fbpx
Wikipedia

Transformación natural

En teoría de categorías, una rama de las matemáticas. Una transformación natural proporciona una manera de transformar un funtor en otro mientras que se respeta la estructura interna, es decir la composición de morfismos, de las categorías implicadas. Por lo tanto, una transformación natural se puede considerar como un morfismo de funtores. Esta llamadas, categorías de funtores. Las transformaciones naturales son, después de las categorías y de los funtores, una de las nociones más básicas del álgebra categórica y por lo tanto aparecen en la mayoría de sus usos.

Definición

Si F y G son funtores (covariantes) entre las categorías C y D, entonces una transformación natural η de F a G asocia a cada objeto X en C un morfismo ηX : F(X) → G(X) en D, tal que para cada morfismo f : XY en C tenemos

ηY o F(f) = G(f) o ηX.

Esta ecuación se puede expresar convenientemente por el diagrama conmutativo

 

Si η es una transformación natural de F a G, se escribe también η: FG.

Si, para cada objeto X en C, el morfismo ηX es un isomorfismo en D, entonces η se dice un isomorfismo natural (o a veces una equivalencia natural o isomorfismo de funtores). Dos funtores F y G se dicen naturalmente isomorfos o simplemente isomorfos si existe un isomorfismo natural de F a G.

Un ejemplo desarrollado

Declaraciones como "Todo grupo es naturalmente isomorfo a su grupo opuesto" abundan en matemáticas modernas. Ahora daremos el significado exacto de esta declaración así como su prueba. Considere la categoría Grp de todos los grupos con homomorfismos de grupo como morfismos. Si (G,*) es un grupo, se define a su grupo opuesto (Gop, *op) como sigue: Gop es el mismo conjunto que G, y la operación *op es definida por a*opb = b*a. Todas las multiplicaciones en Gop "se dan vuelta así". La formación del grupo opuesto se convierte en un funtor de Grp a Grp si definimos fop = f para cada homomorfismo de grupo f: GH. Observe que fop es de hecho un homomorfismo de grupo de Gop en Hop:

fop(a*opb) = f(b*a) = f(b)*f(a) = fop(a)*opfop(b).

el contenido de la declaración antedicha es: el funtor identidad IdGrp: GrpGrp es naturalmente isomorfo al funtor opuesto -op: GrpGrp. Para probar esto, necesitamos proporcionar isomorfismos ηG: GGop para cada grupo G, tal que el diagrama antedicho conmuta. Haga ηG(a) = a-1. Las fórmulas (ab)-1 = b-1 a-1 y (a-1)-1 = a demuestran que ηG es un homomorfismo de grupo que es su propio inverso. Para probar la naturalidad, comenzamos con un homomorfismo de grupo f: GH ηH o f = fop o ηG, es decir (f(a))-1 = fop(a-1) para todo a en G. Esto es verdad puesto que fop = f y cada homomorfismo de grupo tiene la propiedad (f(a))-1 = f(a-1).

Ejemplos adicionales

Si K es un cuerpo, entonces para cada espacio vectorial sobre K V tenemos una función lineal inyectiva "natural" V -> V** del espacio vectorial en su doble dual. Estas funciones son "naturales" en el sentido siguiente: la operación dual doble es un funtor, y los funciones forman una transformación natural del funtor identidad al funtor doble dual. Considere la categoría Ab de grupos abelianos y de homomorfismos de grupo. Para todos los grupos abelianos X, Y y Z tenemos un isomorfismo de grupos

Hom(X, Hom(Y, Z)) -> Hom( , Z).

estos isomorfismos son "naturales" en el sentido que definen una transformación natural entre los dos funtores implicados Abop x Abop x Ab -> Ab.

Operaciones con transformaciones naturales

Si η FG y ε: GH son transformaciones naturales entre funtores CD, entonces podemos componerlos para conseguir una transformación natural εη: FH. Este es hecho componente a componente: (εη)X = εXηX. Esta composición de la transformación natural es asociativa, y permite considerar la colección de todos los funtores CD como categoría en sí misma (véase abajo Categorías de funtores).

Una transformación natural η: FG es un isomorfismo natural si y solamente si existe una transformación natural ε: GF tales que ηε = 1G y εη = 1F (donde 1F: FF es la transformación natural que asigna a cada objeto X el morfismo identidad en F(X)).

Si η : FG es una transformación natural entre los funtores F,G : CD, y H: DE es otro funtor, entonces se puede formar la transformación natural Hη : HFHG definiendo (Hη)X = HX). Si por otra parte K: BC es un funtor, la transformación natural ηK: FKGK se define por (ηK)X = ηK(X).

Categorías de funtores

Si C es cualquier categoría e I es una categoría pequeña, podemos formar la categoría de funtores CI teniendo como objetos todos los funtores de I a C y como morfismos las transformaciones naturales entre esos funtores. Esto es especialmente útil si I se presenta como un grafo dirigido. Por ejemplo, si I es la categoría del grafo dirigido * -> *, entonces CI tiene como objetos los morfismos de C, y un morfismo entre φ y ψ de U -> V y ψ X -> Y en CI es un par de los morfismos f: U -> X y g: V -> Y en C tales que el "cuadrado conmuta", es decir ψ f = g φ.

El lema de Yoneda

Si X es un objeto de la categoría C, entonces la asignación Y |-> MorC(X, Y) define un funtor covariante FX: C -> Set. Este funtor se llama representable. Las transformaciones naturales de un funtor representable a un funtor arbitrario F: C -> Set son totalmente conocidas y fáciles de describir; este es el contenido del lema de Yoneda.

Notas históricas

Saunders MacLane, uno de los fundadores de la teoría de categorías, se dice que comentó, "yo no inventé las categorías para estudiar funtores; las inventé para estudiar las transformaciones naturales." Así como el estudio de los grupos no está completo sin un estudio de los homomorfismos, así el estudio de las categorías no está completo sin el estudio de los funtores. La razón del comentario de Mac Lane es que el estudio de los funtores es en sí mismo incompleto sin el estudio de las transformaciones naturales. El contexto de la observación de Mac Lane era la teoría axiomática de la homología. Diversas maneras de construir la homología se podían demostrar que coincidían: por ejemplo en el caso de un complejo simplicial los grupos definidos directamente, y los de la teoría singular, serían isomorfos. Pero eso, en sí mismo, indicaba mucho menos que la existencia de una transformación natural de los funtores correspondientes de la homología.

  •   Datos: Q1442189

transformación, natural, teoría, categorías, rama, matemáticas, transformación, natural, proporciona, manera, transformar, funtor, otro, mientras, respeta, estructura, interna, decir, composición, morfismos, categorías, implicadas, tanto, transformación, natur. En teoria de categorias una rama de las matematicas Una transformacion natural proporciona una manera de transformar un funtor en otro mientras que se respeta la estructura interna es decir la composicion de morfismos de las categorias implicadas Por lo tanto una transformacion natural se puede considerar como un morfismo de funtores Esta llamadas categorias de funtores Las transformaciones naturales son despues de las categorias y de los funtores una de las nociones mas basicas del algebra categorica y por lo tanto aparecen en la mayoria de sus usos Indice 1 Definicion 2 Un ejemplo desarrollado 3 Ejemplos adicionales 4 Operaciones con transformaciones naturales 5 Categorias de funtores 6 El lema de Yoneda 7 Notas historicasDefinicion EditarSi F y G son funtores covariantes entre las categorias C y D entonces una transformacion natural h de F a G asocia a cada objeto X en C un morfismo hX F X G X en D tal que para cada morfismo f X Y en C tenemos hY o F f G f o hX Esta ecuacion se puede expresar convenientemente por el diagrama conmutativo Si h es una transformacion natural de F a G se escribe tambien h F G Si para cada objeto X en C el morfismo hX es un isomorfismo en D entonces h se dice un isomorfismo natural o a veces una equivalencia natural o isomorfismo de funtores Dos funtores F y G se dicen naturalmente isomorfos o simplemente isomorfos si existe un isomorfismo natural de F a G Un ejemplo desarrollado EditarDeclaraciones como Todo grupo es naturalmente isomorfo a su grupo opuesto abundan en matematicas modernas Ahora daremos el significado exacto de esta declaracion asi como su prueba Considere la categoria Grp de todos los grupos con homomorfismos de grupo como morfismos Si G es un grupo se define a su grupo opuesto Gop op como sigue Gop es el mismo conjunto que G y la operacion op es definida por a opb b a Todas las multiplicaciones en Gop se dan vuelta asi La formacion del grupo opuesto se convierte en un funtor de Grp a Grp si definimos fop f para cada homomorfismo de grupo f G H Observe que fop es de hecho un homomorfismo de grupo de Gop en Hop fop a opb f b a f b f a fop a opfop b el contenido de la declaracion antedicha es el funtor identidad IdGrp Grp Grp es naturalmente isomorfo al funtor opuesto op Grp Grp Para probar esto necesitamos proporcionar isomorfismos hG G Gop para cada grupo G tal que el diagrama antedicho conmuta Haga hG a a 1 Las formulas ab 1 b 1 a 1 y a 1 1 a demuestran que hG es un homomorfismo de grupo que es su propio inverso Para probar la naturalidad comenzamos con un homomorfismo de grupo f G H hH o f fop o hG es decir f a 1 fop a 1 para todo a en G Esto es verdad puesto que fop f y cada homomorfismo de grupo tiene la propiedad f a 1 f a 1 Ejemplos adicionales EditarSi K es un cuerpo entonces para cada espacio vectorial sobre K V tenemos una funcion lineal inyectiva natural V gt V del espacio vectorial en su doble dual Estas funciones son naturales en el sentido siguiente la operacion dual doble es un funtor y los funciones forman una transformacion natural del funtor identidad al funtor doble dual Considere la categoria Ab de grupos abelianos y de homomorfismos de grupo Para todos los grupos abelianos X Y y Z tenemos un isomorfismo de grupos Hom X Hom Y Z gt Hom X Y displaystyle X otimes Y Z estos isomorfismos son naturales en el sentido que definen una transformacion natural entre los dos funtores implicados Abop x Abop x Ab gt Ab Operaciones con transformaciones naturales EditarSi h F G y e G H son transformaciones naturales entre funtores C D entonces podemos componerlos para conseguir una transformacion natural eh F H Este es hecho componente a componente eh X eXhX Esta composicion de la transformacion natural es asociativa y permite considerar la coleccion de todos los funtores C D como categoria en si misma vease abajo Categorias de funtores Una transformacion natural h F G es un isomorfismo natural si y solamente si existe una transformacion natural e G F tales que he 1G y eh 1F donde 1F F F es la transformacion natural que asigna a cada objeto X el morfismo identidad en F X Si h F G es una transformacion natural entre los funtores F G C D y H D E es otro funtor entonces se puede formar la transformacion natural Hh HF HG definiendo Hh X H hX Si por otra parte K B C es un funtor la transformacion natural hK FK GK se define por hK X hK X Categorias de funtores EditarSi C es cualquier categoria e I es una categoria pequena podemos formar la categoria de funtores CI teniendo como objetos todos los funtores de I a C y como morfismos las transformaciones naturales entre esos funtores Esto es especialmente util si I se presenta como un grafo dirigido Por ejemplo si I es la categoria del grafo dirigido gt entonces CI tiene como objetos los morfismos de C y un morfismo entre f y ps de U gt V y ps X gt Y en CI es un par de los morfismos f U gt X y g V gt Y en C tales que el cuadrado conmuta es decir ps f g f El lema de Yoneda EditarSi X es un objeto de la categoria C entonces la asignacion Y gt MorC X Y define un funtor covariante FX C gt Set Este funtor se llama representable Las transformaciones naturales de un funtor representable a un funtor arbitrario F C gt Set son totalmente conocidas y faciles de describir este es el contenido del lema de Yoneda Notas historicas EditarSaunders MacLane uno de los fundadores de la teoria de categorias se dice que comento yo no invente las categorias para estudiar funtores las invente para estudiar las transformaciones naturales Asi como el estudio de los grupos no esta completo sin un estudio de los homomorfismos asi el estudio de las categorias no esta completo sin el estudio de los funtores La razon del comentario de Mac Lane es que el estudio de los funtores es en si mismo incompleto sin el estudio de las transformaciones naturales El contexto de la observacion de Mac Lane era la teoria axiomatica de la homologia Diversas maneras de construir la homologia se podian demostrar que coincidian por ejemplo en el caso de un complejo simplicial los grupos definidos directamente y los de la teoria singular serian isomorfos Pero eso en si mismo indicaba mucho menos que la existencia de una transformacion natural de los funtores correspondientes de la homologia Datos Q1442189 Obtenido de https es wikipedia org w index php title Transformacion natural amp oldid 131805183, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos