fbpx
Wikipedia

Número cardinal (teoría de conjuntos)

En teoría de conjuntos, un número cardinal o cardinal es una generalización de los números naturales para contar el número de elementos, la cardinalidad, de cualquier conjunto, finito o infinito. El cardinal de un conjunto finito es un número natural ordinario. El cardinal de un conjunto infinito es un número transfinito. Los cardinales clasifican los conjuntos de manera más «tosca» que los números ordinales, que distinguen no solo el número de elementos de un conjunto sino también la manera en la que están ordenados.

Comparación de los cardinales numerable y continuo. Cada sucesión binaria, compuesta por una cantidad numerable de «decimales binarios», corresponde a un punto del segmento entre 0 y 1. El «número» de decimales en cada sucesión es 0. El «número» de puntos en el segmento es 20: dos posibilidades (0 o 1) para cada decimal de cada sucesión.

Los cardinales se definen mediante la noción de equipotencia, que relaciona dos conjuntos si «tienen el mismo número de elementos». Establecida esta relación, los cardinales son representantes de todos los tamaños posibles para un conjunto. Puede demostrarse que existen conjuntos infinitos con distinto tamaño. Por ejemplo, los conjuntos de los números naturales y de los números reales no tienen el mismo cardinal. De hecho es necesaria una colección infinita de números transfinitos para clasificar todos los conjuntos infinitos.

Existe una sucesión infinita de cardinales:

que empieza con los números naturales (con cero), y continúa con los números alef, que son cardinales de conjuntos bien ordenados. Cada alef tiene un índice, un cierto número ordinal, que indica su posición dentro de la serie. Dependiendo de si se asume el axioma de elección o no, los alefs agotan todos los cardinales posibles o no.

Introducción

Para comparar el tamaño de dos conjuntos finitos basta con contar sus elementos y contrastar el resultado. En el siglo XIX, Georg Cantor halló una manera de efectuar esta comparación aun cuando los conjuntos involucrados sean infinitos. Para ello, propuso poner los elementos de ambos conjuntos en parejas (estableciendo una correspondencia): de este modo, si todos quedan emparejados sin que sobre ni falte ninguno se dice que son equipotentes.

Por ejemplo, los números naturales N = {0, 1, 2, ...} y los números enteros Z = {..., −2, −1, 0, +1, +2, ...} son ambos conjuntos infinitos. En particular, los naturales son un subconjunto de los enteros, N Z. Esto podría sugerir que el tamaño del conjunto de los naturales es menor que el de los enteros. Sin embargo, ambos conjuntos son equipotentes ya que pueden emparejarse como sigue:

 

A cada natural n le corresponde el entero −n/2 si n es par, y el entero (n + 1)/2 si n es impar.

Sin embargo, Cantor descubrió que no todos los conjuntos infinitos son equipotentes. Por ejemplo, el conjunto de los números reales R (o el conjunto de puntos en una recta) es infinito y no numerable, por lo que no es equipotente al conjunto de los números naturales y es de mayor tamaño.

Cantor asignó entonces un número cardinal a cada conjunto infinito, un cierto objeto que representaba su tamaño, de modo que dos conjuntos serían equipotentes cuando les correspondiera el mismo cardinal. De este modo, extendió los números naturales como representantes de la cardinalidad de los conjuntos finitos.

Historia

En 1876, Cantor probó la no equipotencia de naturales y reales. En su obra Fundamentos para una teoría general de conjuntos, introdujo la noción de número transfinito, como una generalización de los números naturales, que va más allá de ellos formando una serie ordenada e ilimitada:

   

Cantor descubrió que cada número transfinito se correspondía con un número ordinal, que representa la posición de un elemento en un cierto conjunto bien ordenado, y también que los transfinitos se organizaban en lo que llamó «clases numéricas».

Así, clasificaba a los números naturales en la clase numérica (I), que es mayor que todos ellos. Los números de la clase numérica (II) son todos los que tienen la misma potencia que la clase numérica (I), esto es, que sean numerables (como todos los transfinitos mostrados arriba), etc. También demostró que en la serie transfinita se dan infinitas clases numéricas cada vez más grandes.

Mediante estas clases numéricas estableció la clasificación de las potencias infinitas, e introdujo la notación de los álefs, en la que n representa la clase numérica n + 1 (donde n en general era un transfinito u ordinal), que formaban otra serie transfinita de todas las posibles cardinalidades infinitas.

Equipotencia

El concepto de cardinalidad se apoya en el concepto de equipotencia, y este en el de relación biunívoca o de biyectividad. Una relación biunívoca entre dos conjuntos A y B es un criterio por el cual se empareja cada elemento de A con un elemento de B, de forma que todos los elementos de B sean pareja de un elemento de A y solo de uno. Dos conjuntos en correspondencia biunívoca tienen, intuitivamente, el mismo tamaño:

Dos conjuntos A y B se dicen equipotentes (o con el mismo cardinal, la misma cardinalidad, el mismo número de elementos, la misma potencia, etc.) si existe una función biyectiva f : AB entre ellos. Se denota como AB.

La relación de equipotencia es una relación de equivalencia, y captura la noción de tener el mismo cardinal, a pesar de no ser una definición de qué es un número cardinal. También puede definirse una relación de minuspotencia, que represente la noción de que un conjunto tenga menor tamaño:

Un conjunto A es minuspotente a otro conjunto B si existe una función inyectiva f: AB entre ello. Se denota como:

 

Es decir, la potencia de un conjunto A es menor o igual que la de otro B si se puede emparejar cada elemento de A con algún elemento de B sin repetir ninguna pareja en B, sin exigir que todo elemento de B necesariamente sea pareja de algún elemento de A. La relación de minuspotencia es una relación de orden:

  • Todo conjunto es minuspotente a sí mismo.
  • Si A es minuspotente a B y B es minuspotente a C, entonces A es minuspotente a C:

 

  • Si dos conjuntos son minuspotentes entre sí, entonces ambos son equipotentes:

 

Definiciones

La definición de número cardinal escoge un representante canónico de cada cardinalidad. Por ejemplo, la construcción usual de los números naturales en teoría de conjuntos los define como unos conjuntos concretos:

0 ≡ , 1 ≡ {0}, 2 ≡ {0, 1}, ...

De este modo, «el cardinal de X = {a, b} es 2» es equivalente a decir «X y {0, 1} son equipotentes». Al definir número cardinal de manera general se extiende este razonamiento a cualquier conjunto, finito o infinito.

Al definir número cardinal se construye una asignación en la que a cada conjunto X le corresponde otro conjunto |X| (único), el cardinal de X, de forma que se cumpla la siguiente propiedad básica:

Dos conjuntos tienen el mismo cardinal si y solo si son equipotentes:

 

Al cardinal de un conjunto X se le denota entonces por  , card(X), |X| o #X.[1]

Existen diversas formas de construir esta asignación, dependiendo de los axiomas que se asuman para la teoría de conjuntos. Una manera particularmente formal de definir las posibles clases de equivalencia de cardinalidad es recurrir a una definición de Von Neumann un poco más abstracta de cardinal que se trata a continuación.

Cardinales de Von Neumann

La definición de cardinal de Von Neumann parte de la noción de conjunto bien ordenable. Un conjunto bien ordenable es isomorfo bajo orden (y equipotente en particular) a algún ordinal. Sin embargo, en general, dos ordinales infinitos distintos pueden ser equipotentes: por ejemplo, todos los ordinales de la forma ω·n + m con m y n ≥ 1 naturales son numerables, esto es, equipotentes a los números naturales ω. Una vez definida la noción de ordinal se define la cardinalidad de un ordinal como:

 

Como cualquier conjunto de ordinales es siempre un conjunto bien ordenado, siempre existirá un mínimo con esa definición un cardinal es un ordinal que cumple que:

 

Todos los cardinales forman una clase dentro de los ordinales. De hecho, en cierta manera la clase de todos los cardinales es una clase de "ordinales iniciales" en el sentido de que un cardinal es un ordinal tal que no existe ningún otro ordinal del mismo tamaño. En particular todos los ordinales regulares son cardinales.

Es muy sencillo escoger un único ordinal de entre todos los que son equipotentes entre sí:

Los cardinales de Von Neumann κ son aquellos ordinales no equipotentes a ninguno de sus anteriores:

  ,

es decir, un cardinal de Von Neumann es un ordinal inicial, el primer ordinal de cada «clase numérica» de Cantor. Se tiene entonces que:

  • Todo conjunto bien ordenable es equipotente a un único cardinal de Von Neumann.
  • Dos conjuntos bien ordenables son equipotentes si y solo si les corresponde el mismo cardinal.

Los cardinales de Von Neumann se suelen denotar por letras griegas de entre la mitad del alfabeto: κ, μ, ν, etc.

De este modo, un ordinal cualquiera α está comprendido entre dos cardinales de Von Neumann, y al mayor de ellos se le llama cardinal siguiente a α, α+. Asumiendo el axioma de elección como cierto, entonces todo conjunto es bien ordenable y equipotente a un único cardinal de Von Neumann.

La función alef

La serie de los alefs asigna un cardinal de Von Neumann infinito α a cada ordinal α mediante recursión transfinita:

El alef asociado a un ordinal viene dado por:

 

y por esto se denota habitualmente al cardinal de los números naturales como 0. Puede demostrarse que todo cardinal de Von Neumann infinito es un alef.

Definición general

El axioma de elección es independiente del resto de axiomas de la teoría de conjuntos. Por tanto, si no se asume (o se postula su negación), no todo conjunto es bien ordenable, ni equipotente a un cardinal de Von Neumann. Sin embargo, es posible definir una noción distinta y más general de número cardinal que se extienda para todos los conjuntos.

La idea original para escoger un representante de cada cardinalidad de manera única era definir un cardinal como una clase de equivalencia de todos los conjuntos equipotentes a uno dado. Esta noción sencilla, que prevaleció en la literatura hasta los años 50, es inapropiada dado que esta clase de equivalencia no es un conjunto. Sin embargo, recurriendo al concepto de rango, puede demostrarse que la colección de todos los conjuntos equipotentes a uno dado de rango mínimo es un conjunto. Mediante esta herramienta —debida originalmente a Dana Scott— se puede definir número cardinal en general:[2]

Un cardinal   es un conjunto que verifica:

  • Todos sus elementos son equipotentes entre sí.
  • Todos sus elementos tienen el mismo rango.
  • No existen conjuntos equipotentes a los elementos de   de rango menor al rango común de estos.
  • Cualquier conjunto equipotente a los elementos de   y con el mismo rango es un elemento de  .

Los número cardinales así definidos (generales) se suelen denotar por letras góticas:  ,  , etc. De esta definición se puede demostrar la generalización del teorema anterior:

  • Todo conjunto es equipotente a los elementos de un único cardinal (su cardinal).
  • Dos conjuntos son equipotentes si y solo si tienen el mismo cardinal.

Diferencias

En general, los cardinales de Von Neumman son un subconjunto de la totalidad de los cardinales generales,[3]​ que en particular contiene todos los cardinales finitos. Si se asume el axioma de elección, todo cardinal infinito es un alef, y además los cardinales están bien ordenados, en el sentido de que dados dos conjuntos, uno de ellos es biyectable con un subconjunto del otro. Puede demostrarse que estas propiedades son de hecho equivalentes al axioma de elección:

Son equivalentes:

  • El axioma de elección.
  • Todo cardinal infinito es un alef.
  • Ley de la tricotomía: dados dos conjuntos, uno de ellos es biyectable con un subconjunto del otro.

Además, los cardinales de Von Neumman tienen el cardinal que representan: para todo κ, |κ| = κ. Los cardinales según la construcción general no tienen esta propiedad, y de hecho puede demostrarse que, en la teoría de Zermelo-Fraenkel sin el axioma de elección, no existe ninguna definición de cardinal que la tenga.

Aritmética cardinal

Es posible definir unas suma, multiplicación y exponenciación de cardinales, de forma similar al caso de la aritmética ordinal, aunque las propiedades de la primera son más parecidas a la aritmética ordinaria.

Suma

Dados dos conjuntos finitos y disjuntos, el número de elementos de su unión es la suma del número de elementos de ambos. En la suma de dos cardinales se generaliza esta idea, al demostrarse:

El cardinal de la unión de dos conjuntos disjuntos solo depende del cardinal dichos conjuntos:

 

De este modo puede definirse:

 

En esta definición no se toma la unión de los dos cardinales directamente para evitar un posible solapamiento de sus elementos. De este modo se demuestra:

  • Dados dos conjuntos disjuntos generales X e Y, card(X Y) = card(X) + card(Y).
  • La suma cardinal es conmutativa —a diferencia de la aritmética ordinal—, asociativa y con elemento neutro ( , donde 0 ≡ ).
  • La suma de ordinales y de cardinales son compatibles: card(α + β)=card(α) + card(β), donde α y β son ordinales, y el signo «+» del miembro izquierdo se refiere a la suma de ordinales.
Ejemplo
Sean los conjuntos:
A = {♠, ◊}
B = {Δ, ♦, Z}
N = {0, 1, 2, 3, ...} (los números naturales)

Es obvio que card(A B) = card(A) + card(B) =2 + 3 = 5. Para calcular card(A N) se ha de observar que A N = {♠, ◊, 0, 1, 2, 3, ...} tiene el mismo número de elementos que N:

{♠ ↔ 0, ◊ ↔ 1, 0 ↔ 2, 1 ↔ 3, 2 ↔ 4, 3 ↔ 5, ...}

En otras palabras, card(N) + card(A) = 0 + 2 = 0. En general se tiene 0 + n = 0 para cualquier número natural n.

Producto

De igual modo, al tomar el producto cartesiano de dos conjuntos finitos, el número de los elementos de este producto es igual al producto del número de elementos de ambos conjuntos. De nuevo, se generaliza esta idea para definir el producto de dos cardinales, donde se demuestra:

El cardinal del producto cartesiano de dos conjuntos solo depende del cardinal de dichos conjuntos:

 

Y entonces se define:

 

De este modo, se demuestra:

  • Dados dos conjuntos X e Y, card(X × Y) = card(X)·card(Y).
  • La multiplicación cardinal es conmutativa —a diferencia de la aritmética ordinal—, asociativa, distributiva respecto de la suma, con elemento neutro ( , donde 1 ≡ {0}) y elemento absorbente ( ).
  • El producto de ordinales y de cardinales son compatibles: card(α·β) = card(α)·card(β), donde α y β son ordinales, y el signo «·» del miembro izquierdo se refiere al producto de ordinales.
Ejemplo
Utilizando los mismos conjuntos del ejemplo anterior, el producto de A y B es:

A × B = {(♠,Δ), (♠,♦), (♠,Z), (◊,Δ), (◊,♦), (◊,Z)} y obviamente card(A × B) = card(A) × card(B) = 2 × 3 = 6. Para calcular card(A × N) se ha de observar que el conjunto:

A×N = {(♠,0), (◊,0), (♠,1), (◊,1), (♠,2), (◊,2), ...}

tiene el mismo número de elementos que N:

{(♠,0) ↔ 0, (◊,0) ↔ 1, (♠,1) ↔ 2, (◊,1) ↔ 3, (♠,2) ↔ 4, (◊,2) ↔ 5, ...}

de modo que en general (♠,n) ↔ 2n y (◊,n) ↔ 2n + 1. Así, card(A × N) = card(A) × card(N) = 2 × 0 = 0, y en general se tiene n × 0 = 0 para todo número natural no nulo.

Exponenciación

Por último, a la hora de tomar potencias de cardinales, se generaliza el hecho de que dados dos conjuntos finitos X e Y, existen exactamente #Y#X funciones posibles cuyo dominio es X y cuyo codominio es Y. Denotando por BA el conjunto de todas las aplicaciones f : A → B, se tiene la siguiente propiedad:

El cardinal del conjunto de funciones entre dos conjuntos solo depende del cardinal de dichos conjuntos:

 

Aprovechando esta propiedad puede definirse:

 

Con esta definición puede entonces demostrarse:

  • Dados dos conjuntos cualesquiera X e Y, card(YX) = card(Y)card(X).
  • Varias propiedades básicas de la exponenciación de números se mantienen:
     .
  • La exponenciación de ordinales y de cardinales no son compatibles. Por ejemplo, en la exponenciación ordinal se tiene 2ω = ω. Sin embargo, card(2ω) = card(ω) = 0 ≠ 2card(ω) = 20, donde la segunda exponenciación es cardinal.
Ejemplo
Utilizando los mismos conjuntos de los ejemplos anteriores, la potencia AB es el conjunto de todas las funciones con dominio B y codominio A. Una función f : BA viene especificada por las imágenes f(Δ), f(♦) y f(Z). Para los tres casos, estas imágenes pueden ser ♠ ó ◊, sin ninguna restricción, Por tanto, hay dos posibilidades para cada imagen y 3 imágenes a determinar, con lo que hay 2×2×2 posibilidades. Por tanto card(BA) = card(B)card(A) = 23 = 8.

En el caso NA, se han de encontrar todas las funciones f : AN, especificando las imágenes f(♠) y f(◊), que pueden valer ambas cualquier número natural. Así, una función queda especificada por un par ordenado de números (m,n). Pero es conocido que hay tantos pares ordenados de números como números. Por tanto NA es equipotente a N y card(NA) = card(N)card(A) = 02 = 0. En general, para todo número natural no nulo n, 0n = 0.

El caso AN es distinto, pues se han de encontrar todas las funciones f : NA, especificando las imágenes de cada número natural f(n), que pueden valer ♠ o ◊. Si se adopta el convenio de que ♠ significa SI y ◊ significa NO, puede entenderse que cada f equivale a un subconjunto de N: aquel que contiene solo los elementos cuya imagen es SI. Es obvio pues que AN es equipotente a la colección de todos los subconjuntos de N. Puede demostrarse que card(AN) = 20 es estrictamente mayor que 0, y que de hecho es el cardinal de los números reales.

Tipos de cardinales

Cardinales sucesores y límites

Dado un cardinal α solo una de las siguiente afirmaciones es cierta:

  1. α = 0.
  2. α ≠ 0 y α es un cardinal sucesor, es decir, existe un cardinal máximo menor que α, más concretamente existe otro cardinal estrictamente menor que α que a su vez es mayor o igual que cualquier cardinal estrictamente inferior a α.
  3. α ≠ 0 y α es un cardinal límite, es decir, no existe un cardinal máximo menor que α.

Cardinales regulares y singulares

Cardinales accesibles e inaccesibles

Hipótesis del continuo

La hipótesis del continuo es la cuestión de la existencia o no existencia de un cardinal entre los números naturales y los números reales. El conjunto de los números reales es equipotente al conjunto de todos los conjuntos de números naturales, cuya potencia es c ≡ 20.

Hipótesis del continuo

No existe un cardinal entre 0 y c.

Si se asume el axioma de elección, existe un mínimo cardinal mayor que 0, 1. La hipótesis del continuo puede formularse entonces como «c es igual a 1».

Puede demostrarse que en las teorías estándar de conjuntos, este enunciado es independiente: tanto él como su negación son compatibles con los axiomas de la teoría de conjuntos.

Referencias

  1. Para un ordinal α su cardinal suele representarse por  . La notación original de Cantor usaba una barra,  , para abstraer las propiedades de los elementos del conjunto X exceptuando su orden —representando su ordinal—, y dos barras  , para hacer la «doble abstracción» y quedarse sólo con la cantidad de elementos, su cardinal. En el caso de un ordinal pues, sólo es necesario añadir una barra para obtener el cardinal correspondiente.
  2. Véase Deiser, 2010.
  3. Estrictamente hablando, esto no es correcto: los cardinales de Von Neumman κ son unos ciertos ordinales y los cardinales generales no. «Subconjunto» ha de interpretarse en términos de la colección de todos los κ, donde la barra toma el cardinal general.
  • Cantor, Georg (2006) [1872-1899]. Fundamentos para una teoría general de conjuntos. Escritos y correspondencia selecta. Edición de José Ferreirós. Crítica. ISBN 84-8432-695-0. 
  • Deiser, Oliver (mayo de 2010). «On the Development of the Notion of a Cardinal Number». History and Philosophy of Logic 31 (2): 123-143. doi:10.1080/01445340903545904. 
  • Ivorra, Carlos, Lógica y teoría de conjuntos, consultado el 18 de octubre de 2010 ..
  • Jech, Thomas J. (1973). The Axiom of Choice (en inglés). North-Holland. ISBN 0-7204-2275-2. 
  • Rubin, Jean E. (1967). Set Theory for the Mathematician (en inglés). Holden-Day. OCLC 816225. 

Enlaces externos

  •   Datos: Q57610533

número, cardinal, teoría, conjuntos, teoría, conjuntos, número, cardinal, cardinal, generalización, números, naturales, para, contar, número, elementos, cardinalidad, cualquier, conjunto, finito, infinito, cardinal, conjunto, finito, número, natural, ordinario. En teoria de conjuntos un numero cardinal o cardinal es una generalizacion de los numeros naturales para contar el numero de elementos la cardinalidad de cualquier conjunto finito o infinito El cardinal de un conjunto finito es un numero natural ordinario El cardinal de un conjunto infinito es un numero transfinito Los cardinales clasifican los conjuntos de manera mas tosca que los numeros ordinales que distinguen no solo el numero de elementos de un conjunto sino tambien la manera en la que estan ordenados Comparacion de los cardinales numerable y continuo Cada sucesion binaria compuesta por una cantidad numerable de decimales binarios corresponde a un punto del segmento entre 0 y 1 El numero de decimales en cada sucesion es ℵ 0 El numero de puntos en el segmento es 2ℵ 0 dos posibilidades 0 o 1 para cada decimal de cada sucesion Los cardinales se definen mediante la nocion de equipotencia que relaciona dos conjuntos si tienen el mismo numero de elementos Establecida esta relacion los cardinales son representantes de todos los tamanos posibles para un conjunto Puede demostrarse que existen conjuntos infinitos con distinto tamano Por ejemplo los conjuntos de los numeros naturales y de los numeros reales no tienen el mismo cardinal De hecho es necesaria una coleccion infinita de numeros transfinitos para clasificar todos los conjuntos infinitos Existe una sucesion infinita de cardinales 0 1 2 3 ℵ 0 ℵ 1 ℵ 2 ℵ w displaystyle 0 1 2 3 ldots aleph 0 aleph 1 aleph 2 ldots aleph omega ldots que empieza con los numeros naturales con cero y continua con los numeros alef que son cardinales de conjuntos bien ordenados Cada alef tiene un indice un cierto numero ordinal que indica su posicion dentro de la serie Dependiendo de si se asume el axioma de eleccion o no los alefs agotan todos los cardinales posibles o no Indice 1 Introduccion 2 Historia 3 Equipotencia 4 Definiciones 4 1 Cardinales de Von Neumann 4 1 1 La funcion alef 4 2 Definicion general 4 3 Diferencias 5 Aritmetica cardinal 5 1 Suma 5 2 Producto 5 3 Exponenciacion 6 Tipos de cardinales 6 1 Cardinales sucesores y limites 6 2 Cardinales regulares y singulares 6 3 Cardinales accesibles e inaccesibles 7 Hipotesis del continuo 8 Referencias 9 Enlaces externosIntroduccion EditarPara comparar el tamano de dos conjuntos finitos basta con contar sus elementos y contrastar el resultado En el siglo XIX Georg Cantor hallo una manera de efectuar esta comparacion aun cuando los conjuntos involucrados sean infinitos Para ello propuso poner los elementos de ambos conjuntos en parejas estableciendo una correspondencia de este modo si todos quedan emparejados sin que sobre ni falte ninguno se dice que son equipotentes Por ejemplo los numeros naturales N 0 1 2 y los numeros enteros Z 2 1 0 1 2 son ambos conjuntos infinitos En particular los naturales son un subconjunto de los enteros N Z Esto podria sugerir que el tamano del conjunto de los naturales es menor que el de los enteros Sin embargo ambos conjuntos son equipotentes ya que pueden emparejarse como sigue 0 1 2 3 4 5 0 1 1 2 2 3 displaystyle begin array rrrrrrr 0 amp 1 amp 2 amp 3 amp 4 amp 5 amp ldots updownarrow amp updownarrow amp updownarrow amp updownarrow amp updownarrow amp updownarrow amp 0 amp 1 amp 1 amp 2 amp 2 amp 3 amp ldots end array A cada natural n le corresponde el entero n 2 si n es par y el entero n 1 2 si n es impar Sin embargo Cantor descubrio que no todos los conjuntos infinitos son equipotentes Por ejemplo el conjunto de los numeros reales R o el conjunto de puntos en una recta es infinito y no numerable por lo que no es equipotente al conjunto de los numeros naturales y es de mayor tamano Cantor asigno entonces un numero cardinal a cada conjunto infinito un cierto objeto que representaba su tamano de modo que dos conjuntos serian equipotentes cuando les correspondiera el mismo cardinal De este modo extendio los numeros naturales como representantes de la cardinalidad de los conjuntos finitos Historia EditarEn 1876 Cantor probo la no equipotencia de naturales y reales En su obra Fundamentos para una teoria general de conjuntos introdujo la nocion de numero transfinito como una generalizacion de los numeros naturales que va mas alla de ellos formando una serie ordenada e ilimitada 0 1 2 w w 1 w 2 w 2 w 2 1 w 3 w n displaystyle 0 1 2 ldots omega omega 1 omega 2 ldots omega cdot 2 omega cdot 2 1 ldots omega cdot 3 dots omega cdot n ldots w w w 2 w 3 w n w w e 0 displaystyle omega cdot omega omega 2 ldots omega 3 ldots omega n ldots omega omega ldots varepsilon 0 ldots Cantor descubrio que cada numero transfinito se correspondia con un numero ordinal que representa la posicion de un elemento en un cierto conjunto bien ordenado y tambien que los transfinitos se organizaban en lo que llamo clases numericas Asi clasificaba a los numeros naturales en la clase numerica I que es mayor que todos ellos Los numeros de la clase numerica II son todos los que tienen la misma potencia que la clase numerica I esto es que sean numerables como todos los transfinitos mostrados arriba etc Tambien demostro que en la serie transfinita se dan infinitas clases numericas cada vez mas grandes Mediante estas clases numericas establecio la clasificacion de las potencias infinitas e introdujo la notacion de los alefs en la que ℵ n representa la clase numerica n 1 donde n en general era un transfinito u ordinal que formaban otra serie transfinita de todas las posibles cardinalidades infinitas Equipotencia EditarEl concepto de cardinalidad se apoya en el concepto de equipotencia y este en el de relacion biunivoca o de biyectividad Una relacion biunivoca entre dos conjuntos A y B es un criterio por el cual se empareja cada elemento de A con un elemento de B de forma que todos los elementos de B sean pareja de un elemento de A y solo de uno Dos conjuntos en correspondencia biunivoca tienen intuitivamente el mismo tamano Dos conjuntos A y B se dicen equipotentes o con el mismo cardinal la misma cardinalidad el mismo numero de elementos la misma potencia etc si existe una funcion biyectiva f A B entre ellos Se denota como A B La relacion de equipotencia es una relacion de equivalencia y captura la nocion de tener el mismo cardinal a pesar de no ser una definicion de que es un numero cardinal Tambien puede definirse una relacion de minuspotencia que represente la nocion de que un conjunto tenga menor tamano Un conjunto A es minuspotente a otro conjunto B si existe una funcion inyectiva f A B entre ello Se denota como A B displaystyle A preccurlyeq B Es decir la potencia de un conjunto A es menor o igual que la de otro B si se puede emparejar cada elemento de A con algun elemento de B sin repetir ninguna pareja en B sin exigir que todo elemento de B necesariamente sea pareja de algun elemento de A La relacion de minuspotencia es una relacion de orden Todo conjunto es minuspotente a si mismo Si A es minuspotente a B y B es minuspotente a C entonces A es minuspotente a C A B y B C A C displaystyle A preccurlyeq B text y B preccurlyeq C Rightarrow A preccurlyeq C Si dos conjuntos son minuspotentes entre si entonces ambos son equipotentes A B y B A A B displaystyle A preccurlyeq B text y B preccurlyeq A Rightarrow A approx B Definiciones EditarLa definicion de numero cardinal escoge un representante canonico de cada cardinalidad Por ejemplo la construccion usual de los numeros naturales en teoria de conjuntos los define como unos conjuntos concretos 0 1 0 2 0 1 De este modo el cardinal de X a b es 2 es equivalente a decir X y 0 1 son equipotentes Al definir numero cardinal de manera general se extiende este razonamiento a cualquier conjunto finito o infinito Al definir numero cardinal se construye una asignacion en la que a cada conjunto X le corresponde otro conjunto X unico el cardinal de X de forma que se cumpla la siguiente propiedad basica Dos conjuntos tienen el mismo cardinal si y solo si son equipotentes X Y si y solo si X Y displaystyle X Y text si y solo si X approx Y Al cardinal de un conjunto X se le denota entonces por X displaystyle displaystyle bar bar X card X X o X 1 Existen diversas formas de construir esta asignacion dependiendo de los axiomas que se asuman para la teoria de conjuntos Una manera particularmente formal de definir las posibles clases de equivalencia de cardinalidad es recurrir a una definicion de Von Neumann un poco mas abstracta de cardinal que se trata a continuacion Cardinales de Von Neumann Editar La definicion de cardinal de Von Neumann parte de la nocion de conjunto bien ordenable Un conjunto bien ordenable es isomorfo bajo orden y equipotente en particular a algun ordinal Sin embargo en general dos ordinales infinitos distintos pueden ser equipotentes por ejemplo todos los ordinales de la forma w n m con m y n 1 naturales son numerables esto es equipotentes a los numeros naturales w Una vez definida la nocion de ordinal se define la cardinalidad de un ordinal como a min b O r d f f a b f b i y e c t i v a displaystyle alpha min beta in mathrm Ord exists f f alpha to beta land f mathrm biyectiva Como cualquier conjunto de ordinales es siempre un conjunto bien ordenado siempre existira un minimo con esa definicion un cardinal es un ordinal que cumple que a a displaystyle alpha alpha Todos los cardinales forman una clase dentro de los ordinales De hecho en cierta manera la clase de todos los cardinales es una clase de ordinales iniciales en el sentido de que un cardinal es un ordinal tal que no existe ningun otro ordinal del mismo tamano En particular todos los ordinales regulares son cardinales Es muy sencillo escoger un unico ordinal de entre todos los que son equipotentes entre si Los cardinales de Von Neumann k son aquellos ordinales no equipotentes a ninguno de sus anteriores a lt k a k displaystyle forall alpha lt kappa alpha not approx kappa es decir un cardinal de Von Neumann es un ordinal inicial el primer ordinal de cada clase numerica de Cantor Se tiene entonces que Todo conjunto bien ordenable es equipotente a un unico cardinal de Von Neumann Dos conjuntos bien ordenables son equipotentes si y solo si les corresponde el mismo cardinal Los cardinales de Von Neumann se suelen denotar por letras griegas de entre la mitad del alfabeto k m n etc De este modo un ordinal cualquiera a esta comprendido entre dos cardinales de Von Neumann y al mayor de ellos se le llama cardinal siguiente a a a Asumiendo el axioma de eleccion como cierto entonces todo conjunto es bien ordenable y equipotente a un unico cardinal de Von Neumann La funcion alef Editar Articulo principal Alef cardinales La serie de los alefs asigna un cardinal de Von Neumann infinito ℵ a a cada ordinal a mediante recursion transfinita El alef asociado a un ordinal viene dado por ℵ 0 w ℵ a 1 ℵ a ℵ l a lt l ℵ a displaystyle aleph 0 omega text aleph alpha 1 aleph alpha text aleph lambda bigcup alpha lt lambda aleph alpha y por esto se denota habitualmente al cardinal de los numeros naturales como ℵ 0 Puede demostrarse que todo cardinal de Von Neumann infinito es un alef Definicion general Editar El axioma de eleccion es independiente del resto de axiomas de la teoria de conjuntos Por tanto si no se asume o se postula su negacion no todo conjunto es bien ordenable ni equipotente a un cardinal de Von Neumann Sin embargo es posible definir una nocion distinta y mas general de numero cardinal que se extienda para todos los conjuntos La idea original para escoger un representante de cada cardinalidad de manera unica era definir un cardinal como una clase de equivalencia de todos los conjuntos equipotentes a uno dado Esta nocion sencilla que prevalecio en la literatura hasta los anos 50 es inapropiada dado que esta clase de equivalencia no es un conjunto Sin embargo recurriendo al concepto de rango puede demostrarse que la coleccion de todos los conjuntos equipotentes a uno dado de rango minimo es un conjunto Mediante esta herramienta debida originalmente a Dana Scott se puede definir numero cardinal en general 2 Un cardinal p displaystyle mathfrak p es un conjunto que verifica Todos sus elementos son equipotentes entre si Todos sus elementos tienen el mismo rango No existen conjuntos equipotentes a los elementos de p displaystyle mathfrak p de rango menor al rango comun de estos Cualquier conjunto equipotente a los elementos de p displaystyle mathfrak p y con el mismo rango es un elemento de p displaystyle mathfrak p Los numero cardinales asi definidos generales se suelen denotar por letras goticas p displaystyle mathfrak p q displaystyle mathfrak q etc De esta definicion se puede demostrar la generalizacion del teorema anterior Todo conjunto es equipotente a los elementos de un unico cardinal su cardinal Dos conjuntos son equipotentes si y solo si tienen el mismo cardinal Diferencias Editar En general los cardinales de Von Neumman son un subconjunto de la totalidad de los cardinales generales 3 que en particular contiene todos los cardinales finitos Si se asume el axioma de eleccion todo cardinal infinito es un alef y ademas los cardinales estan bien ordenados en el sentido de que dados dos conjuntos uno de ellos es biyectable con un subconjunto del otro Puede demostrarse que estas propiedades son de hecho equivalentes al axioma de eleccion Son equivalentes El axioma de eleccion Todo cardinal infinito es un alef Ley de la tricotomia dados dos conjuntos uno de ellos es biyectable con un subconjunto del otro Ademas los cardinales de Von Neumman tienen el cardinal que representan para todo k k k Los cardinales segun la construccion general no tienen esta propiedad y de hecho puede demostrarse que en la teoria de Zermelo Fraenkel sin el axioma de eleccion no existe ninguna definicion de cardinal que la tenga Aritmetica cardinal EditarEs posible definir unas suma multiplicacion y exponenciacion de cardinales de forma similar al caso de la aritmetica ordinal aunque las propiedades de la primera son mas parecidas a la aritmetica ordinaria Suma Editar Dados dos conjuntos finitos y disjuntos el numero de elementos de su union es la suma del numero de elementos de ambos En la suma de dos cardinales se generaliza esta idea al demostrarse El cardinal de la union de dos conjuntos disjuntos solo depende del cardinal dichos conjuntos A A B B y A B A B A B A B displaystyle A A text B B text y A cap B A cap B emptyset Rightarrow A cup B A cup B De este modo puede definirse p q card A 0 B 1 donde card B q y card A p displaystyle mathfrak p mathfrak q text card Big A times 0 cup B times 1 Big text donde text card B mathfrak q text y text card A mathfrak p En esta definicion no se toma la union de los dos cardinales directamente para evitar un posible solapamiento de sus elementos De este modo se demuestra Dados dos conjuntos disjuntos generales X e Y card X Y card X card Y La suma cardinal es conmutativa a diferencia de la aritmetica ordinal asociativa y con elemento neutro p 0 p displaystyle mathfrak p 0 mathfrak p donde 0 La suma de ordinales y de cardinales son compatibles card a b card a card b donde a y b son ordinales y el signo del miembro izquierdo se refiere a la suma de ordinales EjemploSean los conjuntos A B D Z N 0 1 2 3 los numeros naturales Es obvio que card A B card A card B 2 3 5 Para calcular card A N se ha de observar que A N 0 1 2 3 tiene el mismo numero de elementos que N 0 1 0 2 1 3 2 4 3 5 En otras palabras card N card A ℵ 0 2 ℵ 0 En general se tiene ℵ 0 n ℵ 0 para cualquier numero natural n Producto Editar De igual modo al tomar el producto cartesiano de dos conjuntos finitos el numero de los elementos de este producto es igual al producto del numero de elementos de ambos conjuntos De nuevo se generaliza esta idea para definir el producto de dos cardinales donde se demuestra El cardinal del producto cartesiano de dos conjuntos solo depende del cardinal de dichos conjuntos A A y B B A B A B displaystyle A A text y B B Rightarrow A times B A times B Y entonces se define p q card A B donde card B q y card A p displaystyle mathfrak p cdot mathfrak q text card left A times B right text donde text card B mathfrak q text y text card A mathfrak p De este modo se demuestra Dados dos conjuntos X e Y card X Y card X card Y La multiplicacion cardinal es conmutativa a diferencia de la aritmetica ordinal asociativa distributiva respecto de la suma con elemento neutro p 1 p displaystyle mathfrak p cdot 1 mathfrak p donde 1 0 y elemento absorbente p 0 0 displaystyle mathfrak p cdot 0 0 El producto de ordinales y de cardinales son compatibles card a b card a card b donde a y b son ordinales y el signo del miembro izquierdo se refiere al producto de ordinales EjemploUtilizando los mismos conjuntos del ejemplo anterior el producto de A y B es A B D Z D Z y obviamente card A B card A card B 2 3 6 Para calcular card A N se ha de observar que el conjunto A N 0 0 1 1 2 2 tiene el mismo numero de elementos que N 0 0 0 1 1 2 1 3 2 4 2 5 de modo que en general n 2n y n 2n 1 Asi card A N card A card N 2 ℵ 0 ℵ 0 y en general se tiene n ℵ 0 ℵ 0 para todo numero natural no nulo Exponenciacion Editar Por ultimo a la hora de tomar potencias de cardinales se generaliza el hecho de que dados dos conjuntos finitos X e Y existen exactamente Y X funciones posibles cuyo dominio es X y cuyo codominio es Y Denotando por BA el conjunto de todas las aplicaciones f A B se tiene la siguiente propiedad El cardinal del conjunto de funciones entre dos conjuntos solo depende del cardinal de dichos conjuntos A A y B B B A B A displaystyle A A text y B B Rightarrow B A B A Aprovechando esta propiedad puede definirse q p card B A donde card B q y card A p displaystyle mathfrak q mathfrak p text card B A text donde text card B mathfrak q text y text card A mathfrak p Con esta definicion puede entonces demostrarse Dados dos conjuntos cualesquiera X e Y card YX card Y card X Varias propiedades basicas de la exponenciacion de numeros se mantienen p s p t p s t p s q s p q s p 1 p p 0 1 1 p 1 0 p 0 si p 0 displaystyle mathfrak p mathfrak s mathfrak p mathfrak t mathfrak p mathfrak s mathfrak t text mathfrak p mathfrak s mathfrak q mathfrak s mathfrak p cdot mathfrak q mathfrak s text mathfrak p 1 mathfrak p text mathfrak p 0 1 text 1 mathfrak p 1 text 0 mathfrak p 0 text si mathfrak p neq 0 La exponenciacion de ordinales y de cardinales no son compatibles Por ejemplo en la exponenciacion ordinal se tiene 2w w Sin embargo card 2w card w ℵ 0 2card w 2ℵ 0 donde la segunda exponenciacion es cardinal EjemploUtilizando los mismos conjuntos de los ejemplos anteriores la potencia AB es el conjunto de todas las funciones con dominio B y codominio A Una funcion f B A viene especificada por las imagenes f D f y f Z Para los tres casos estas imagenes pueden ser o sin ninguna restriccion Por tanto hay dos posibilidades para cada imagen y 3 imagenes a determinar con lo que hay 2 2 2 posibilidades Por tanto card BA card B card A 23 8 En el caso NA se han de encontrar todas las funciones f A N especificando las imagenes f y f que pueden valer ambas cualquier numero natural Asi una funcion queda especificada por un par ordenado de numeros m n Pero es conocido que hay tantos pares ordenados de numeros como numeros Por tanto NA es equipotente a N y card NA card N card A ℵ 02 ℵ 0 En general para todo numero natural no nulo n ℵ 0n ℵ 0 El caso AN es distinto pues se han de encontrar todas las funciones f N A especificando las imagenes de cada numero natural f n que pueden valer o Si se adopta el convenio de que significa SI y significa NO puede entenderse que cada f equivale a un subconjunto de N aquel que contiene solo los elementos cuya imagen es SI Es obvio pues que AN es equipotente a la coleccion de todos los subconjuntos de N Puede demostrarse que card AN 2ℵ 0 es estrictamente mayor que ℵ 0 y que de hecho es el cardinal de los numeros reales Tipos de cardinales EditarCardinales sucesores y limites Editar Articulo principal Cardinal limite Dado un cardinal a solo una de las siguiente afirmaciones es cierta a 0 a 0 y a es un cardinal sucesor es decir existe un cardinal maximo menor que a mas concretamente existe otro cardinal estrictamente menor que a que a su vez es mayor o igual que cualquier cardinal estrictamente inferior a a a 0 y a es un cardinal limite es decir no existe un cardinal maximo menor que a Cardinales regulares y singulares Editar Articulo principal Cardinal regular Cardinales accesibles e inaccesibles Editar Articulo principal Cardinal inaccesibleHipotesis del continuo EditarArticulo principal Hipotesis del continuo La hipotesis del continuo es la cuestion de la existencia o no existencia de un cardinal entre los numeros naturales y los numeros reales El conjunto de los numeros reales es equipotente al conjunto de todos los conjuntos de numeros naturales cuya potencia es c 2ℵ 0 Hipotesis del continuo No existe un cardinal entre ℵ 0 y c Si se asume el axioma de eleccion existe un minimo cardinal mayor que ℵ 0 ℵ 1 La hipotesis del continuo puede formularse entonces como c es igual a ℵ 1 Puede demostrarse que en las teorias estandar de conjuntos este enunciado es independiente tanto el como su negacion son compatibles con los axiomas de la teoria de conjuntos Referencias Editar Para un ordinal a su cardinal suele representarse por a displaystyle scriptstyle bar alpha La notacion original de Cantor usaba una barra X displaystyle scriptstyle bar X para abstraer las propiedades de los elementos del conjunto X exceptuando su orden representando su ordinal y dos barras X displaystyle scriptstyle bar bar X para hacer la doble abstraccion y quedarse solo con la cantidad de elementos su cardinal En el caso de un ordinal pues solo es necesario anadir una barra para obtener el cardinal correspondiente Vease Deiser 2010 Estrictamente hablando esto no es correcto los cardinales de Von Neumman k son unos ciertos ordinales y los cardinales generales no Subconjunto ha de interpretarse en terminos de la coleccion de todos los k donde la barra toma el cardinal general Cantor Georg 2006 1872 1899 Fundamentos para una teoria general de conjuntos Escritos y correspondencia selecta Edicion de Jose Ferreiros Critica ISBN 84 8432 695 0 Deiser Oliver mayo de 2010 On the Development of the Notion of a Cardinal Number History and Philosophy of Logic 31 2 123 143 doi 10 1080 01445340903545904 Ivorra Carlos Logica y teoria de conjuntos consultado el 18 de octubre de 2010 Jech Thomas J 1973 The Axiom of Choice en ingles North Holland ISBN 0 7204 2275 2 Rubin Jean E 1967 Set Theory for the Mathematician en ingles Holden Day OCLC 816225 Enlaces externos EditarEsta obra contiene una traduccion derivada de Cardinal number de Wikipedia en ingles publicada por sus editores bajo la Licencia de documentacion libre de GNU y la Licencia Creative Commons Atribucion CompartirIgual 3 0 Unported Datos Q57610533 Obtenido de https es wikipedia org w index php title Numero cardinal teoria de conjuntos amp oldid 139389622, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos