fbpx
Wikipedia

Canal iónico

Los canales iónicos son un tipo de proteína transmembrana que permite el paso de iones específicos, a través de la membrana celular. Su estructura semeja un poro o canal relleno de agua con un sistema de compuertas. Su función permite la generación de potenciales de acción en células excitables, la manutención de la homeóstasis interna de las células, el suministro de ingredientes o condiciones necesarias para funciones biológicas tales como la síntesis de hormonas, la producción de moco y otras.[1][2]

Diagrama esquemático de un canal iónico. 1 - dominios de canal (normalmente son cuatro por canal), 2 - vestíbulo exterior, 3 - filtro de selectividad, 4 - diámetro del filtro de selectividad, 5 - sitio de fosforilación, 6 - membrana celular.

Así, los canales iónicos son proteínas que controlan el paso de iones a través de la membrana plasmática tales como Na+, K+, Ca2+ y Cl y por lo tanto dependen del gradiente electroquímico de cada ion en particular. En el caso de células excitables como los miocitos y las neuronas el gradiente de los distintos iones establece el potencial de reposo de la membrana y la activación de determinados canales genera los potenciales de acción para la ejecución de la contracción muscular, la liberación de neurotransmisores y la regulación de la expresión genética, entre otras funciones. En el caso de células no excitables, los canales iónicos determinan el flujo de sal y agua, regulando el volumen celular y el pH.[3]

Los canales iónicos son estructuralmente muy diversos, sin embargo tienen características comunes. Típicamente actúan como compuertas, abriéndose o cerrándose frente a diferentes estímulos tales como: el potencial de membrana, la unión de neurotransmisores, la concentración de ciertos iones o fuerzas mecánicas. Una vez abiertos, el flujo de diferentes iones puede llegar a 106 o 107 iones por segundo. Pueden ser particularmente selectivos par un ion específico, como los canales de sodio, los canales de potasio y los canales de calcio; o ser no selectivos, como los receptores nicotínicos.[3][4]

Descripción básica

Todas las células vivas deben adquirir de su alrededor las materias primas para la biosíntesis y la producción de energía, y deben liberar a su entorno los productos de desecho del metabolismo. Las células promueven intercambios de materia con su entorno y están rodeadas por una membrana plasmática que separa su interior del exterior. Unos pocos compuestos apolares pueden disolverse en la bicapa lipídica y cruzar la membrana plasmática sin ningún obstáculo (difusión de partículas liposolubles tales como: oxígeno, alcohol, ácidos grasos, entre otros). Sin embargo, en el caso de compuestos polares (ej. azúcar, aminoácidos, iones, entre otros) es esencial una proteína de membrana para el transporte transmembrana, una vez que la estructura de bicapa lipídica no es fácilmente permeable a este tipo de partículas. El transporte de estas sustancias hacia dentro y fuera de la célula o entre diferentes compartimentos intracelulares se lleva a cabo por proteínas de membrana como bombas, transportadores y canales iónicos. Los canales iónicos están formados por glicoproteínas y son componentes esenciales en la actividad de todas las células.

Los canales tienen tres propiedades importantes:

  • conducen iones;
  • reconocen y seleccionan los iones (los canales pueden ser selectivamente permeables a uno o varios iones);
  • se abren y cierran en respuesta a estímulos eléctricos, químicos o mecánicos.

Los canales iónicos forman poros de membrana que pueden abrirse y cerrarse. Cuando el canal iónico se abre, forma un poro acuoso que se extiende a través del espesor de la membrana. El flujo de iones a través de un canal debido a diferencias en el potencial eléctrico o en las concentraciones es pasivo, o sea, no necesita de gasto metabólico energético por parte de la célula. Los iones fluyen pasivamente en favor de su gradiente electroquímico. La energía viene de las fuerzas químicas de difusión, ósmosis y equilibrio electroquímico. Así, las dos grandes fuerzas que impulsan a los iones moverse son la diferencia de concentración y el gradiente eléctrico (a ambas se le llaman fuerza electromotriz). Ya que en la región de mayor concentración la probabilidad de que las partículas choquen entre sí es mayor, la migración de una partícula de esta región a una de menor concentración es termodinámicamente favorecida, se dice que la partícula se mueve en favor de un gradiente químico o de concentración.

Los canales iónicos pueden ser de dos tipos:

  • de filtración - que siempre se mantienen abiertos;
  • de compuerta - que abren y se cierran en reacción a algún tipo de estímulo..

Mecanismos para la apertura o cierre de los canales iónicos

En electrofisiología, el término en inglés gating suele utilizarse para referirse a la apertura (a través de la activación) y al cierre (a través de la desactivación o inactivación) de los canales iónicos.[5]

El nombre gating (de gate, "puerta", "compuerta") deriva de la idea de que una proteína del canal iónico incluye un poro que es resguardado por una o por varias compuertas, y la(s) compuerta(s) debe(n) estar abierta(s) para que los iones pasen a través del poro. Diversos cambios celulares pueden disparar la activación de la(s) compuerta(s), en función del tipo de canal iónico de que se trate, entre otros: cambios en el voltaje en la membrana celular (canales iónicos activados por voltaje), sustancias químicas (fármacos, sustancias adictivas, hormonas) que interactúan con el canal iónico (canales iónicos activados por ligandos), cambios en la temperatura,[6]​ un estrechamiento o una deformación de la membrana celular, adición de un grupo fosfato al canal iónico (fosforilación) e interacción con otras moléculas de la célula (por ejemplo, proteínas G).[7]​ La velocidad a la que ocurre cualquiera de estos procesos de activación/inactivación en respuesta a estos estímulos se conoce con el nombre de cinética de la activación. Algunos fármacos y muchas toxinas actúan como "modificadores de la activación" de los canales iónicos modificando la cinética de las compuertas.

Algunos canales se abren o cierran aleatoriamente sin importar el valor del potencial membranal y se dice que su gating es independiente de voltaje. En contraste, otros canales están normalmente cerrados, pero su probabilidad de apertura puede incrementarse de manera sustancial por cambios ocurridos en el potencial de membrana (canales iónicos sensibles a voltaje); por interacciones específicas con ligandos extracelulares o intracelulares (canales activados por ligandos); o por estímulos físicos (mecanorreceptores y canales sensibles al calor).[8]

Cuando los canales iónicos están cerrados (sin posibilidad de conducción), son impermeables a los iones y no conducen la corriente eléctrica. Cuando los canales iónicos están abiertos, sí conducen la corriente eléctrica, y permiten entonces que algunos iones pasen a través de ellos y, por consiguiente, a través de la membrana plasmática de la célula. Estos flujos de iones generan una corriente eléctrica a través de la membrana. La dirección en que se mueven, tal y como se mencionó anteriormente, está determinada por el gradiente electroquímico que representa la suma del gradiente químico a través de la membrana plasmática y el campo eléctrico que experimenta el ion. La activación es el proceso en el que un canal iónico se transforma y pasa de cualquiera de sus estados de conducción a cualquiera de sus estados de no conducción.

En la descripción habitual de los canales iónicos activados por voltaje del potencial de acción, se habla de cuatro procesos: activación, desactivación, inactivación y reactivación (también llamada recuperación de la inactivación). En un modelo de canal iónico con dos compuertas (una compuerta de activación y una compuerta de inactivación) en el cual ambas deben estar abiertas para que los iones sean conducidos a través del canal, activación es el proceso de apertura de la compuerta de activación, que ocurre en respuesta al hecho de que el voltaje dentro de la membrana celular (el potencial de membrana) se vuelve más positivo con respecto al exterior de la célula (despolarización); desactivación es el proceso opuesto, es decir, el cierre de la compuerta en respuesta al hecho de que el voltaje del interior de la membrana se vuelve más negativo (repolarización. Inactivación es el cierre de la compuerta de inactivación; al igual que con la activación, la inactivación ocurre en respuesta al hecho de que el voltaje dentro de la membrana se vuelve más positivo, pero a menudo sucede que se retrasa, en comparación con la activación. La recuperación de la inactivación es lo opuesto a la inactivación. Así, tanto la inactivación como la desactivación son procesos que hacen que el canal pierda la capacidad de conducción, pero son procesos diferentes en el sentido de que la inactivación se dispara cuando el interior de la membrana se vuelve más positivo, mientras que la desactivación se dispara cuando el potencial de la membrana se vuelve más negativo.

Los canales iónicos se pueden clasificar en función del tipo de estímulo para su abertura o cierre en:

  • canales activados por voltaje;
  • canales activados por ligandos;
  • canales mecanosensibles.

Canales regulados por voltaje

 
Un canal iónico regulado por voltaje, se abre ante la diferencia de potencial trasmembrana, y es selectivo para cierto tipo de iones debido a que el poro está polarizado y tiene un tamaño similar al del ion.

Los canales iónicos abren en respuesta a cambios en el potencial eléctrico a través de la membrana plasmática, que tiende a ser una bicapa lipídica. Su principal función es la transmisión de impulsos eléctricos (generación del potencial de acción) debido a cambios en la diferencia de cargas eléctricas derivadas de las concentraciones de aniones y cationes entre ambos lados de la membrana. Las probabilidades de cierre y apertura de los canales iónicos son controladas por un sensor que puede ser eléctrico, químico o mecánico. Los canales activados por voltaje contienen un sensor que incluye varios aminoácidos con carga positiva que se mueven en el campo eléctrico de la membrana durante la apertura o cierre del canal. El cambio en la diferencia de potencial eléctrico en ambos lados de la membrana provoca el movimiento del sensor. El movimiento del sensor de voltaje crea un movimiento de cargas (llamado corriente de compuerta) que cambia la energía libre que modifica la estructura terciaria del canal abriéndolo o cerrándolo. Algunos de estos canales tienen un estado refractario conocido como inactivación cuyo mecanismo está dado por una subunidad independiente de aquellas responsables de la apertura y cierre.

Canales de sodio (Na+)

La fase de la rápida despolarización del potencial de acción de las células nerviosas y musculares (esqueléticas, lisas y cardíacas) y, en general, de las células excitables, depende de la entrada de Na+ a través de canales activados por cambios de voltaje. Esta entrada de Na+ produce una despolarización del potencial de membrana que facilita, a su vez, la apertura de más canales de Na+ y permite que se alcance el potencial de equilibrio para este ion en 1-2 mseg. Cuando las células se encuentran en reposo, la probabilidad de apertura de los canales de Na+ es muy baja, aunque durante la despolarización produzca un dramático aumento de su probabilidad de apertura.[9]

Canales de potasio (K+)

Los canales de K+ constituyen el grupo más heterogéneo de proteínas estructurales de membrana. En las células excitables, la despolarización celular activa los canales de K+ y facilita la salida de K+ de la célula, lo que conduce a la repolarización del potencial de membrana. Además, los canales de K+ juegan un importante papel en el mantenimiento del potencial de reposo celular, la frecuencia de disparo de las células automáticas, la liberación de neurotransmisores, la secreción de insulina, la excitabilidad celular, el transporte de electrolitos por las células epiteliales, la contracción del músculo liso y la regulación del volumen celular. También existen canales de K+ cuya activación es independiente de cambios del potencial de membrana que determinan el potencial de reposo y regulan la excitabilidad y el volumen extracelular. La mosca del vinagre (Drosophila melanogaster) ha sido la clave que nos ha permitido conocer la topología y la función de los canales K+. La identificación del primer canal de K+ fue la consecuencia del estudio electrofisiológico del mutante Shaker de la D. melanogaster, denominada así porque presenta movimientos espasmódicos de las extremidades al ser anestesiada con éter. Una función importante de los canales de K+ es la activación linfocitaria en la respuesta inmune del organismo.

Canales de calcio (Ca2+)

En las células en reposo, la concentración intracelular de Ca2+ es 20.000 veces menor que su concentración en el medio extracelular; por otro lado, el interior celular es electronegativo (-50 a -60 mV), es decir, que existe un gradiente electroquímico que favorece la entrada de iones Ca2+ en la célula. Sin embargo, en una célula en reposo, la membrana celular es muy poco permeable al Ca2+, por lo que la entrada del mismo a favor de este gradiente es reducida. Ahora bien, durante la activación celular, la concentración intracelular de Ca2+ aumenta como consecuencia de la entrada de Ca2+ extracelular a través de la membrana, bien a través de canales voltaje-dependientes. La entrada de Ca2+ a través de los canales voltaje-dependientes de la membrana celular participa en la regulación de numerosos procesos biológicos: génesis del potencial de acción y la duración de éste, acoplamiento excitación-contracción, liberación de neurotransmisores, hormonas y factores de crecimiento, sinaptogénesis, osteogénesis, procesos de diferenciación celular, hipertrofia y remodelado, entre otros.

Canales de cloruro (Cl_)

 
Canal de cloruro-1 humano (Cl C-1), dentro de la membrana celular.

Los canales de Cl- juegan un muy importante papel en la regulación de la excitabilidad celular, el transporte transepitelial y la regulación del volumen y del pH celulares y pueden ser activados por cambios de voltaje, ligandos endógenos (Ca, AMPc, proteínas G) y fuerzas físicas (dilatación celular).
El primer canal voltaje-dependiente de esta familia, denominado CLC-0 (Cl C-0), fue clonado del órgano eléctrico de la raya Torpedo marmorata. Posteriormente, se han clonado otros 9 canales, codificados por los genes CLCN1-7, CLCNKa y CLCNKb.
Los canales Cl C-0, Cl C-1, ClC-2 y ClC-Ka/b se localizan en la membrana celular, mientras que los restantes canales se encuentran en las membranas de las mitocondrias y de otros orgánulos celulares. Los canales localizados en la membrana celular estabilizan el potencial de membrana en las células excitables como en el músculo esquelético y son responsables del transporte transepitelial de agua y electrolitos, mientras que los canales intracelulares pueden contrabalancear la corriente producida por la bomba de protones.
El canal de cloro Cl C-1 es crítico para la excitabilidad del músculo esquelético, mediante la estabilización del potencial de membrana del miocito.[10]
La función más importante de los canales de Cl-, en la sinapsis neuronal, es provocar una hiperpolarización por su entrada en la neurona postsináptica pasada su activación, y así interrumpir el impulso nervioso para preparar la neurona postsináptica para el siguiente impulso.
Otra función importante de los canales de Cl- sucede en los glóbulos rojos de la sangre: en los tejidos la entrada de Cl- en eritrocitos fuerza la salida de bicarbonato de éstos,con lo que entra CO2 al eritrocitoo. En los pulmones, la salida de Cl- del eritrocito fuerza la entrada de bicarbonato de la sangre, con lo que sale CO2 al torrente sanguíneo pulmonar. Así se transporta más cantidad de CO2 de los tejidos a los pulmones.

Canales regulados por ligandos

Los canales iónicos abren en respuesta a la unión de determinados neurotransmisores u otras moléculas. Este mecanismo de abertura es debido a la interacción de una substancia química (neurotransmisor u hormonas) con una parte del canal llamado receptor, que crea un cambio en la energía libre y cambia la conformación de la proteína abriendo el canal. Los ligandos regulan la apertura de canales de los receptores.[11]​ Estos canales son llamados ligando dependientes y son importantes en la transmisión sináptica. Los canales ligando dependientes tienen dos mecanismos de abertura:

  • por unión del neurotransmisor al receptor asociado al canal (receptores ionotrópicos, receptores activados directamente);
  • por unión del neurotransmisor al receptor que no está asociado al canal. Esto provoca una cascada de eventos enzimáticos, una vez que la activación de proteínas G promueve la abertura del canal debido a la actuación de enzimas fosforiladoras.

En el caso de los canales activados por ligando, el sensor es una región de la proteína canal que se encuentra expuesta ya sea al exterior o al interior de la membrana, que une con gran afinidad una molécula específica que lleva a la apertura o cierre al canal.

Canales mecanosensibles

Canales iónicos regulados por un impulso mecánico que abren en respuesta a una acción mecánica. Los canales mecanosensibles, como los que se encuentran en los corpúsculos de Pacini, se abren por el estiramiento que sufre la membrana celular ante la aplicación de presión y/o tensión. El mecanismo sensor en esta última clase de canales no es claro aún, sin embargo, se ha propuesto que los ácidos grasos de la membrana actúan como los agentes sensores mediante la activación de fosfolipasas unidas la membrana1 o bien se ha propuesto que participa el citoesqueleto que se encuentra inmediatamente por debajo del canal.

Rol biológico

Los canales iónicos son especialmente importantes en la transmisión del impulso eléctrico en el sistema nervioso. De hecho, la mayor parte de las toxinas que algunos organismos han desarrollado para paralizar el sistema nervioso de depredadores o presas (como por ejemplo el veneno producido por escorpiones, arañas, serpientes y otros) funcionan obstruyendo los canales iónicos. La alta afinidad y especificidad de estas toxinas ha permitido su uso como ligandos para la purificación de las proteínas que constituyen los canales iónicos. Muchos agentes terapéuticos median sus efectos por la interacción con estas proteínas, como por ejemplo alguno agentes ansiolítico, antihipertensivo, antiarrítmico, etc.

Los canales iónicos se presentan en una gran variedad de procesos biológicos que requieren cambios rápidos en las células, como en el corazón, esqueleto, contracción del músculo, transporte de iones y nutrientes a través de epitelios, activación de linfocitos T o liberación de insulina por las células beta del páncreas. Los canales iónicos son un objetivo clave en la búsqueda de nuevos fármacos.

Propiedades de los canales iónicos relevantes para su función

- El transporte de iones a través de estos canales es extremadamente rápido. Más de un millón de iones por segundo puede fluir a través de ellos (107-108 iones/seg.) El flujo es mil veces mayor que la velocidad de transporte de una proteína transportadora, y por eso el transporte iónico es bastante eficiente.

- Elevada selectividad. Los canales iónicos son selectivos de los tipos de iones que permiten que crucen. El tipo de ion que se le permite pasar depende de la configuración electroquímica de las subunidades de la proteína, especialmente del lado inferior del poro: es común que un tipo de canal iónico permita el paso de varios tipos de iones, especialmente si comparten la misma carga (positiva o negativa).

- En algunos casos su apertura y cierre puede encontrarse regulado en respuesta a estímulos específicos.[12]

Enfermedades relacionadas con canales iónicos (canalopatías)

La importancia de los canales iónicos en los procesos fisiológicos está clara a partir de los efectos de mutaciones en proteínas de canales iónicos específicos.[13]​ Los defectos genéticos en el canal de Na+ de compuerta regulada por voltaje de la membrana plasmática del miocito conducen a enfermedades en las que los músculos periódicamente se paralizan (tal como sucede en la parálisis periódica hipercaliémica) o se vuelven rígidos (como en la paramiotonía congénita). La fibrosis quística es el resultado de una mutación que modifica un aminoácido en la proteína CFTR, un canal de iones Cl-; aquí el proceso defectuoso no es la neurotransmisión, sino la secreción por varias células glandulares exocrinas cuyas actividades están ligadas a los flujos de ion Cl-. Muchas toxinas presentes en la naturaleza actúan a menudo sobre canales iónicos, y la potencia de estas toxinas ilustra aún más la importancia del normal funcionamiento de los canales iónicos. La tetradotoxina (producida por el pez globo, Sphaeroides rubripes) y la saxitoxina (producida por el dinoflagelado marino Gonyaulax, causante de las “mareas rojas”) actúan uniéndose a los canales de Na+ de compuerta regulada por voltaje de las neuronas impidiendo de este modo los potenciales de acción normales. El pez globo es un ingrediente de la exquisitez japonesa fugu, que sólo puede ser preparada por chefs entrenados especialmente para separar tan suculento bocado del veneno mortal. Comer marisco que se haya alimentado de Gonyaulax puede ser también fatal; el marisco no es sensible a la saxitoxina, pero la concentran en sus músculos, que pasan a ser altamente venenosos para organismos más arriba en la cadena alimentaria. El veneno de la serpiente mamba negra contiene dendrotoxina, que interfiere con canales de K+ de entrada regulada por voltaje. La tubocurarina, componente activo del curare (usado como veneno para flechas en el Amazonas) y otras dos toxinas de venenos de serpiente, cobrotoxina y bungarotoxina, bloquean el receptor de acetilcolina o impiden la abertura de su canal iónico. Al bloquear señales desde los nervios a los músculos, todas estas toxinas provocan parálisis y muy posiblemente la muerte. En el lado positivo, la extremadamente elevada afinidad de la bungarotoxina para el receptor de la acetilcolina ha sido útil experimentalmente: la toxina marcada radioactivamente fue utilizada para cuantificar el receptor durante su purificación. En los últimos años se han descrito diversas enfermedades congénitas asociadas a la presencia de mutaciones en los genes que codifican las subunidades de los canales iónicos, las canalopatías.[14]​ Utilizando técnicas de biología molecular y de electrofisiología se han podido clonar y expresar los genes que codifican las subunidades de los canales iónicos y caracterizar las corrientes en los canales nativos o mutados. Hoy sabemos que las mutaciones de los canales Na+, Ca2+, K+ y Cl- son responsables de cuadros de epilepsia, ataxia, degeneración neuronal, entre otros.

Método del patch-clamp

Con esta técnica se pueden medir las corrientes iónicas a través de un canal de membrana individual. Para ello se une un capilar con una punta fina modificada de 1µm de diámetro sobre la membrana celular; mediante un ligero vacío se coloca la membrana celular densa en el borde del cristal y se aísla así un pequeño dominio de la membrana (en inglés patch) del medio circundante. Por manipulación mecánica se pueden separar los fragmentos de la membrana celular y entonces medirlos individualmente. Un electrodo en el capilar lleno de tampón es suficiente para conectar el aparato de medida. Si se realiza un potencial definido (en inglés to clamp, grapar) se puede medir la corriente de iones a través del dominio de membrana aislado con alta resolución de tiempo (µs). Para ello, las condiciones del lado citosólico (fuera) o del lado extracelular de la membrana (dentro) se pueden variar arbitrariamente y medir su influencia sobre la corriente de iones. Así se cuantifica la corriente de iones a través de un receptor nicotínico de acetilcolina en unos 4 pA (10-12 amperios), lo que significa un flujo de unos 2-3 x 104 iones de Na+ por milisegundo.

Historia

El concepto de canal iónico fue propuesto en la década de los 50’s por Alan Hodgkin y Andrew Huxley en sus estudios clásicos sobre la naturaleza del impulso nervioso en el axón gigante del calamar. En su modelo cuantitativo propusieron que las corrientes de Na+ y K+ estaban localizadas en sitios particulares en la membrana a los cuales les llamaron “parches activos”. Actualmente sabemos que estos parches activos son los canales de Na+ y K+ activados por voltaje. A partir de entonces y en los últimos 50 años, se ha incrementado enormemente el conocimiento de los canales iónicos a nivel molecular. Un gran avance en el conocimiento de los canales iónicos se dio también con el desarrollo de la técnica del “patch clamp” por Erwin Neher y Bert Sakmann. Estos dos investigadores usaron un microelectrodo de vidrio con su punta pulida y lo aplicaron a la superficie de una célula, de manera que se pudiera aislar un parche pequeño de membrana. El voltaje a través de este parche se mantuvo estable por un amplificador de retroalimentación y de esta manera pudieron medir las corrientes que fluían a través de los canales presentes en él. Esta técnica que valió el premio Nobel a sus creadores, revolucionó el estudio de los canales iónicos ya que permitió reducir el “ruido” o interferencia y registrar la actividad de un solo canal y actualmente cada año se reportan miles de trabajos realizados con esta técnica. Recientemente se realizó un otro gran avance en el estudio de los canales iónicos que le valió el premio Nobel a sus autores. El grupo de Roderick MacKinnon logró cristalizar por primera vez un canal iónico y estudiarlo con difracción de rayos X obteniendo imágenes con una resolución de 3.2 Å.

El canal iónico en las artes plásticas

 
Nacimiento de una Idea (Birth of an Idea) (2007) de Julian Voss-Andreae. La escultura fue encargada por Roderick MacKinnon y representa las coordenadas atómicas de la molécula determinadas por el grupo de MacKinnon en 2001.

Roderick MacKinnon le encargó al artista Nacimiento de una Idea, una escultura de 1,5 metros de altura inspirada en el canal de potasio KcsA.[15]​ La obra consiste en un objeto de alambre que representa el interior del canal y otro de vidrio soplado que representa, a su vez, la cavidad principal de la estructura del canal.

Véase también


Bibliografía

  • Neurociencia (II edición) Dale Purves, George J. Augustine, David Fitzpatrick, Lawrence. C. Katz, Anthony-Samuel LaMantia, James O. McNamara, S. Mark Williams, editores. Publicado por Sinauer Associates, Inc. (2001)
  • Basic Neurochemistry: Molecular, Cellular, and Medical Aspects (VI edición) por George J Siegel, Bernard W Agranoff, R. W Albers, Stephen K Fisher y Michael D Uhler publicado por Lippincott, Williams & Wilkins (1999):

Referencias

  1. Neverisky, Daniel L.; Abbott, Geoffrey W. (julio a agosto de 2015). «Ion channel-transporter interactions» [Interacciones entre los transportadores y canales iónicos]. Crit Rev Biochem Mol Biol (en inglés) 51 (4): 257-267. PMID 27098917. doi:10.3109/10409238.2016.1172553. Consultado el 25 de febrero de 2018. 
  2. Skerratt, Sarah E.; West, Christopher W. (noviembre a diciembre de 2015). «Ion channel therapeutics for pain» [Terapia de canales de iones para el dolor]. Channels (Austin) (en inglés) (Taylor & Francis) 9 (6): 344-351. PMID 26218246. doi:10.1080/19336950.2015.1075105. Consultado el 25 de febrero de 2018. 
  3. Subramanyam, Prakash; Colecraft, Henry M. (enero de 2015). «Ion Channel Engineering: Perspectives and Strategies» [Ingeniería de los canales iónicos: perspectivas y estrategias]. J Mol Biol (en inglés) 427 (2): 190-204. PMID 25205552. doi:10.1016/j.jmb.2014.09.001. Consultado el 25 de febrero de 2018. 
  4. Martínez Rosas, Martín (abril a junio de 2004). «Los canales iónicos: la biología y patología». Archivos de Cardiología de México (México: Instituto Nacional de Cardiología Ignacio Chávez) 74 (Supl. 2): S205-S210. Consultado el 25 de febrero de 2018. 
  5. Alberts, Bruce; Bray, Dennis; Lewis, Julian; Raff, Martin; Roberts, Keith; Watson, James D. (1994). Molecular biology of the cell. New York: Garland. pp. 523–547. ISBN 0-8153-1620-8. 
  6. Cesare P, Moriondo A, Vellani V, McNaughton PA (1999). Ion channels gated by heat. Proc. Natl. Acad. Sci. U.S.A., 96(14), Jul, 7658–7663, PMID=10393876, PMC=33597, DOI=10.1073/pnas.96.14.7658, [1].
  7. Hille, B. (2001). Ion Channels of Excitable Membranes. Sunderland, Mass.: Sinauer. ISBN 0-87893-321-2.
  8. * M. Berg, Jeremy; Lubert Stryer (2003). Bioquímica (5ª edición). Reverté. ISBN 10 8429174849 |isbn= incorrecto (ayuda). 
  9. * Alfonso Vega Hernández; Ricardo Félix (marzo-abril de 2001). «Fisiopatología de los canales iónicos sensibles al voltaje» (pdf). p. 96. Consultado el 2009.  (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).
  10. Wang K, Preisler SS, Zhang L, Cui Y, Missel JW, Grønberg C, et al. (2019). «Structure of the human ClC-1 chloride channel.». PLoS Biol 17 (4): e3000218. Consultado el 11 de mayo de 2019. 
  11. * Lozano, J.A; J. D. Galindo Cascales (2000). Bioquímica y Biología Molecular para ciencias de la Salud (2ª edición). Mcgraw Hill. ISBN 9788448602925. 
  12. * Werner Muller, Sterl (2008). Bioquímica, Fundamentos para Medicina y Ciencias de la Vida (1ª edición). Reverté. ISBN 978 84 291 7393 2. 
  13. * (pdf). pp. 108 =. Archivado desde el original el 10 de noviembre de 2007. Consultado el 2009. 
  14. * Nelson, D.L.; M.M. Cox (2004). Lehninger Principios de Bioquímica (4ª edición). WTT Freeman. ISBN 0 7167 4339 6. 
  15. Ball, Philip (marzo de 2008). «The crucible: Art inspired by science should be more than just a pretty picture». Chemistry World 5 (3): 42-43. Consultado el 12 de enero de 2009. 

Enlaces externos

  • Federación Española de Fibrosis Quística
  • Propagación del potencial de acción
  •   Datos: Q62536
  •   Multimedia: Ion channels

canal, iónico, canales, iónicos, tipo, proteína, transmembrana, permite, paso, iones, específicos, través, membrana, celular, estructura, semeja, poro, canal, relleno, agua, sistema, compuertas, función, permite, generación, potenciales, acción, células, excit. Los canales ionicos son un tipo de proteina transmembrana que permite el paso de iones especificos a traves de la membrana celular Su estructura semeja un poro o canal relleno de agua con un sistema de compuertas Su funcion permite la generacion de potenciales de accion en celulas excitables la manutencion de la homeostasis interna de las celulas el suministro de ingredientes o condiciones necesarias para funciones biologicas tales como la sintesis de hormonas la produccion de moco y otras 1 2 Diagrama esquematico de un canal ionico 1 dominios de canal normalmente son cuatro por canal 2 vestibulo exterior 3 filtro de selectividad 4 diametro del filtro de selectividad 5 sitio de fosforilacion 6 membrana celular Asi los canales ionicos son proteinas que controlan el paso de iones a traves de la membrana plasmatica tales como Na K Ca2 y Cl y por lo tanto dependen del gradiente electroquimico de cada ion en particular En el caso de celulas excitables como los miocitos y las neuronas el gradiente de los distintos iones establece el potencial de reposo de la membrana y la activacion de determinados canales genera los potenciales de accion para la ejecucion de la contraccion muscular la liberacion de neurotransmisores y la regulacion de la expresion genetica entre otras funciones En el caso de celulas no excitables los canales ionicos determinan el flujo de sal y agua regulando el volumen celular y el pH 3 Los canales ionicos son estructuralmente muy diversos sin embargo tienen caracteristicas comunes Tipicamente actuan como compuertas abriendose o cerrandose frente a diferentes estimulos tales como el potencial de membrana la union de neurotransmisores la concentracion de ciertos iones o fuerzas mecanicas Una vez abiertos el flujo de diferentes iones puede llegar a 106 o 107 iones por segundo Pueden ser particularmente selectivos par un ion especifico como los canales de sodio los canales de potasio y los canales de calcio o ser no selectivos como los receptores nicotinicos 3 4 Indice 1 Descripcion basica 2 Mecanismos para la apertura o cierre de los canales ionicos 2 1 Canales regulados por voltaje 2 1 1 Canales de sodio Na 2 1 2 Canales de potasio K 2 1 3 Canales de calcio Ca2 2 1 4 Canales de cloruro Cl 2 2 Canales regulados por ligandos 2 3 Canales mecanosensibles 3 Rol biologico 4 Propiedades de los canales ionicos relevantes para su funcion 5 Enfermedades relacionadas con canales ionicos canalopatias 6 Metodo del patch clamp 7 Historia 8 El canal ionico en las artes plasticas 9 Vease tambien 10 Bibliografia 11 Referencias 12 Enlaces externosDescripcion basica EditarTodas las celulas vivas deben adquirir de su alrededor las materias primas para la biosintesis y la produccion de energia y deben liberar a su entorno los productos de desecho del metabolismo Las celulas promueven intercambios de materia con su entorno y estan rodeadas por una membrana plasmatica que separa su interior del exterior Unos pocos compuestos apolares pueden disolverse en la bicapa lipidica y cruzar la membrana plasmatica sin ningun obstaculo difusion de particulas liposolubles tales como oxigeno alcohol acidos grasos entre otros Sin embargo en el caso de compuestos polares ej azucar aminoacidos iones entre otros es esencial una proteina de membrana para el transporte transmembrana una vez que la estructura de bicapa lipidica no es facilmente permeable a este tipo de particulas El transporte de estas sustancias hacia dentro y fuera de la celula o entre diferentes compartimentos intracelulares se lleva a cabo por proteinas de membrana como bombas transportadores y canales ionicos Los canales ionicos estan formados por glicoproteinas y son componentes esenciales en la actividad de todas las celulas Los canales tienen tres propiedades importantes conducen iones reconocen y seleccionan los iones los canales pueden ser selectivamente permeables a uno o varios iones se abren y cierran en respuesta a estimulos electricos quimicos o mecanicos Los canales ionicos forman poros de membrana que pueden abrirse y cerrarse Cuando el canal ionico se abre forma un poro acuoso que se extiende a traves del espesor de la membrana El flujo de iones a traves de un canal debido a diferencias en el potencial electrico o en las concentraciones es pasivo o sea no necesita de gasto metabolico energetico por parte de la celula Los iones fluyen pasivamente en favor de su gradiente electroquimico La energia viene de las fuerzas quimicas de difusion osmosis y equilibrio electroquimico Asi las dos grandes fuerzas que impulsan a los iones moverse son la diferencia de concentracion y el gradiente electrico a ambas se le llaman fuerza electromotriz Ya que en la region de mayor concentracion la probabilidad de que las particulas choquen entre si es mayor la migracion de una particula de esta region a una de menor concentracion es termodinamicamente favorecida se dice que la particula se mueve en favor de un gradiente quimico o de concentracion Los canales ionicos pueden ser de dos tipos de filtracion que siempre se mantienen abiertos de compuerta que abren y se cierran en reaccion a algun tipo de estimulo Mecanismos para la apertura o cierre de los canales ionicos EditarEn electrofisiologia el termino en ingles gating suele utilizarse para referirse a la apertura a traves de la activacion y al cierre a traves de la desactivacion o inactivacion de los canales ionicos 5 El nombre gating de gate puerta compuerta deriva de la idea de que una proteina del canal ionico incluye un poro que es resguardado por una o por varias compuertas y la s compuerta s debe n estar abierta s para que los iones pasen a traves del poro Diversos cambios celulares pueden disparar la activacion de la s compuerta s en funcion del tipo de canal ionico de que se trate entre otros cambios en el voltaje en la membrana celular canales ionicos activados por voltaje sustancias quimicas farmacos sustancias adictivas hormonas que interactuan con el canal ionico canales ionicos activados por ligandos cambios en la temperatura 6 un estrechamiento o una deformacion de la membrana celular adicion de un grupo fosfato al canal ionico fosforilacion e interaccion con otras moleculas de la celula por ejemplo proteinas G 7 La velocidad a la que ocurre cualquiera de estos procesos de activacion inactivacion en respuesta a estos estimulos se conoce con el nombre de cinetica de la activacion Algunos farmacos y muchas toxinas actuan como modificadores de la activacion de los canales ionicos modificando la cinetica de las compuertas Algunos canales se abren o cierran aleatoriamente sin importar el valor del potencial membranal y se dice que su gating es independiente de voltaje En contraste otros canales estan normalmente cerrados pero su probabilidad de apertura puede incrementarse de manera sustancial por cambios ocurridos en el potencial de membrana canales ionicos sensibles a voltaje por interacciones especificas con ligandos extracelulares o intracelulares canales activados por ligandos o por estimulos fisicos mecanorreceptores y canales sensibles al calor 8 Cuando los canales ionicos estan cerrados sin posibilidad de conduccion son impermeables a los iones y no conducen la corriente electrica Cuando los canales ionicos estan abiertos si conducen la corriente electrica y permiten entonces que algunos iones pasen a traves de ellos y por consiguiente a traves de la membrana plasmatica de la celula Estos flujos de iones generan una corriente electrica a traves de la membrana La direccion en que se mueven tal y como se menciono anteriormente esta determinada por el gradiente electroquimico que representa la suma del gradiente quimico a traves de la membrana plasmatica y el campo electrico que experimenta el ion La activacion es el proceso en el que un canal ionico se transforma y pasa de cualquiera de sus estados de conduccion a cualquiera de sus estados de no conduccion En la descripcion habitual de los canales ionicos activados por voltaje del potencial de accion se habla de cuatro procesos activacion desactivacion inactivacion y reactivacion tambien llamada recuperacion de la inactivacion En un modelo de canal ionico con dos compuertas una compuerta de activacion y una compuerta de inactivacion en el cual ambas deben estar abiertas para que los iones sean conducidos a traves del canal activacion es el proceso de apertura de la compuerta de activacion que ocurre en respuesta al hecho de que el voltaje dentro de la membrana celular el potencial de membrana se vuelve mas positivo con respecto al exterior de la celula despolarizacion desactivacion es el proceso opuesto es decir el cierre de la compuerta en respuesta al hecho de que el voltaje del interior de la membrana se vuelve mas negativo repolarizacion Inactivacion es el cierre de la compuerta de inactivacion al igual que con la activacion la inactivacion ocurre en respuesta al hecho de que el voltaje dentro de la membrana se vuelve mas positivo pero a menudo sucede que se retrasa en comparacion con la activacion La recuperacion de la inactivacion es lo opuesto a la inactivacion Asi tanto la inactivacion como la desactivacion son procesos que hacen que el canal pierda la capacidad de conduccion pero son procesos diferentes en el sentido de que la inactivacion se dispara cuando el interior de la membrana se vuelve mas positivo mientras que la desactivacion se dispara cuando el potencial de la membrana se vuelve mas negativo Los canales ionicos se pueden clasificar en funcion del tipo de estimulo para su abertura o cierre en canales activados por voltaje canales activados por ligandos canales mecanosensibles Canales regulados por voltaje Editar Un canal ionico regulado por voltaje se abre ante la diferencia de potencial trasmembrana y es selectivo para cierto tipo de iones debido a que el poro esta polarizado y tiene un tamano similar al del ion Los canales ionicos abren en respuesta a cambios en el potencial electrico a traves de la membrana plasmatica que tiende a ser una bicapa lipidica Su principal funcion es la transmision de impulsos electricos generacion del potencial de accion debido a cambios en la diferencia de cargas electricas derivadas de las concentraciones de aniones y cationes entre ambos lados de la membrana Las probabilidades de cierre y apertura de los canales ionicos son controladas por un sensor que puede ser electrico quimico o mecanico Los canales activados por voltaje contienen un sensor que incluye varios aminoacidos con carga positiva que se mueven en el campo electrico de la membrana durante la apertura o cierre del canal El cambio en la diferencia de potencial electrico en ambos lados de la membrana provoca el movimiento del sensor El movimiento del sensor de voltaje crea un movimiento de cargas llamado corriente de compuerta que cambia la energia libre que modifica la estructura terciaria del canal abriendolo o cerrandolo Algunos de estos canales tienen un estado refractario conocido como inactivacion cuyo mecanismo esta dado por una subunidad independiente de aquellas responsables de la apertura y cierre Canales de sodio Na Editar La fase de la rapida despolarizacion del potencial de accion de las celulas nerviosas y musculares esqueleticas lisas y cardiacas y en general de las celulas excitables depende de la entrada de Na a traves de canales activados por cambios de voltaje Esta entrada de Na produce una despolarizacion del potencial de membrana que facilita a su vez la apertura de mas canales de Na y permite que se alcance el potencial de equilibrio para este ion en 1 2 mseg Cuando las celulas se encuentran en reposo la probabilidad de apertura de los canales de Na es muy baja aunque durante la despolarizacion produzca un dramatico aumento de su probabilidad de apertura 9 Canales de potasio K Editar Los canales de K constituyen el grupo mas heterogeneo de proteinas estructurales de membrana En las celulas excitables la despolarizacion celular activa los canales de K y facilita la salida de K de la celula lo que conduce a la repolarizacion del potencial de membrana Ademas los canales de K juegan un importante papel en el mantenimiento del potencial de reposo celular la frecuencia de disparo de las celulas automaticas la liberacion de neurotransmisores la secrecion de insulina la excitabilidad celular el transporte de electrolitos por las celulas epiteliales la contraccion del musculo liso y la regulacion del volumen celular Tambien existen canales de K cuya activacion es independiente de cambios del potencial de membrana que determinan el potencial de reposo y regulan la excitabilidad y el volumen extracelular La mosca del vinagre Drosophila melanogaster ha sido la clave que nos ha permitido conocer la topologia y la funcion de los canales K La identificacion del primer canal de K fue la consecuencia del estudio electrofisiologico del mutante Shaker de la D melanogaster denominada asi porque presenta movimientos espasmodicos de las extremidades al ser anestesiada con eter Una funcion importante de los canales de K es la activacion linfocitaria en la respuesta inmune del organismo Canales de calcio Ca2 Editar En las celulas en reposo la concentracion intracelular de Ca2 es 20 000 veces menor que su concentracion en el medio extracelular por otro lado el interior celular es electronegativo 50 a 60 mV es decir que existe un gradiente electroquimico que favorece la entrada de iones Ca2 en la celula Sin embargo en una celula en reposo la membrana celular es muy poco permeable al Ca2 por lo que la entrada del mismo a favor de este gradiente es reducida Ahora bien durante la activacion celular la concentracion intracelular de Ca2 aumenta como consecuencia de la entrada de Ca2 extracelular a traves de la membrana bien a traves de canales voltaje dependientes La entrada de Ca2 a traves de los canales voltaje dependientes de la membrana celular participa en la regulacion de numerosos procesos biologicos genesis del potencial de accion y la duracion de este acoplamiento excitacion contraccion liberacion de neurotransmisores hormonas y factores de crecimiento sinaptogenesis osteogenesis procesos de diferenciacion celular hipertrofia y remodelado entre otros Canales de cloruro Cl Editar Canal de cloruro 1 humano Cl C 1 dentro de la membrana celular Los canales de Cl juegan un muy importante papel en la regulacion de la excitabilidad celular el transporte transepitelial y la regulacion del volumen y del pH celulares y pueden ser activados por cambios de voltaje ligandos endogenos Ca AMPc proteinas G y fuerzas fisicas dilatacion celular El primer canal voltaje dependiente de esta familia denominado CLC 0 Cl C 0 fue clonado del organo electrico de la raya Torpedo marmorata Posteriormente se han clonado otros 9 canales codificados por los genes CLCN1 7 CLCNKa y CLCNKb Los canales Cl C 0 Cl C 1 ClC 2 y ClC Ka b se localizan en la membrana celular mientras que los restantes canales se encuentran en las membranas de las mitocondrias y de otros organulos celulares Los canales localizados en la membrana celular estabilizan el potencial de membrana en las celulas excitables como en el musculo esqueletico y son responsables del transporte transepitelial de agua y electrolitos mientras que los canales intracelulares pueden contrabalancear la corriente producida por la bomba de protones El canal de cloro Cl C 1 es critico para la excitabilidad del musculo esqueletico mediante la estabilizacion del potencial de membrana del miocito 10 La funcion mas importante de los canales de Cl en la sinapsis neuronal es provocar una hiperpolarizacion por su entrada en la neurona postsinaptica pasada su activacion y asi interrumpir el impulso nervioso para preparar la neurona postsinaptica para el siguiente impulso Otra funcion importante de los canales de Cl sucede en los globulos rojos de la sangre en los tejidos la entrada de Cl en eritrocitos fuerza la salida de bicarbonato de estos con lo que entra CO2 al eritrocitoo En los pulmones la salida de Cl del eritrocito fuerza la entrada de bicarbonato de la sangre con lo que sale CO2 al torrente sanguineo pulmonar Asi se transporta mas cantidad de CO2 de los tejidos a los pulmones Canales regulados por ligandos Editar Los canales ionicos abren en respuesta a la union de determinados neurotransmisores u otras moleculas Este mecanismo de abertura es debido a la interaccion de una substancia quimica neurotransmisor u hormonas con una parte del canal llamado receptor que crea un cambio en la energia libre y cambia la conformacion de la proteina abriendo el canal Los ligandos regulan la apertura de canales de los receptores 11 Estos canales son llamados ligando dependientes y son importantes en la transmision sinaptica Los canales ligando dependientes tienen dos mecanismos de abertura por union del neurotransmisor al receptor asociado al canal receptores ionotropicos receptores activados directamente por union del neurotransmisor al receptor que no esta asociado al canal Esto provoca una cascada de eventos enzimaticos una vez que la activacion de proteinas G promueve la abertura del canal debido a la actuacion de enzimas fosforiladoras En el caso de los canales activados por ligando el sensor es una region de la proteina canal que se encuentra expuesta ya sea al exterior o al interior de la membrana que une con gran afinidad una molecula especifica que lleva a la apertura o cierre al canal Canales mecanosensibles Editar Canales ionicos regulados por un impulso mecanico que abren en respuesta a una accion mecanica Los canales mecanosensibles como los que se encuentran en los corpusculos de Pacini se abren por el estiramiento que sufre la membrana celular ante la aplicacion de presion y o tension El mecanismo sensor en esta ultima clase de canales no es claro aun sin embargo se ha propuesto que los acidos grasos de la membrana actuan como los agentes sensores mediante la activacion de fosfolipasas unidas la membrana1 o bien se ha propuesto que participa el citoesqueleto que se encuentra inmediatamente por debajo del canal Rol biologico EditarLos canales ionicos son especialmente importantes en la transmision del impulso electrico en el sistema nervioso De hecho la mayor parte de las toxinas que algunos organismos han desarrollado para paralizar el sistema nervioso de depredadores o presas como por ejemplo el veneno producido por escorpiones aranas serpientes y otros funcionan obstruyendo los canales ionicos La alta afinidad y especificidad de estas toxinas ha permitido su uso como ligandos para la purificacion de las proteinas que constituyen los canales ionicos Muchos agentes terapeuticos median sus efectos por la interaccion con estas proteinas como por ejemplo alguno agentes ansiolitico antihipertensivo antiarritmico etc Los canales ionicos se presentan en una gran variedad de procesos biologicos que requieren cambios rapidos en las celulas como en el corazon esqueleto contraccion del musculo transporte de iones y nutrientes a traves de epitelios activacion de linfocitos T o liberacion de insulina por las celulas beta del pancreas Los canales ionicos son un objetivo clave en la busqueda de nuevos farmacos Propiedades de los canales ionicos relevantes para su funcion Editar El transporte de iones a traves de estos canales es extremadamente rapido Mas de un millon de iones por segundo puede fluir a traves de ellos 107 108 iones seg El flujo es mil veces mayor que la velocidad de transporte de una proteina transportadora y por eso el transporte ionico es bastante eficiente Elevada selectividad Los canales ionicos son selectivos de los tipos de iones que permiten que crucen El tipo de ion que se le permite pasar depende de la configuracion electroquimica de las subunidades de la proteina especialmente del lado inferior del poro es comun que un tipo de canal ionico permita el paso de varios tipos de iones especialmente si comparten la misma carga positiva o negativa En algunos casos su apertura y cierre puede encontrarse regulado en respuesta a estimulos especificos 12 Enfermedades relacionadas con canales ionicos canalopatias EditarLa importancia de los canales ionicos en los procesos fisiologicos esta clara a partir de los efectos de mutaciones en proteinas de canales ionicos especificos 13 Los defectos geneticos en el canal de Na de compuerta regulada por voltaje de la membrana plasmatica del miocito conducen a enfermedades en las que los musculos periodicamente se paralizan tal como sucede en la paralisis periodica hipercaliemica o se vuelven rigidos como en la paramiotonia congenita La fibrosis quistica es el resultado de una mutacion que modifica un aminoacido en la proteina CFTR un canal de iones Cl aqui el proceso defectuoso no es la neurotransmision sino la secrecion por varias celulas glandulares exocrinas cuyas actividades estan ligadas a los flujos de ion Cl Muchas toxinas presentes en la naturaleza actuan a menudo sobre canales ionicos y la potencia de estas toxinas ilustra aun mas la importancia del normal funcionamiento de los canales ionicos La tetradotoxina producida por el pez globo Sphaeroides rubripes y la saxitoxina producida por el dinoflagelado marino Gonyaulax causante de las mareas rojas actuan uniendose a los canales de Na de compuerta regulada por voltaje de las neuronas impidiendo de este modo los potenciales de accion normales El pez globo es un ingrediente de la exquisitez japonesa fugu que solo puede ser preparada por chefs entrenados especialmente para separar tan suculento bocado del veneno mortal Comer marisco que se haya alimentado de Gonyaulax puede ser tambien fatal el marisco no es sensible a la saxitoxina pero la concentran en sus musculos que pasan a ser altamente venenosos para organismos mas arriba en la cadena alimentaria El veneno de la serpiente mamba negra contiene dendrotoxina que interfiere con canales de K de entrada regulada por voltaje La tubocurarina componente activo del curare usado como veneno para flechas en el Amazonas y otras dos toxinas de venenos de serpiente cobrotoxina y bungarotoxina bloquean el receptor de acetilcolina o impiden la abertura de su canal ionico Al bloquear senales desde los nervios a los musculos todas estas toxinas provocan paralisis y muy posiblemente la muerte En el lado positivo la extremadamente elevada afinidad de la bungarotoxina para el receptor de la acetilcolina ha sido util experimentalmente la toxina marcada radioactivamente fue utilizada para cuantificar el receptor durante su purificacion En los ultimos anos se han descrito diversas enfermedades congenitas asociadas a la presencia de mutaciones en los genes que codifican las subunidades de los canales ionicos las canalopatias 14 Utilizando tecnicas de biologia molecular y de electrofisiologia se han podido clonar y expresar los genes que codifican las subunidades de los canales ionicos y caracterizar las corrientes en los canales nativos o mutados Hoy sabemos que las mutaciones de los canales Na Ca2 K y Cl son responsables de cuadros de epilepsia ataxia degeneracion neuronal entre otros Metodo del patch clamp EditarArticulo principal Patch clamp Con esta tecnica se pueden medir las corrientes ionicas a traves de un canal de membrana individual Para ello se une un capilar con una punta fina modificada de 1µm de diametro sobre la membrana celular mediante un ligero vacio se coloca la membrana celular densa en el borde del cristal y se aisla asi un pequeno dominio de la membrana en ingles patch del medio circundante Por manipulacion mecanica se pueden separar los fragmentos de la membrana celular y entonces medirlos individualmente Un electrodo en el capilar lleno de tampon es suficiente para conectar el aparato de medida Si se realiza un potencial definido en ingles to clamp grapar se puede medir la corriente de iones a traves del dominio de membrana aislado con alta resolucion de tiempo µs Para ello las condiciones del lado citosolico fuera o del lado extracelular de la membrana dentro se pueden variar arbitrariamente y medir su influencia sobre la corriente de iones Asi se cuantifica la corriente de iones a traves de un receptor nicotinico de acetilcolina en unos 4 pA 10 12 amperios lo que significa un flujo de unos 2 3 x 104 iones de Na por milisegundo Historia EditarEl concepto de canal ionico fue propuesto en la decada de los 50 s por Alan Hodgkin y Andrew Huxley en sus estudios clasicos sobre la naturaleza del impulso nervioso en el axon gigante del calamar En su modelo cuantitativo propusieron que las corrientes de Na y K estaban localizadas en sitios particulares en la membrana a los cuales les llamaron parches activos Actualmente sabemos que estos parches activos son los canales de Na y K activados por voltaje A partir de entonces y en los ultimos 50 anos se ha incrementado enormemente el conocimiento de los canales ionicos a nivel molecular Un gran avance en el conocimiento de los canales ionicos se dio tambien con el desarrollo de la tecnica del patch clamp por Erwin Neher y Bert Sakmann Estos dos investigadores usaron un microelectrodo de vidrio con su punta pulida y lo aplicaron a la superficie de una celula de manera que se pudiera aislar un parche pequeno de membrana El voltaje a traves de este parche se mantuvo estable por un amplificador de retroalimentacion y de esta manera pudieron medir las corrientes que fluian a traves de los canales presentes en el Esta tecnica que valio el premio Nobel a sus creadores revoluciono el estudio de los canales ionicos ya que permitio reducir el ruido o interferencia y registrar la actividad de un solo canal y actualmente cada ano se reportan miles de trabajos realizados con esta tecnica Recientemente se realizo un otro gran avance en el estudio de los canales ionicos que le valio el premio Nobel a sus autores El grupo de Roderick MacKinnon logro cristalizar por primera vez un canal ionico y estudiarlo con difraccion de rayos X obteniendo imagenes con una resolucion de 3 2 A El canal ionico en las artes plasticas Editar Nacimiento de una Idea Birth of an Idea 2007 de Julian Voss Andreae La escultura fue encargada por Roderick MacKinnon y representa las coordenadas atomicas de la molecula determinadas por el grupo de MacKinnon en 2001 Roderick MacKinnon le encargo al artista Nacimiento de una Idea una escultura de 1 5 metros de altura inspirada en el canal de potasio KcsA 15 La obra consiste en un objeto de alambre que representa el interior del canal y otro de vidrio soplado que representa a su vez la cavidad principal de la estructura del canal Vease tambien EditarCanal de calcio Canal de sodio Receptor nicotinico Dr Erwin Neher Premio Nobel de Fisiologia 1991 Dr Bert Sakmann Premio Nobel de Fisiologia 1991 Premio Nobel de fisiologia y medicinaBibliografia EditarNeurociencia II edicion Dale Purves George J Augustine David Fitzpatrick Lawrence C Katz Anthony Samuel LaMantia James O McNamara S Mark Williams editores Publicado por Sinauer Associates Inc 2001 textos en linea Basic Neurochemistry Molecular Cellular and Medical Aspects VI edicion por George J Siegel Bernard W Agranoff R W Albers Stephen K Fisher y Michael D Uhler publicado por Lippincott Williams amp Wilkins 1999 textos en lineaReferencias Editar Neverisky Daniel L Abbott Geoffrey W julio a agosto de 2015 Ion channel transporter interactions Interacciones entre los transportadores y canales ionicos Crit Rev Biochem Mol Biol en ingles 51 4 257 267 PMID 27098917 doi 10 3109 10409238 2016 1172553 Consultado el 25 de febrero de 2018 Skerratt Sarah E West Christopher W noviembre a diciembre de 2015 Ion channel therapeutics for pain Terapia de canales de iones para el dolor Channels Austin en ingles Taylor amp Francis 9 6 344 351 PMID 26218246 doi 10 1080 19336950 2015 1075105 Consultado el 25 de febrero de 2018 a b Subramanyam Prakash Colecraft Henry M enero de 2015 Ion Channel Engineering Perspectives and Strategies Ingenieria de los canales ionicos perspectivas y estrategias J Mol Biol en ingles 427 2 190 204 PMID 25205552 doi 10 1016 j jmb 2014 09 001 Consultado el 25 de febrero de 2018 Martinez Rosas Martin abril a junio de 2004 Los canales ionicos la biologia y patologia Archivos de Cardiologia de Mexico Mexico Instituto Nacional de Cardiologia Ignacio Chavez 74 Supl 2 S205 S210 Consultado el 25 de febrero de 2018 Alberts Bruce Bray Dennis Lewis Julian Raff Martin Roberts Keith Watson James D 1994 Molecular biology of the cell New York Garland pp 523 547 ISBN 0 8153 1620 8 Cesare P Moriondo A Vellani V McNaughton PA 1999 Ion channels gated by heat Proc Natl Acad Sci U S A 96 14 Jul 7658 7663 PMID 10393876 PMC 33597 DOI 10 1073 pnas 96 14 7658 1 Hille B 2001 Ion Channels of Excitable Membranes Sunderland Mass Sinauer ISBN 0 87893 321 2 M Berg Jeremy Lubert Stryer 2003 Bioquimica 5ª edicion Reverte ISBN 10 8429174849 isbn incorrecto ayuda Alfonso Vega Hernandez Ricardo Felix marzo abril de 2001 Fisiopatologia de los canales ionicos sensibles al voltaje pdf p 96 Consultado el 2009 enlace roto disponible en Internet Archive vease el historial la primera version y la ultima Wang K Preisler SS Zhang L Cui Y Missel JW Gronberg C et al 2019 Structure of the human ClC 1 chloride channel PLoS Biol 17 4 e3000218 Consultado el 11 de mayo de 2019 Lozano J A J D Galindo Cascales 2000 Bioquimica y Biologia Molecular para ciencias de la Salud 2ª edicion Mcgraw Hill ISBN 9788448602925 La referencia utiliza el parametro obsoleto coautores ayuda Werner Muller Sterl 2008 Bioquimica Fundamentos para Medicina y Ciencias de la Vida 1ª edicion Reverte ISBN 978 84 291 7393 2 Patologia de los canales ionicos canalopatias pdf pp 108 Archivado desde el original el 10 de noviembre de 2007 Consultado el 2009 Nelson D L M M Cox 2004 Lehninger Principios de Bioquimica 4ª edicion WTT Freeman ISBN 0 7167 4339 6 La referencia utiliza el parametro obsoleto coautores ayuda Ball Philip marzo de 2008 The crucible Art inspired by science should be more than just a pretty picture Chemistry World 5 3 42 43 Consultado el 12 de enero de 2009 Enlaces externos EditarFederacion Espanola de Fibrosis Quistica Propagacion del potencial de accion Datos Q62536 Multimedia Ion channelsObtenido de https es wikipedia org w index php title Canal ionico amp oldid 132270706, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos