosetas o rosaceas Cada fibra musgosa da origen a unas 20 rosetas que se localizan tanto en el curso de la fibra como en sus terminaciones y bifurcaciones Estas rosetas hacen sinapsis sobre las dilataciones digitiformes de las celulas granulares y los axones de las celulas de Golgi formando los denominados glomerulos cerebelosos Ademas hacen sinapsis con el soma de las celulas de Golgi Las fibras musgosas son gruesas con abundantes neurotubulos neurofilamentos y mitocondrias Estan envueltas en una gruesa vaina de mielina en cuyos nodos de Ranvier se localizan las rosetas Las fibras trepadoras son los axones de las neuronas de proyeccion del nucleo olivar inferior desde donde penetran en el cerebelo por el pedunculo inferior Una unica neurona del nucleo olivar inferior da origen a unas diez fibras trepadoras Tienen menor diametro que las musgosas Al llegar al cerebelo estas fibras dan colaterales para los nucleos profundos y luego se distribuyen por toda la corteza cerebelosa donde pierden la mielina Penetran en la capa granular en linea recta y sin varicosidades dando una o dos colaterales Alcanzar la capa de celulas de Purkinje donde cada fibra se superpone a varias celulas de Purkinje ascendiendo sobre ellas a la vez que se ramifica Hay una fibra trepadora por cada 5 a 10 celulas de Purkinje que realiza unas 300 sinapsis con cada neurona El destino de las colaterales de la capa granular son las dendritas y los somas de las celulas de Golgi Las fibras trepadoras en su porcion mas distal se hacen finas y amielinicas con algunos neurofilamentos pocas mitocondrias y abundantes sinapsis en passant con las dendritas de las celulas de Purkinje Tambien presentan unos botones muy densos y repletos de vesiculas redondeadas que demuestran la existencia de sinapsis entre estas fibras y las dendritas de las celulas estrelladas y las celulas en cesta Ademas de las musgosas y las trepadoras la corteza cerebelosa recibe otras fibras nerviosas aferentes entre las que destacan las procedentes de locus caeruleus que son noradrenergicas y se distribuyen por las tres capas y las que se originan en los nucleos del rafe que envian serotonina a la capa de celulas granulares y a la capa molecular Glia Editar En la corteza cerebelosa predominan los astrocitos protoplasmicos entre los que destaca un tipo peculiar de astrocito denominado glia de Bergmann El soma de esta celula tiene forma irregular y se halla entre las celulas de Purkinje desde donde parten de dos a tres prolongaciones con gruesas excrecencias protoplasmicas que se extienden por toda la capa molecular y alcanzan la piamadre Una vez alcanzada la piamadre se adosan a ella mediante unos ensanchamientos que forman la capa limitante de Cajal Otro tipo especial de astrocitos son las celulas de Fananas cuyos somas se situan en la capa molecular y sus expansiones no alcanzan la piamadre Tanto las celulas de Fananas como la glia de Bergmann no presentan ninguna pecularidad ultraestructural expresando ambas positividad para el anticuerpo de la proteina gliofibrilar acida GFAP En la capa granular se pueden observar astrocitos protoplasmaticos que no aislan todas las neuronas y que parecen formar circulos alrededor de los glomerulos cerebelosos Asi mismo existen oligodendrocitos en la capa molecular pero no en la granular Nucleos profundos Editar En el interior de la sustancia blanca podemos encontrar 4 pares de nucleos de sustancia gris que de medial a lateral son el nucleo del fastigio o del techo el globoso el emboliforme y el dentado El emboliforme y el globoso esta muy relacionados funcionalmente y en conjunto forman el nucleo interpuesto Los nucleos vestibulares del bulbo raquideo tambien funcionan en ciertos aspectos como si fueran nucleos cerebelosos profundos debido a sus conexiones directas con la corteza del lobulo floculonodular El nucleo del fastigio es una masa gruesa con forma de cometa ubicada casi en la linea media justo por encima del techo del IV ventriculo del cual esta separado por una delgada capa de sustancia blanca El nucleo globoso es alargado en sentido anteroposterior y se situa entre el nucleo del fastigio y el emboliforme El nucleo emboliforme tiene forma de coma con la parte gruesa dirigida hacia delante y se situa junto al hilio del nucleo dentado El nucleo dentado es el de mayor tamano y se ha calculado que tiene unas 250 000 neuronas Es de color gris amarillento y tiene forma de bolsa con pliegues abierta hacia delante y hacia la linea media La abertura se denomina hilio del nucleo dentado y por el salen la mayor parte de las fibras que forman el pedunculo cerebeloso superior En el nucleo dentado se distinguen al menos dos tipos de neuronas las grandes o de proyeccion y las pequenas o interneuronas Pero los circuitos sinapticos de este nucleo no estan claramente establecidos Tanto las neuronas de proyeccion como las interneuronas tienen prolongaciones no muy numerosas largas y poco ramificadas que les dan un aspecto general estrellado El nucleo dentado como el resto de los nucleos cerebelosos ademas de recibir colaterales de fibras que desde otros centros nerviosos llegan al cerebelo reciben los axones de las celulas de Purkinje Cada uno de estos axones finaliza en un dilatado plexo terminal sobre unas 30 neuronas de los nucleos cerebelosos Los axones de las neuronas de proyeccion se dirigen a traves de los pedunculos hacia centros nerviosos especificos No hay conexiones directas de la corteza cerebelosa con el exterior excepto por algunos axones de las celulas de Purkinje que alcanzan directamente los nucleos vestibulares Sustancia blanca Editar En un corte sagital del cerebelo la sustancia blanca adopta una disposicion arborescente por lo que a veces se la conoce como arbol de la vida del cerebelo o arbor vitae Esta formada por una masa voluminosa central denominada cuerpo o centro medular de la que parten prolongaciones hacia las circunvoluciones del cerebelo denominadas laminas blancas El cuerpo medular se continua hacia delante directamente con los pedunculos que tambien estan constituidos de sustancia blanca Desde el punto de vista histologico la sustancia blanca del cerebelo esta constituida por axones junto con astrocitos fibrosos y abundantes oligodendrocitos productores de la envoltura mielinica Los axones de la sustancia blanca son tanto fibras eferentes y aferentes como fibras intrinsecas que conectan diferentes areas corticales entre si Las fibras aferentes de la corteza corresponden a axones de las celulas de Purkinje mientras que las de los nucleos profundos corresponden a axones de las neuronas de proyeccion de dichos nucleos Las aferencias corresponden a las fibras musgosas las trepadoras y las que provienen de los sistemas noradrenergico y serotoninergico Entre las fibras intrinsecas o propias se distinguen dos tipos las fibras comisurales y las arqueadas o de asociacion Las comisurales cruzan la linea media y conectan las mitades opuestas del cerebelo mientras que las arquedas conectan circunvaluciones cerebelosas adyacentes entre si Sustancia gris Editar La sustancia gris o materia gris corresponde a aquellas zonas del sistema nervioso central de color grisaceo integradas principalmente por somas neuronales y dendritas carentes de mielina junto con celulas gliales neuroglia En la medula espinal se aprecia en su centro y hacia los laterales en forma de mariposa o letra H mientras que en el cerebro ocupa la zona externa con excepcion de los internos ganglios basales que sirven como estaciones de relevo En el cerebro se dispone en su superficie y forma la corteza cerebral que corresponde a la organizacion mas compleja de todo el sistema nervioso Conexiones cerebelosas Editar Al cerebelo llegan aferencias de todas las vias motoras y de todas las sensitivas incluyendo la olfatoria 19 y de el parten eferencias para controlar todas las vias motoras descendentes Las eferencias no suelen hacer sinapsis directamente sobre las motoneuronas de la via final comun excepto en las de los musculos extrinsecos del globo ocular Las eferencias normalmente actuan sobre los nucleos motores del tronco del encefalo El numero de fibras aferentes cerebelosas es mas de 40 veces superior al de fibras eferentes Todas las conexiones del cerebelo pasan por los pedunculos A continuacion se expondran las principales conexiones que establece el cerebelo ordenadas siguiendo su division funcional Hay que tener en cuenta que las fibras aferentes al contrario que las eferentes no terminan sobre la corteza cerebelosa siguiendo de manera estricta la division funcional Aferencias del vestibulocerebelo Editar Mayoritariamente provienen del sistema vestibular mediante dos tractos el vestibulocerebeloso directo o de Edinger y el vestibulocerebeloso indirecto Tambien recibe algunas fibras del tracto corticoponticocerebeloso que provienen de la corteza visual del lobulo occipital fibras occipitoponticocerebelosas El tracto vestibulocerebeloso directo o de Edinger esta formado por los axones de las neuronas localizadas en el ganglio vestibular o de Scarpa que llegan preferentemente al nodulo y algunas a la banda vermiana No pasa por los nucleos vestibulares no se decusa en su trayecto y entra directamente por el pedunculo inferior Transmite informacion sobre la posicion de la cabeza y las aceleraciones lineales y angulares que sufre el cuerpo El tracto vestibulocerebeloso indirecto esta formado por los axones de las neuronas asentadas en los nucleos vestibulares superior y medial que van a terminar en los floculos y en menor medida en la banda vermiana No se decusa en su trayecto y entra por el pedunculo inferior Transmite informacion sobre la posicion de la cabeza y las aceleraciones lineales y angulares que sufre el cuerpo Eferencias del vestibulocerebelo Editar Los principales tractos de fibras que parten del vestibulocerebelo son el cerebelovestibular el floculooculomotor y el uncinado de Russell El tracto cerebelovestibular esta formado por fibras directas y cruzadas que se origina en los floculos y que salen del cerebelo por el pedunculo inferior para alcanzar los nucleos vestibulares medial y lateral Regula la actividad de los tractos vestibuloespinales medial y lateral El tracto floculoculomotor se origina en los floculos se decusa en pleno cerebelo sale por el pedunculo superior y asciende por el tronco del encefalo hasta llegar al nucleo del nervio oculomotor o motor ocular comun Controla los movimientos del globo ocular El tracto uncinado de Russell se origina en los floculos se cruza y se dirige cranealmente hacia el pedunculo cerebeloso superior Pero antes de alcanzar ese pedunculo cambia bruscamente de direccion formando una especie de gancho y termina saliendo por el inferior Acaba en los nucleos vestibulares En su trayecto en el cerebelo emite colaterales que salen por el pedunculo superior y alcanzan los nucleos de los nervios motores oculares la formacion reticular y el hipotalamo Controla los movimientos del globo ocular y la actividad de los tractos vestibuloespinales Aferencias del espinocerebelo Editar Las aferencias del espinocerebelo proceden de tres zonas del neuroeje la medula espinal el bulbo raquideo y el mesencefalo A nivel de la medula espinal las aferencias llegan por medio de los tractos espinocerebelosos posterior y anterior Estos tractos son capaces de transmitir impulsos nerviosos mas rapido que cualquier otra via del SNC alcanzando una velocidad de 120 m s metros por segundo Esta rapidez es necesaria para que llegue al cerebelo la informacion sobre los cambios ocurridos en los grupos musculares perifericos y poder coordinarlos a tiempo El tracto espinocerebeloso anterior ventral o de Gowers se origina en la medula en neuronas que se asientan en la zona lateral de la base del asta posterior entre los ultimos segmentos lumbares y los sacrococcigeos Algunas de sus fibras cruzan la comisura gris para ascender por el cordon lateral del lado contrario donde se situa proximo a la superficie medular Las pocas fibras que no se cruzan ascienden por el cordon lateral del mismo lado Todas sus fibras atraviesan el bulbo y el puente y llegan hasta la zona mas caudal del mesencefalo donde cambian bruscamente de direccion para entrar al cerebelo por el pedunculo superior Alcanza el vermis y las bandas paravermianas de ambos lados Transmite informacion propioceptiva inconsciente y exterioceptiva de la extremidad inferior El tracto espinocerebeloso posterior dorsal o de Flechsing esta formado por axones de neuronas cuyo soma se localiza en la columna toracica o nucleo de Stilling Clarke Asciende por el cordon lateral pegado a la superficie y justo por detras del tracto espinocerebeloso anterior Al alcanzar el bulbo penetra en el cerebelo por el pedunculo inferior y llega hasta el vermis y la banda paravermiana del mismo lado de su origen Transmite informacion propioceptiva inconsciente y exteroceptiva procedente del tronco y la extremidad inferior A nivel del bulbo raquideo las aferencias llegan por medio de los tractos cuneocerebeloso olivocerebeloso y reticulocerebeloso El tracto cuneocerebeloso esta formado por los axones de las neuronas que asientan en el nucleo cuneiforme accesorio fibras arqueadas externas posteriores Asciende por el bulbo raquideo sin decusarse y mezclado con el tracto espinocerebeloso posterior Entra por el pedunculo cerebeloso inferior y acaba en el vermis y en la banda paravermiana del mismo lado Transmite la sensibilidad propioceptiva inconsciente y exteroceptiva de la mitad superior del cuerpo El tracto olivocerebeloso es la conexion mas importante que se establece entre bulbo raquideo y cerebelo Esta formado por axones de las neuronas del nucleo olivar inferior y de los nucleos olivares accesorios Estos nucleos reciben informacion somatoestesica visual y de la corteza cerebral ademas de recibir aferencias vestibulares y del propio cerebelo Al poco de originarse el tracto olivocerebeloso se decusa totalmente y entra en el cerebelo por el pedunculo inferior Termina proporcionando fibras trepadoras para toda la corteza cerebelosa Transmite al cerebelo la informacion recibida por los nucleos olivares El tracto reticulocerebeloso esta formado por axones de neuronas localizadas en la formacion reticular bulbar y pontica Parte de las fibras se cruzan y otra parte van directas Entra por el pedunculo cerebeloso inferior y alcanza principalmente el espinocerebelo aunque tambien manda algunas fibras para el cerebrocerebelo Transmite informacion compleja tanto de la periferia como de la corteza cerebral y otras partes del sistema nervioso central A nivel del mesencefalo las aferencias llegan por medio de los tractos tectocerebeloso trigeminocerebeloso y rubrocerebeloso El tracto tectocerebeloso esta formado por los axones de las neuronas de los tuberculo cuadrigeminos superiores e inferiores Entran en el cerebelo a traves del pedunculo superior del mismo lado y terminan en la parte media del vermis Transmite informacion visual y acustica proveniente de la corteza cerebral El tracto trigeminocerebeloso esta formado por axones de neuronas del nucleo mesencefalico del nervio trigemino que entran al cerebelo a traves del pedunculo superior sin decusarse por el camino Terminan en el vermis y en la banda vermiana del mismo lado de su origen Transmite informacion propioceptiva del macizo craneofacial El tracto rubrocerebeloso esta formado por axones de neuronas asentadas la porcion parvocelular del nucleo rojo que se decusan en su totalidad antes de alcanzar el cerebelo por el pedunculo superior Eferencias del espinocerebelo Editar Las principales referencias que parten del espinocerebelo son el tracto interpuestorreticular el tracto interpuestoolivar el tracto interpuestotectal y el tracto interpuestorrubrico El tracto interpuestorreticular se origina en el nucleo interpuesto sus fibras se decusan parcialmente y salen del cerebelo por los pedunculos inferiores para alcanzar los nucleos de la formacion reticular El tracto interpuestoolivar sale por el pedunculo cerebeloso superior se decusa en su totalidad a nivel del mesencefalo y desciende por el tronco del encefalo para alcanzar el nucleo olivar inferior El tracto interpuestotectal se decusa parcialmente antes de salir por el pedunculo cerebeloso superior y ascender por el tronco del encefalo hasta alcanzar los tuberculos cuadrigeminos superior e inferiores El tracto interpuestorrubrico es la eferencia mas importante del espinocerebelo y principal via de descarga del nucleo interpuesto Las fibras que lo conforman salen del cerebelo por el pedunculo superior se decusan en su totalidad en el mesencefalo y alcanzan el nucleo rojo contralateral Desde el nucleo rojo parten axones hacia el nucleo ventral intermedio del talamo que a su vez envia axones para la corteza cerebral motora y sensorial Controla la actividad de las vias motoras que descienden hasta la medula espinal Aferencias del cerebrocerebelo Editar Todas las aferencias que recibe el cerebrocerebelo forman parte del tracto corticoponticocerebeloso Este tracto se origina en una amplia zona de la corteza cerebral que abarca los lobulos frontal parietal occipital y temporal y antes de entrar en el cerebelo hace sinapsis en los nucleos del puente La mayoria de las fibras que van desde la corteza hacia los nucleos del puente son colaterales de axones que se dirigen hacia otras zonas del encefalo o hacia la medula espinal y cuyo cuerpo neuronal se situa en la capa V del cortex cerebral Estas fibras se pueden dividir segun su origen en frontoponticas parietoponticas occipitoponticas y temporoponticas Las fibras frontoponticas se originan en las cortezas motora y premotora y pasan por el brazo anterior de la capsula interna En el mesencefalo discurren por la base de los pedunculos cerebrales medialmente al tracto corticonuclear Terminan en los nucleos del puente mas mediales Las fibras parietoponticas se originan en las areas somatosensitivas primaria y secundaria y en areas visuales Pasan por el brazo posterior de la capsula interna y luego por la base de los pedunculos cereberales lateralmente al tracto corticoespinal Terminan en los nucleos del puente mas laterales Las fibras occipitoponticas se originan en areas secundarias relacionadas con el procesamiento de estimulos visuales del movimiento corriente magnocelular de la via optica Pasan por la porcion retrolenticular de la capsula interna y luego por la base de los pedunculos cereberales lateralmente al tracto corticoespinal Terminan en los nucleos del puente mas laterales Las fibras temporoponticas pasan por la porcion sublenticular de la capsula interna y a nivel del mesencefalo se colocan lateralmente al tracto corticoespinal Termina en los nucleos del puente mas laterales Las fibras que van desde los nucleos del puente al cerebelo fibras pontocerebelosas siguen un trayecto horizontal por la protuberancia se decusan y entran por el pedunculo medio Terminan en la corteza de los hemisferios y en el nucleo globoso Eferencias del cerebrocerebelo Editar La mayoria de las eferencias del cerebrocerebelo salen por el tracto dentadotalamico Este tracto esta formado por los axones de las neuronas localizadas en el nucleo dentado que salen del cerebelo por el pedunculo superior Se decusan en la porcion caudal del mesencefalo decusacion de Wernekink y terminan en el nucleo ventral intermedio del talamo Desde el talamo parten fibras talamocorticales que alcanzan las misma areas de la corteza cerebral de las que partieron las aferencias corticoponticocerebelosas Existe un grupo de fibras denominadas dentadorrubricas que partiendo del nucleo dentado salen por el pedunculo cerebeloso superior se decusan y alcanzan el nucleo rojo contralateral Aferencias procedentes de los sistemas monoaminergicos Editar El cerebelo al igual que otras partes del SNC recibe fibras de los sistemas neuroquimicos moduladores Concretamente de dos de los sistemas monoaminergicos el noradrenegico y el serotoninergico El sistema noradrenergico manda el tracto caeruleocerebeloso desde el grupo A6 que coincide con el locus caeruleus hacia el cerebelo Este tracto penetra por el pedunculo superior y termina distribuido por todos los nucleos y la corteza Sus fibras no se comportan como fibras musgosas ni como trepadoras sino como proyecciones difusas El tracto serotoninergico cerebeloso se origina en los grupos B5 y B6 entra por el pedunculo medio y termina distribuido por todos los nucleos y la corteza Sus fibras acaban en proyecciones difusas Pedunculos Editar El cerebelo se fija a la cara posterior del tronco del encefalo mediante 3 pares de pedunculos por los que discurren todas las fibras nerviosas que entran y salen de el Hay dos pedunculos inferiores dos pedunculos medios y dos pedunculos superiores Pedunculos cerebelosos inferiores Editar Los pedunculos cerebelosos inferiores o cuerpos restiformes conectan el cerebelo con la parte superior del bulbo raquideo Entre ellos se extiende el velo medular inferior Por ellos entran las fibras del tracto espinocerebeloso dorsal las del tracto cuneocerebeloso las de los tractos vestibulocerebelosos las del tracto reticulocerebeloso y las fibras trepadoras provenientes del nucleo olivar inferior y accesorios tracto olivocerebeloso A traves de ellos salen las fibras del tracto cerebelovestibular las del tracto uncinado de Russell y las del tracto interpuestorreticular Pedunculos cerebelosos medios Editar Los pedunculos cerebelosos medios o pontinos conectan el cerebelo con la protuberancia o puente Son los mas grandes y estan separados de los pedunculos superiores por el surco interpeduncular Constituyen las caras laterales de la protuberancia Por ellos entran las fibras del tracto corticopontocerebeloso y las del tracto serotoninergico cerebeloso A traves de ellos no salen fibras eferentes importantes Las fibras de los pedunculos medios se organizan en tres fasciculos superior inferior y profundo El fasciculo superior el mas superficial deriva de las fibras transversales superiores de la protuberancia Se dirige dorsal y lateralmente cruzando superficialmente a los otros dos fasciculos Se distribuye principalmente por los lobulillos de la cara inferior de los hemisferios cerebelosos y por las porciones adyacentes de la cara superior El fasciculo inferior esta constituido por las fibras transversales inferiores de la protuberancia Pasa profundamente al fasciculo superior y se continua hacia atras y hacia abajo mas o menos paralelo a el Se distribuye por los lobulillos de la cara inferior en las porciones cercanas al vermis El fasciculo profundo incluye la mayor parte de las fibras transversas profundas de la protuberancia En sus primeros tramos esta cubierta por los fasciculos inferior y superior pero termina por cruzarse oblicuamente y aparece al lado medial del fasciculo superior de quien recibe un paquete de fibras Sus fibras se disgregan y acaban en los lobulillos de la parte anterior del cara superior Las fibras de este fasciculo cubren a las del cuerpo restiforme Pedunculos cerebelosos superiores Editar Los pedunculos cerebelosos superiores conectan el cerebelo con el mesencefalo Entre estos dos pedunculos se extiende el velo medular superior Por ellos entran las fibras del tracto espinocerebeloso ventral las del tracto tectocerebeloso las del tracto trigeminocerebeloso las del tracto rubrocerebeloso y las del tracto caeruleocerebeloso A traves de ellos salen las fibras del tracto floculooculomotor las del interpuestoolivar las del interpuestorrubrico las del interpuestotectal las del tracto dentadotalamico las dentadorrubricas y las colaterales del uncinado de Russell Irrigacion arterial Editar Hay tres pares de arterias principales que irrigan el cerebelo las arterias cerebelosas superiores SCA las arterias cerebelosas inferoanteriores AICA y las arterias cerebelosas inferoposteriores PICA Arteria cerebelosa superior Editar Se origina de la arteria basilar justo por debajo del lugar donde esta se divide en sus dos ramas terminales Se dirige lateralmente y hacia atras contorneando el pedunculo cerebeloso correspondiente a la altura del surco pontomesencefalico Pasa inmediatamente por debajo del nervio motor ocular comun III y atraviesa la cisterna ambiens acompanando al nervio troclear IV Sus ramas terminales discurren por la piamadre entre la tienda del cerebelo y la cara superior del cerebelo Se anastomosa con las arterias cerebelosas inferiores Irriga la corteza cerebelosa de la cara superior y los nucleos profundos asi como los pedunculos cerebeloso superiores y medios Cuando contornea el mesencefalo la arteria cerebelosa superior da la arteria romboidal que sigue el pedunculo cerebeloso superior y penetra en el interior del cerebelo para irrigar a los nucleos profundos Tambien da varias ramas colaterales que llegan hasta la glandula pineal el velo medular superior y la tela coroidea del III ventriculo Arteria cerebelosa anteroinferior Editar Se origina de la arteria basilar justo por encima del lugar donde esta se forma por la union de las dos arterias vertebrales Se dirige lateralmente y hacia atras contorneando la cara lateral del puente justo por debajo del origen aparente del nervio trigemino V Sigue su trayecto por el borde inferior del pedunculo cerebeloso medio Irriga la porcion anterior de la cara inferior del cerebelo asi como los nervios facial VII y vestibulococlear VIII Sus ramas terminales se anastomosan con las de las arterias cerebelosas inferoposterior y superior En algunas personas la arteria cerebelosa inferior emite la arteria laberintica o auditiva interna en otras personas la arteria laberintica se origina en la arteria basilar Esta rama acompana al nervio vestibulococlear VIII a traves del conducto auditivo interno hasta alcanzar el oido medio Arteria cerebelosa posteroinferior Editar Se origina de las arterias vertebrales justo por debajo del lugar donde estas se unen para formar la arteria basilar Se dirige hacia atras rodeando la parte superior del bulbo raquideo y pasando entre el origen del nervio vago X y el nervio accesorio XI Sigue su trayecto sobre el pedunculo cerebeloso inferior y cuando alcanza la cara inferior del cerebelo se divide en dos ramas terminales una medial y otra lateral La rama medial se continua hacia atras por la cisura media entre los dos hemisferios cerebelosos La rama lateral se distribuye por la superficie inferior de los hemisferios hasta llegar al borde circunferencial donde se anastomosa con las arterias cerebelosas inferoanterior y superior Irriga la parte posterior de la cara inferior del cerebelo el pedunculo cerebeloso inferior el nucleo ambiguo el nucleo motor del nervio vago el nucleo espinal del nervio trigemino el nucleo solitario los nucleos vestibulares y los nucleos cocleares Sus ramas colaterales mas importantes son la rama coroidea del IV ventriculo y las ramas bulbares medial y lateral La primera contribuye al plexo coroideo del IV ventriculo y las otras dos irrigan el bulbo raquideo y el pedunculo cerebeloso inferior Drenaje venoso Editar Las principales venas que drenan la sangre del cerebelo son las venas superiores del cerebelo la vena superior del vermis la vena precentral del cerebelo las venas inferiores del cerebelo la vena inferior del vermis y las venas petrosas Todas ellas terminan por enviar la sangre a senos venosos de la duramadre Las venas superiores del cerebelo recogen la sangre de la porcion lateral de la cara superior de los hemisferios cerebelosos y normalmente desembocan en el seno transverso La vena superior del vermis recoge la sangre del vermis superior y desemboca en el seno recto a traves de la vena cerebral interna o la vena cerebral magna vena de Galeno La vena precentral del cerebelo recoge la sangre de la lingula y del lobulillo central y desemboca en la vena cerebral magna Las venas inferiores del cerebelo recogen la sangre de la porcion lateral de la cara inferior de los hemisferios cerebelosos y desembocan en los senos transverso occipital y petroso superior La vena inferior del vermis recoge la sangre del vermis inferior y desemboca directamente en el seno recto Las venas petrosas recogen la sangre de la region del floculo y desembocan en el seno petroso inferior o en el superior Sistematizacion de las caras del cerebelosuperior lobulo occipital anterior tallo cerebral posterior protuberancia occipital interna bordes laterales inferior fosa cerebelosa lingula espino talamico dorsal via propioseptiva inconsciente del dolor brazos y piernasCircuitos neuronales EditarEn conjunto las conexiones neuronales del cerebelo se pueden dividir en axones aferentes que transmiten la informacion de otras partes del SNC al cerebelo circuitos cerebelosos intrinsecos corticales y nucleares que integran y procesan la informacion y axones eferentes que transmiten la informacion procesada a otras partes del SNC Los axones o fibras aferentes alcanzan la corteza cerebelosa tras dar colaterales para los nucleos cerebelosos profundos o para los nucleos vestibulares A su vez la informacion es procesada en los circuitos intrinsecos de la corteza cerebelosa y el resultado en forma de impulsos nerviosos es enviado por los axones de las celulas de Purkinje a los nucleos profundos En estos nucleos la informacion tambien se procesa y de ellos parten las fibras eferentes del cerebelo tanto en direccion ascendente hacia el talamo y corteza como descendente hacia la medula espinal De esta forma el circuito funcional basico del cerebelo que constituido por dos arcos uno principal o excitador que pasa por los nucleos profundos y otros secundario o inhibidor que pasa por la corteza y regula al anterior Este circuito se repite unas 30 millones de veces en todo el cerebelo y esta formado por una sola celula de Purkinje y la neurona nuclear de proyeccion correspondiente mas las interneuronas relacionadas con ellas El circuito funcional basico y los elementos celulares que lo conforman son identicos en todas las partes del cerebelo por este motivo se considera que la informacion se procesa de forma similar en todo el cerebelo Circuitos neuronales de los nucleos profundos arco principal Editar El arco principal esta constituido por las ramas colaterales de las fibras musgosas y trepadoras que terminan en las neuronas de los nucleos profundos Los axones de las neuronas de proyeccion de los nucleos profundos salen del cerebelo a traves de los pedunculos para terminar en diferentes nucleos del tronco del encefalo y en el talamo En los nucleos profundos se encuentran principalmente sinapsis axodendriticas y algunas axosomaticas aunque tambien existen disposiciones mas complejas como sinapsis en serie y triadas La sinapsis mas frecuente es la sinapsis axodendritica excitadora que se establece entre un terminal de las colaterales axonicas de las fibras musgosas o trepadoras como elemento presinaptico y una dendrita de una neurona de proyeccion o una interneurona de los nucleos profundos elemento postsinaptico Las colaterales de las fibras musgosas y las fibras trepadoras usan como neurotransmisor principal el glutamato aunque tambien pueden utilizar otros neurotransmisores en espacial las fibras musgosas Los circuitos sinapticos que se realizan entre las propias neuronas de los nucleos profundos son poco conocidos Desde el punto de vista funcional los nucleos profundos del cerebelo poseen dos tipos basicos de neurona de proyeccion unas neuronas gabaergicas inhibidoras y pequenas que mandan su axon hacia el nucleo olivar inferior y otras neuronas glutaminergicas excitadoras que mandan sus axones a otros centros nerviosos Las neuronas de proyeccion de los nucleos profundos en condiciones normales disparan permanentemente potenciales de accion a una frecuencia de mas de 100 por segundo Esta frecuencia puede modularse al alza o a la baja dependiendo de las senales excitadoras e inhibidoras que le lleguen a la neurona Las senales excitadoras provienen principalmente de las colaterales axonicas de las fibras musgosas y trepadoras mientras que las senales inhibidoras provienen de los axones de las celulas de Purkinje que forman parte del arco secundario El equilibrio entre estos dos efectos es ligeramente favorable a la excitacion lo que explica por que la frecuencia de descargas de las neuronas de proyeccion se mantiene relativamente constante a un nivel moderado de estimulacion continua Circuitos neuronales de la corteza cerebelosa arco secundario Editar El arco secundario pasa a traves de la corteza cerebelosa y esta constituido en torno a una pieza neural fundamental la celula de Purkinje En la celula de Purkinje terminan dos tipos de circuitos los circuitos excitadores o principales que son los que la estimulan y los circuitos inhibidores formados por interneuronas inhibidoras Finalmente los axones de las celulas de Purkinje se proyectan sobre las neuronas de los nucleos cerebelosos y vestibulares ejerciendo sobre ellos una accion inhibitoria mediante sinapsis gabaergicas De esta forma se modula y regula el arco principal excitador A todo esto hay que anadir que las terminaciones noradrenergicas que llegan al cerebelo liberan un neurotransmisor de forma difusa que produce una hiperpolarizacion de las celulas de Purkinje Circuitos excitadores Editar Las celulas de Purkinje pueden ser estimuladas por dos vias distintas mediante las fibras trepadoras via directa o mediante las fibras musgosas via indirecta Las fibras trepadoras al terminar sobre el soma y el arbol dendritico de las celulas de Purkinje producen una estimulacion directa y muy especifica mediante sinapsis tipo I de Gray que utilizan como neurotransmisor el glutamato Al formar multiples contactos con cada celula de Purkinje una sola fibra trepadora produce una accion excitadora mucho mas eficaz que las fibras musgosas Las fibras musgosas no actuan de forma directa sobre las celulas de Purkinje sino que lo hacen a traves de unas interneuronas excitatorias las celulas granulares La presencia de interneuronas excitatorias es muy infrecuente en el sistema nervioso y es caracteristica de la corteza cerebelosa A nivel del glomerulo cerebeloso las fibras musgosas hacen sinapsis tipo I de Gray excitadoras sobre las dendritas de las celulas granulares y los impulsos son vehiculados por las fibras paralelas hasta alcanzar las dendritas de las celulas de Purkinje Las fibras paralelas presentan sinapsis que contienen vesiculas esfericas con glutamato y conformacion tipo I de Gray lo que concuerda con su caracter excitador En conjunto las fibras musgosas actuan sobre las celulas de Purkinje con mucha convergencia y divergencia estableciendo conexiones mas inespecificas que las fibras trepadoras Las celulas de Purkinje no cumplen el principio que dice que todos los potenciales de accion producidos por una neurona son iguales porque presenta dos tipos de potenciales de accion distintos dependiendo de la via por la cual sean estimuladas Si se estimulan de manera directa a traves de las fibras trepadoras generan una despolarizacion prolongada y un potencial de accion de pico complejo con una frecuencia de descarga de 3 o 4 Hz Al ser estimuladas por la via indirecta a traves de las fibras musgosas generan un potencial de accion breve denominado pico sencillo con una frecuencia de descarga de 100 a 200 Hz Para generar un pico sencillo es necesaria la suma temporal y espacial de la estimulacion producida por varias fibras paralelas Todo esto demuestra que la informacion aportada por los dos tipos de fibras extrinsecas que llegan al cerebelo es diferente y es procesada de manera distinta Circuitos inhibidores Editar Los circuitos inhibidores estan constituidos por los tres tipos fundamentales de interneuronas inhibitorias las celulas de Golgi las celulas estrelladas y las celulas en cesta Pueden actuar directamente sobre las celulas de Purkinje como lo hacen las celulas estrelladas y las celulas en cesta o indirectamente a traves de las celulas granulares como lo hacen las celulas de Golgi Todas estas interneuronas utilizan GABA como neurotransmisor inhibidor Las celulas estrelladas y las celulas en cesta son estimuladas por las fibras paralelas de los granos que previamente han sido estimuladas por las fibras musgosas y son las encargadas de modular la activacion de las celulas de Purkinje por las fibras trepadoras produciendo un fenomeno de inhibicion lateral Esta inhibicion lateral hace mas precisa la senal que llega a las celulas de Purkinje de la misma manera que otros mecanismos de inhibicion lateral acentuan el contraste de las senales en otros muchos circuitos neuronales de sistema nervioso Las celulas de Golgi reciben estimulos excitatorios de las fibras paralelas y en menor cantidad de las fibras trepadoras y musgosas Actuan a nivel de los glomerulos cerebelosos haciendo sinapsis tipo II de Gray inhibitaria sobre las dendritas de las granos Mediante estas sinpasis modulan la activacion de las celulas granulares por las fibras musgosas y por consiguiente regulan la actividad de las celulas de Purkinje De esta forma las celulas de Golgi crean un circuito de retroalimentacion negativa para las celulas granulares Senales de salida Editar Depresion a largo plazo de las celulas de Purkinje aprendizaje motor EditarTeorias sobre la funcion cerebelosa EditarModelado de la funcion cerebelosa EditarPatologia EditarClasicamente las lesiones del cerebelo se manifiestan clinicamente por Hipotonia Se caracteriza por una resistencia disminuida a la palpacion o manipulacion pasiva de los musculos por lo general se acompana de reflejos osteotendinosos disminuidos y de tipo pendular junto a un llamativo fenomeno de rebote en la prueba de Stewart Holmes Ataxia o descoordinacion de los movimientos voluntarios La alteracion de la coordinacion de los movimientos voluntarios da lugar a la aparicion de hipermetria asinergia discronometria y adiadococinesia En las pruebas cerebelosas dedo nariz o talon rodilla la velocidad y el inicio del movimiento no se encuentran afectos pero cuando el dedo o el talon se aproximan a la nariz o la rodilla sobrepasan su destino o corrigen la maniobra excesivamente hipermetria La asinergia consiste en una descomposicion del movimiento en sus partes constituyentes Todos estos trastornos se observan mejor cuanto mas rapidamente se ejecutan las maniobras La adiadococinesia indica una dificultad o la imposibilidad para ejecutar movimientos alternativos rapidos prueba de las marionetas Alteracion del equilibrio y de la marcha la alteracion de la estatica provoca inestabilidad en ortostatismo por lo que el paciente debe ampliar su base de sustentacion separa los pies al permanecer de pie y al andar su cuerpo presenta frecuentes oscilaciones A diferencia de los trastornos vestibulares estas alteraciones no se modifican al cerrar los ojos La marcha es caracteristica y semeja la de un borracho marcha de ebrio titubeante con los pies separados y desviandose hacia el lado de la lesion Temblor intencional grueso y evidente al intentar un movimiento temblor intencional o de accion Hay que tener en cuenta que el cerebelo regula el temblor fisiologico por tanto su lesion provoca este tipo de temblor Incluso hay otros tipos de temblor relacionados directamente con el cerebelo temblor holocraneal o de negacion temblor mixto y temblor distonico etc Otros palabra escandida explosiva nistagmus fatigabilidad etc Sindrome cerebeloso Editar La enfermedad o lesion de la totalidad o de una gran parte del cerebelo es lo que se conoce como sindrome cerebeloso Las lesiones selectivas del cerebelo son extremadamente raras Sindrome cerebeloso de vermis Editar La causa mas frecuente es el meduloblastoma del vermis en los ninos El compromiso del lobulo floculonodular produce signos y sintomas relacionados con el sistema vestibular Dado que el vermis es unico e influye sobre las estructuras de la linea media la descoordinacion muscular afecta a la cabeza y el tronco y no a las extremidades Se produce una tendencia a la caida hacia delante o hacia atras asi como dificultad para mantener la cabeza quieta y en posicion erecta Tambien puede haber dificultad para mantener el tronco erecto Sindrome cerebeloso hemisferico Editar La causa de este sindrome puede ser un tumor o una isquemia en un hemisferio cerebeloso En general los sintomas y signos son unilaterales y afectan a los musculos ipsilaterales al hemisferio cerebeloso enfermo Estan alterados los movimientos de las extremidades especialmente de los brazos y piernas donde la hipermetria y la descomposicion del movimiento son muy evidentesA menudo se produce oscilacion y caida hacia el lado de la lesion Tambien son hallazgos frecuentes la disartria y el nistagmo Etiologia del sindrome cerebeloso Editar Accidente cerebrovascular de fosa posterior que afecto el cerebelo por hemorragia Las etiologia mas frecuentes de sindromes cerebelosos son Vasculares Insuficiencia vertebro basilar Infartos Hemorragias Trombosis Tumorales Meduloblastoma vermis del cerebelo Astrocitoma quistico hemisferios cerebelosos Hemangioblastoma hemisferios cerebelosos Neurinoma del acustico angulo pontocerebeloso Metastasis Paraneoplasico cancer de pulmon Traumaticas Contusion Laceracion Hematomas Toxicas Alcohol Drogas Hidantoinatos Infecciosas Cerebelitis virosicas Cerebelitis supuradas Absceso Tuberculomas Degenerativas Enfermedad de Friedrich Enfermedad de Pierre Marie Esclerosis multiple Autoinmune Ataxia por gluten Malformaciones Arnold Chiari Malformacion de Dandy Walker Malformaciones vascularesVease tambien EditarCerebro Encefalo Sistema nervioso central Nervio Trastornos neurologicos relacionados con el glutenReferencias Editar Fine EJ Ionita CC Lohr L 2002 The history of the development of the cerebellar examination Semin Neurol 22 4 375 84 PMID 12539058 Hallonet M E R and Le Douarin N M 1993 Tracing Neuroepithelial Cells of the Mesencephalic and Metencephalic Alar Plates During Cerebellar Ontogeny in Quail chick Chimaeras European Journal of Neuroscience 5 1145 1155 M E Hatten and N Heintz Mechanisms of Neural Patterning and Specification in the Development Cerebellum Annual Review of Neuroscience Vol 18 385 408 fecha de publicacion del volumen marzo de 1995 Nusslein Volhard C and Wieschaus E 1980 Mutations affecting segment number and polarity in Drosophila Nature 287 795 801 Sgaier S K Et al Genetic subdivision of the tectum and cerebellum into functionally related regions based on differential sensitivity to engrailed proteins Development 2007 134 2325 2335 a b c d Ver ref 3 Gao WO Heintz N Hatten ME Cerebellar granule cell neurogenesis is regulated by cell cell interactions in vitro Neuron 1991 May 6 5 705 15 Wechsler Reya RJ Scott MP Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog Neuron 1999 Jan 22 1 103 14 Hatten ME Neuron 1999 Jan 22 1 2 3 Expansion of CNS Precursor Pools A New Role For Sonic Hedgehog Lee HY Angelastro JM Kenney AM Mason CA Greene LA Reciprocal actions of ATF5 and Shh in proliferation of cerebellar granule neuron progenitor cells Dev Neurobiol 2011 Sep 19 doi 10 1002 dneu 20979 Sato T Enkhbat A Yoshioka K Role of plasma membrane localization of the scaffold protein JSAP1 during differentiationof cerebellar granule cell precursors Genes Cells 2011 Jan 16 1 58 68 doi 10 1111 j 1365 2443 2010 01465 x Epub 2010 Dec 13 Sato T Torashima T Sugihara K Hirai H Asano M Yoshioka K The scaffold protein JSAP1 regulates proliferation and differentiation of cerebellar granulecell precursors by modulating JNK signaling Mol Cell Neurosci 2008 Dec 39 4 569 78 Epub 2008 Aug 30 Wei Qiang Gao Xiao Lin Liu Mary E Hatten The weaver gene encodes a nonautonomous signal for CNS neuronal differentiation Vol 68 Issue 5 6 de marzo de 1992 pp 841 854 James C Edmondson Ronald K H Liem Joan E Kuster and Mary E Hatten Astrotactin a novel neuronal cell surface antigen that mediates neuron astroglial interactions in cerebellar microcultures J Cell Biol 1988 February 1 106 2 505 517 Perrin M Wilson Robert H Fryer Yin Fang and Mary E Hatten Astn2 A Novel Member of the Astrotactin Gene Family Regulates the Trafficking of ASTN1 during Glial Guided Neuronal Migration The Journal of Neuroscience 23 June 2010 30 25 8529 8540 David J Solecki Lynn Model Jedidiah Gaetz Tarun M Kapoor amp Mary E Hatten Par6 signaling controls glial guided neuronal migration Nature Neuroscience 7 1195 1203 2004 David J Solecki Niraj Trivedi Eve Ellen Govek Ryan A Kerekes Shaun S Gleason Mary E Hatten Myosin II Motors and F Actin Dynamics Drive the Coordinated Movement of the Centrosome and Soma during CNS Glial Guided Neuronal Migration Neuron Vol 63 Issue 1 16 de julio de 2009 pp 63 80 Piper M Harris L Barry G Heng YH Plachez C Gronostajski RM Richards LJ Nuclear factor one X regulates the development of multiple cellular populations in the postnatal cerebellum J Comp Neurol 2011 Dec 1 519 17 3532 48 L I Garcia P Garcia Banuelos G E Aranda Abreu G Herrera Meza G A Coria Avila J Manzo Activation of the cerebellum by olfactory stimulation in sexually naive male rats Neurologia Elsevier PMID 24704247 doi 10 1016 j nrl 2014 02 002 Consultado el 5 de noviembre de 2016 Bibliografia EditarGUYTON A C amp HALL J E Tratado de fisiologia medica Elseveir 11 ª ed Madrid 2006 OJEDA J L amp ICARDO J M Neuroanatomia humana Masson 1 ª ed Barcelona 2005 FENEIS H amp DAUBERG W Nomenclatura anatomica ilustrada Masson 4 ª ed Barcelona 2000 NETTER F H Atlas de anatomia humana Masson 3 ª ed Barcelona 2003 KANDEL E R SCHWARTZ J H JESSELL T M Principios de neurociencia McGraw Hill 4 ª ed Madrid 2001 SADLER T W Embriologia medica Panamericana 9 ª ed Buenos Aires 2004 BUSTAMANTE J Neuroanatomia funcional y clinica Celsus 4 ª ed Bogota 2007 Histologia humana Universidad de Salamanaca 1 VI Congreso Virtual Hispanoamericano de Anatomia Patologica 2 Gray s Anatomy of the Human Body 3 Lectura adicional EditarIto M Cerebellum and Neural Control New York Raven Press 1984 ISBN 0 89004 106 7 Kandel ER Schwartz JH Jessell TM Principles of Neural Science 4th ed McGraw Hill Nueva York 2000 ISBN 0 8385 7701 6 Llinas R Sotelo C The Cerebellum Revisited New York Springer 1992 ISBN 0 387 97693 0 Parent A Carpenter MB Carpenter s Human Neuroanatomy 9th ed Philadelphia Williams and Wilkins 1995 ISBN 0 683 06752 4 Enlaces externos EditarLOGICORTEX Pagina en espanol con informacion actualizada sobre neuropsicologia clinica y cognitiva anatomia procesos cognitivos patologias descargas gratuitas enlaces Lista de laboratorios que investigan el cerebelo en la Universidad Stanford Cerebelo y coordinacion Cerebelo y Esclerosis multiple Ganglio basal y cerebelo El Tesoro en el fondo del cerebro Imagenes del cerebelo Cortes histologicos de cerebelo de primate Anatomia y Fisiologia del cerebelo Developmental Biology cinema En este enlace encontrara informacion y videos relacionados al procedimiento reportado por Le Douarin Quimeras de pollo y codorniz Wikimedia Commons alberga una categoria multimedia sobre Cerebelo Datos Q130983 Multimedia CerebellumObtenido de https es wikipedia org w index php title Cerebelo amp oldid 137229551, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos