fbpx
Wikipedia

Unión neuromuscular

La unión neuromuscular, unión mioneural o sinapsis neuromuscular, es una estructura celular especializada para el contacto entre el axón de una neurona motora y la membrana de una fibra muscular.[1]​ Las neuronas motoras transmiten el impulso nervioso a larga distancia, desde su cuerpo celular (o soma) hasta su membrana presináptica. El impulso que viaja por el axón llega hasta el extremo en el que se liberan vesículas repletas de acetilcolina, que es el neurotransmisor. La aceticolina liberada fuera de la neurona se une a los receptores de la membrana postsináptica de la fibra muscular. Debido a que la membrana postsináptica es eléctricamente excitable por la unión del neurotransmisor a los receptores, el impulso nervioso de la neurona motora logra transmitirse desde el extremo del axón hacia la fibra muscular.[2]

Unión neuromuscular

Micrografía electrónica que muestra una sección transversal de la unión neuromuscular. T es el axón terminal, M es la fibra muscular. La flecha muestra los pliegues de unión con la lámina basal. Las densidades postsinápticas pueden verse en las puntas entre los pliegues. La escala es de 0,3 micras. Fuente:

Vista detallada de la unión neuromuscular:
1. Terminal presináptica
2. Sarcolema
3. Vesícula sináptica
4. Receptor nicotínico
5. Mitocondria
Nombre y clasificación
Sinónimos
Sinapsis neuromuscular
Latín synapsis neuromuscularis; junctio neuromuscularis
TH H2.00.06.1.02001
TH H2.00.06.1.02001
 Aviso médico 

Estructura

Las fibras nerviosas motoras están canalizadas en los nervios desde su salida del sistema nervioso central. Las fibras nerviosas están constituidas por el axón, que transmite el impulso nervioso, y por las vainas de mielina que protegen al axón y están constituidas por células de Schwann. Con los nervios proyectándose hacía los músculos, la fibra nerviosa motora pierde la cobertura de mielina y se divide en pequeñas ramas axónicas cerca del área de las fibras musculares en el músculo, preparadas para recibir la sinapsis. Estos lugares en la fibra muscular son modificaciones de la membrana denominadas placas motoras, siendo una por cada fibra muscular. Sobre cada placa motora la rama axónica se ensancha para conformarse como un botón presináptico. La sinapsis entre el axón y la fibra muscular es protegida por una célula de Schwann, que aísla también la unión neuromuscular con el exterior.[3]​ En un corte transversal de la unión neuromuscular se distinguen tres partes:

  1. La membrana presináptica de la neurona motora o motoneurona. Especialización del axón para la acumulación y liberación del neurotransmisor cuando recibe el impulso nervioso. El axón con esta conformación se denomina axón terminal, aunque también recibe el nombre de botón presináptico o botón terminal. Este botón presináptico contiene multitud de mitocondrias y vesículas esféricas de 60 nanómetros de diámetro rellenas de acetilcolina como neurotransmisor.[4]
  2. Un espacio sináptico o hendidura sináptica. Es el espacio entre el botón presináptico y la membrana de la fibra muscular. La hendidura sináptica tiene entre 30 y 50 nanómetros de ancho. Entre ambas membranas se interpone una lámina basal que continua por los pliegues que forma la membrana postsináptica creando hendiduras secundarias.[4]​ La lámina basal en el espacio sináptico contiene proteínas estructurales como colágeno o laminina. Existen diferencias en la longitud de las hendiduras secundarias entre las fibras musculares lentas y rápidas.[4]
  3. Membrana postsináptica de la fibra muscular. Presenta la placa motora rica en proteínas receptoras de los neurotransmisores. En las uniones colinérgicas, que son las mediadas por la acetilcolina, se encuentran en una proporción de aproximadamente 104 (10 000, diez mil) receptores por cada μm2 en la placa motora. Igualmente se pueden encontrar en las hendiduras sinápticas secundarias y, aunque el número es menor, contribuyen a la acción de los neurotransmisores.[3][5]​ En la membrana basal de las hendiduras sinápticas también hay gran concentración de enzimas acetilcolinesterasas liberadas por la células musculares para degradar la acetilcolina unida a las membranas y permitir que la membrana muscular retorne al estado de reposo.[3]
 
File:Electron micrograph of neuromuscular junction (cross-section).jpg
Sección transversal de una unión neuromuscular.
T= (arriba) es el axón terminal repleto de vesículas.
M= es la fibra muscular.
La flecha blanca a la derecha muestra los pliegues de unión con la lámina basal.
Las densidades postsinápticas pueden verse en las puntas entre los pliegues. La escala es de 0,3 micras. Microscopio electrónico .

Las uniones neuromusculares de las fibras musculares lisas inervadas por fibras nerviosas del sistema nerviosos autónomo no presentan una estructura tan definida en las membranas pre y postsináptica, y su espacio sináptico es de menor diámetro. Además, a diferencia de los axones motores que liberan siempre acetilcolina, el neurotransmisor para las fibras nerviosas simpáticas es la noradrenalina y para las fibras nerviosas parasimpáticas la aceticolina (colinérgica). En las uniones no colinérgicas de las fibras parasimpáticas los nucleósidos funcionan también como neurotransmisores.[4][6]

Fisiología de la unión neuromuscular

Transmisión del impulso eléctrico

La membrana de la motoneurona es eléctricamente excitable y transmite el impulso nervioso desde el sistema nervioso central hasta el botón terminal. El impulso nervioso despolariza la membrana presináptica que activa los canales de calcio dependiente de voltaje. Esta activación permite la incorporación de grandes cantidades de iones de calcio al interior del axón terminal.[3][6]

Formación y liberación de acetilcolina

Las vesículas de aproximadamente 50 nanómetros (nm) de diámetro son generadas a partir del aparato de Golgi localizadas en el sistema nervioso central. La acetilcolina es sintetizada en el terminal del axón que son encapsuladas en las vesículas que contienen aproximadamente 10.000 moléculas de acetilcolina. Las vesículas son transportada a la membrana presináptica, en donde se llegan a acumular alrededor de 300 000 vesículas.[2][7]​ Cuando un impulso nervioso llega al botón presináptico, se abren los canales de calcio activados por voltaje que permite la incorporación de gran cantidad de iones calcio al interior. Estos iones atraen las vesículas a la membrana presináptica para fusionarse con la membrana terminal y liberando al espacio sináptico las moléculas de acetilcolina por exocitosis.[8]

Los receptores de acetilcolina están constituidos por cinco subunidades: dos subunidades alfa, y tres subunidades beta, delta y gamma. Se disponen de forma radial formando un canal que permanece cerrado hasta que dos moléculas de acetilcolina se unen a las subunidades alfa. Esta unión produce un cambio conformacional que abre el canal para el paso de iones de sodio al interior de la fibra muscular.[8]​ La incorporación de gran cantidad de iones de sodio causa la despolarización de la membrana postsináptica al generar un potencial positivo en la placa motora que inicia un potencial de acción. La propagación del potencial de acción a lo largo de la membrana de la fibra muscular desemboca en la contracción de la fibra muscular.[4][8]

Degradación de la acetilcolina y vuelta al estado de reposo

Mientras moléculas de acetilcolina estén liberadas en el espacio sináptico se seguirán activando los receptores de aceticolina. Para que la membrana de la placa muscular vuelva al estado de reposo el neurotransmisor se elimina por dos medios. Algunas moléculas difunden hacía el exterior del espacio sináptico donde ya no pueden participar en la despolarización de la membrana.[8]​ La mayor parte de la acetilcolina es degradada por la enzima acetilcolinesterasa, que es liberada por la fibra muscular. La enzima divide cada neurotransmisor en dos subunidades: acetato y colina. Las subunidades son reabsorbidas por el botón sináptico o se terminan de degradar en el espacio sináptico.[4]​ La catálisis es una de las más rápidas conocidas de manera que aproximadamente 5 moléculas de acetilcolina por milisegundo son degradadas por la enzima acetilcolinesterasa. La proporción de receptores de membrana acetilcolina es aproximadamente 5 a 10 veces mayor de enzima acetilcolinesterasa, lo que permite una interacción de 50 a 75% de toda la acetilcolina liberada con los receptores en la membrana postsináptica.[7]

Formación de las uniones durante el desarrollo

Los componentes del axón terminal y de la placa motora de la fibra muscular son sintetizadas e interaccionan entre sí para constituir las uniones neuromusculares durante el desarrollo embrionario. Los axones motores en desarrollo se extienden hacía los músculos en formación. Los conos axónicos de las neuronas llegan cuando los mioblastos se fusionan para constituir los miotubos. Los axones se dividen en varias ramas para dividir las diferentes fibras musculares en formación. Los conos axónicos minutos después hacer contacto con la membrana de la fibra muscular tienen capacidad de liberar acetilcolina con capacidad de transmitir el impulso nervioso.[9]

La unión primitiva, pese a ser débil, desencadena cambios en la membrana postsináptica. Los miotubos en formación para constituir las fibras musculares presentan receptores de acetilcolina de manera dispersa a lo largo de su membrana. La constitución de las sinapsis neuromusculares conduce a una concentración de los receptores de la acetilcolina en las placas musculares que se observan en las uniones maduras. En un día o dos el axón terminal y placa motora son estructuras diferenciables, y en una semana el botón terminal se ensancha para cubrir toda la placa motora, el citoesqueleto despeja el área que es rellena por multitud de mitocondrias y vesículas de acetilcolina. Otros componentes sintetizados por la fibra muscular como Agrin, MuSK o las proteínas de adhesión como las cadherinas participan en la constitución y estabilización de las uniones neuromusculares durante todo el proceso de sinaptogénesis.[9]

Patologías

Existen patologías relacionadas con la unión neuromuscular que generan dificultades motoras.

Enfermedades autoinmunes

Miastenia Gravis

Miastenia Gravis es una enfermedad autoinmune que afecta a la transmisión del impulso nervioso del axón terminal a la fibra muscular.[7]​ El sistema inmunitario del organismo ataca a los receptores de la acetilcolina de la membrana postsináptica de las fibra musculares. Como consecuencia no hay transmisión del impulso nervioso y la membrana muscular no se despolariza. La manifestación clínica es una progresiva debilidad muscular e incapacidad de realizar movimientos.[4][10][11]​ Afecta entre el 2 y 20 personas por cada millón de habitantes, con preferencia entre la población femenina y su desarrollo suele ser tardío en occidente, si bien la incidencia en juveniles es más frecuente entre la población asíatica. La enfermedad se ha observado que es heredable en el 2% de los casos.[7][10]​ Actualmente no existe tratamiento para la cura completa de un cuadro de miastenia gravis pero si para mitigar los peores manifestaciones de la enfermedad. Uno de los tratamientos más comunes es el uso de inhibidores de la expression de acetilcolinesterasa para compensar la pérdida de receptores de acetilcolina. En otro tipo de casos puede resultar efectivo la administración de esteroides o de inmunomoduladores que atacan a los anticuerpos que atacan a los componentes de la placa motora que provocan la enfermedad. En casos donde se observa un desarrollo anómalo del timo una extirpación parcial o completa del mismo puede significar una mejoría.[7][10]

La miastenia gravis fue descrita sistemáticamente por primera vez por Thomas Willis en el siglo XVII. El primer tratamiento con éxito de la enfermedad fue desarrollado por Mary Walker en la década de 1930 al identificar que una inhibición de la enzima acetilcolinesterasa causaba una mejoría en los pacientes. En los años 70 se descubre que la causa de la enfermedad es un ataque autoinmune de los receptores de acetilcolina en las placas motoras y se empiezan a determinar los primeros marcadores mediante serología para facilitar el diagnóstico de la enfermedad.[7]

Síndrome de Lambert-Eaton

El síndrome Lambert-Eaton es una enfermedad autoinmune neurodegenerativa debido a una fusión anormal de las vesículas que contienen acetilcolina en la membrana presináptica. El sistema inmunitario ataca principalmente a las proteínas responsables de la liberación de los iones de calcio intracelular que sirve de señal para la el tráfico interno de las vesículas y su fusión con la membrana presináptica. Como consecuencia, la cantidad de moléculas de acetilcolina liberadas al espacio sináptico está reducido y la transmisión del impulso nerviosos se ve comprometida. Los primeros síntomas de la enfermedad es debilidad muscular, preferentemente en los miembros inferiores. A continuación se producen otras manifestaciones como perdida de reflejos y parálisis de los músculos inervados por los nervios craneales como los extraoculares. En estadios más avanzados también se observan afecciones propias del sistema nerviosos autónomo como sequedad en la boca, respuesta retardada del reflejo pupilar, estreñimiento, o ausencia de sudoración.[11][12]​ Este síndrome suele estar asociado a diversos cánceres de pulmón. También pueden estar asociados con otro tipo de tumores en páncreas y ovarios[4][11][12]​ Es una enfermedad que rara vez se presenta en niños que a su vez presenta una escasa incidencia en adultos de 1 caso cada 3,5 millones de personas. Un tercio de los pacientes son mujeres que presentan las primeras manifestaciones de la enfermedad a los 35 años, y aproximadamente los dos tercios restantes corresponden a varones hacía los 60 años de edad.[12]

La primera caracterización de la enfermedad fue realizada en la década de 1950.[11][12]​ Los tratamientos para combatir el síndroma Lambert-Eaton suelen perseguir, en primer lugar, la cura del cáncer que suele venir asociado a la enfermedad, con la esperanza de que la remisión del tumor ayude también a la recuperación del paciente del trastorno autoinmune. En los casos que esto no es posible, suele prepararse un tratamiento individualizado que incluyen la administración de inmunoglobulinas y otras drogas que han demostrado su eficacia, como la guanidina.[11][12]​ En otros casos, la transfusión periódica de plasma sanguíneo permite una mejora en el paciente al observarse una mejora de la transmisión del potencial nervioso. Sin embargo, es un tratamiento que no se ha generalizado y solo se ha probado a nivel experimental.[12]

Síndromes miasténicos congénitos

Comprenden un conjunto de enfermedades congénitas relacionadas con la expresión deficiente de alguno de los componentes de la unión neuromuscular. Las deficiencias más comunes suelen aparecer al nacer o en los primeros años de vida, mientras que las patologías que aparecen en la edad adulta se asocian con genotipos específicos.[12]​ El conjunto total de estos síndromes es de una incidencia baja de menos de 4 enfermos por cada millón de habitantes para los al menos 18 síndromes identificados en relación con 17 genótipos diferentes. Las patologías se suelen clasificar de acuerdo a la parte de la unión neuromuscular afectada para facilitar el diagnóstico y tratamiento.[12]

Síndromes presinápticos. Representan un 5% de todos los casos documentados. Suelen estar relacionados con una producción deficiente de acetilcolina o su liberación por las vesículas presinápticas.[11][12]

Sindromes sinápticos. Comprenden mutaciones en las proteínas componentes de la membrana basal o relacionado con la liberación de la enzima acetilcolinesterasa al espacio sináptico. Comprenden alrededor del 15% de todos los síndromes miasténicos congénitos.[12]

Sindromes postsinápticos. Representan la mayoría de casos debido a la mayor proporción de proteínas que participan en la membrana postsináptica. Algunas de las mutaciones se relacionan con el proceso de concentración de los receptores de aceticolina durante el desarrollo embrionario como el gen que codifica para la proteína Agrin u otros genes que igualmente codifican proteínas esenciales para la formación de la placa motora como MuSK, LRP4, Dok-7 o rapsyn. Otro conjunto de síndromes postsináptico están relacionados con una deficiencia en alguna de la las subunidades que conforman los receptores de acetilcolina en la membrana postsináptica. De acuerdo a la subunidad afectada la patología puede ser más o menos benigna para el paciente.[11][12]

Tóxinas que afectan a la transmisión del impulso nervioso

Garrapatas

Las garrapatas son los vectores de varias enfermedades. La saliva de las garrapatas de la familia de Ixodidae (garrapatas de coraza dura) es una toxina que puede causar parálisis muscular en algunas especies aparte del ser humano como perros y gatos. Varios días tras la mordedura el paciente desarrolla los primeros síntomas en forma de irritabilidad, somnolencia, diarrea y fiebre. Menos de 48 horas después se manifiesta debilidad muscular y parálisis progresiva en los miembros. Una vez retirada la garrapata los síntomas remiten en unos pocos días. Es una patología endémica del norte de América y Oceanía, aunque las especies de garrapatas australianas pueden desarrollar una variante más severa. Se desconoce el mecanismo exacto aunque se asume que la acción de la toxina bloquea la liberación de acetilcolina de los axones terminales.[12]

Otros artrópodos

Otros arácnidos producen toxinas que afectan dramáticamente la transmisión del impulso nervioso. El veneno de la viuda negra contiene una neurotóxina que estimula la liberación incontrolada de neurotransmisores como la adrenalina, dopamina y acetilcolina que vacían las vesículas en la membrana presináptica de los terminales axónicos en el sistema nervioso central y periférico.[12]​ El primer síntoma suele ser un dolor intenso en la zona de la mordedura. Con la toxina afectando a la internación autónoma de los vasos sanguíneos se observa una vasoconstricción, seguido de una rigidez muscular provocado por la hiperactividad de la acetilcolina liberada que se va extendiendo hacía el cuerpo. Con el tiempo se experimenta espasmos en la pared del abdomen, dolor de cabeza y dificultad para respirar por una bronconstricción. En los casos más extremos se puede llegar a observar una miocarditis, o inflamación del tejido muscular cardiaco, que puede llegar a ser fatal.[12]

El veneno de diversas especies de escorpiones también provocan una hiperliberación de las vesículas repletas de acetilcolina en el terminal axónico. Tras el pinchazo el paciente experimenta debilidad muscular acompañada de hipertensión arterial, arritmias cardíacas, miocarditis e incluso edema pulmonar.[12]

Veneno de serpientes

Diversas especies de serpientes elápidos que comprenden especies como cobras, mambas o serpientes de coral producen neurotoxinas especializadas en el bloqueo de la transmisión del impulso nervioso. De acuerdo a la toxina producida algunos venenos inhiben la transmisión presinápticamente, mientras que otros venenos actúan en una inhibición postsináptica del impulso nervioso.[12]​ Los primeros síntomas comienzan a los pocos minutos aunque pueden retrasarse a las 12 horas dependiendo de la especie. Las primeras manifestaciones clínicas son debilidad en los miembros acompañado de dolor muscular y náuseas. El cierre del párpado es frecuente y la hipersalivación puede o no ocurrir de acuerdo al tipo de veneno. El bloqueo de la transmisión del impulso nervioso es una característica propia del veneno de los elápidos y, aunque no atraviesen la barrera hematoencefálica, otras manifestaciones de sus toxinas pueden afectar a otras áreas sistema nervioso como bajada de la tensión arterial e hipoxia. Si no recibe atención médica adecuada la muerte acontece antes de las 48 horas, aunque puede ser antes dependiendo de la especie.[12]

El veneno de las serpientes marinas comparte muchas de las características de las serpientes terrestres al pertenecer a la misma familia Elapidae.[12]

Microorganismos

La toxina botulínica liberada por la bacteria Clostridium botulinum actúa en la membrana presináptica impidiendo la liberación de la acetilcolina y provocando la destrucción del terminal del axón que puede regenerarse para volver a hacer sinapsis en la misma placa motora. Aproximadamente son identificados unos 1000 casos anuales alrededor del mundo, la mayoría entre la población infantil, por consumir aguas contaminadas.[10]​ Las bacterias se alojan en el sistema digestivo liberando toxinas cuyas primeras manifestaciones son disminución del tono muscular, ausencia de reflejos, dificultad en la respiración, estreñimiento y actividad anormal en los músculos internados por los nervios craneales. En los casos más extremos el paciente puede experimentar debilidad y parálisis descendente desde los músculos de cabeza y cuello hacía los miembros. La dificultad respiratoria puede agravarse hasta llegar a provocar la muerte. El tratamiento por intoxicación de Clostridium botulinum es la administración de antitoxinas.[4][10]​ La toxina botulínica aislada, por otra parte, se le ha encontrado uso en clínica y en ciertos tratamientos de belleza.[4]

Intoxicación por compuestos organofosfatos y carbamatos

Algunos de los insecticidas usados en agricultura contienen en su composición organofosfatos y carbamatos. En forma de plaguicidas estos compuestos se encuentran en baja concentración para la eliminación de los insectos sin afectar a los seres humanos. Sin embargo, estos compuestos también se pueden utilizar a altas concentraciones como venenos o siendo los constituyentes de diversas armas biológicas. En menos de 24 horas tras la exposición el paciente comienza un cuadro de aumento de saliva, lagrimeo, incontinencia y defecación acompañados de otros síntomas como respiración arrítmica, parálisis de los miembros y delirios. Una parada respiratoria por un debilitamiento fatal en los músculos del diafragma e intercostales suele ser la causa de la muerte en los casos de envenenamiento extremo. Los organofosfatos y carbamatos inhiben de manera total o temporal las enzimas acetilcolinesterasas provocando una hiperactividad en la transmisión del impulso nervioso a la membrana postsináptica de la fibra muscular.[12]

Referencias

  1. OMS,OPS,BIREME (ed.). «Unión neuromuscular». Descriptores en Ciencias de la Salud, Biblioteca Virtual en Salud. 
  2. Mancall, Elliott L. (2011). «Chapter 2. Overview of the Microstructure of the Nervous System». En David G. Brock, ed. Gray´s Clinical Neuroanatomy (en inglés). Elsevier. pp. 11-31. ISBN 978-1-4160-4705-6. 
  3. Greenstein, Ben; Greenstein, Adam (2000). «Cellular Structures». Color Atlas of Neuroscience (en inglés). New York: Thieme. pp. 72-131. ISBN 0-86577-710-1. 
  4. Elliott L. Mancall, David G. Brock, ed. (2011). «Chapter 22. Neuromuscular Junction». Gray´s Clinical Neuroanatomy (en inglés). Filadelfia, EE.UU.: Elsevier. pp. 377-380. ISBN 978-1-4160-4705-6. 
  5. Abdillahi Omar et.al. (2020). «Physiology, Neuromuscular Junction.» [Fisiología, unión neuromuscular.] (en inglés.). 
  6. Snell, Richard S (2014). «3. Fibras nerviosas, nervios periféricos, terminaciones receptoras y efectoras, dermatomas y actividad muscular». Neuroanatomía Clínica (7a edición). Barcelona (España): Wolkers Klwer. pp. 140-241. ISBN 978-0-7817-9427-5. 
  7. Amato, Anthony A.; Russell, James A (2016). «25. Autoimmune Myasthenia Gravis». Neuromuscular Disorders (en inglés) (2ª edición). Nueva York (EE.UU): McGraw-Hill. pp. 581-619. ISBN 978-0-07-175462-0. 
  8. Guyton, Arthur C.; Hall, John E. (2011). «7. Excitación del músculo esquelético: transmisión neuromuscular y acoplamiento excitación-contracción». En Elsevier, ed. Guyton y Hall Tratado de Fisiología Médica (12 edición). Barcelona (España). pp. 83-89. ISBN 978-84-8086-819-8. 
  9. Patton, Bruce; Burgess, Robert W. (2005). «Chapter 10. Synaptogenesis». Developmental Neurobiology (en inglés) (4th edición). New York: Kluwer Academic. pp. 269-316. ISBN 0-306-48330-0. 
  10. Toy, Eugene C.; Simpson, Ericka; Pleitez, Milvia; Rosenfield, David; Tintner, Ron (2008). Case Files Neurology (en inglés). Nueva York, EE.UU.: McGraw-Hill. doi:10.1036/0071482873. 
  11. James S. Nelson, Hernando Mena, Joseph E Parisi, Sydney S. Schochet Jr, ed. (2003). «23. Neuromuscular diseases». Principles and Practice of Neuropathology (en inglés) (2ª edición). Nueva York, EE.UU.: Oxford University Press. pp. 524-577. 
  12. Amato, Anthony A; Russell, James A (2016). «26. Other Disorders of Neuromuscular Transmission». Neuromuscular Disorders (en inglés) (2ª edición). Nueva York (EE.UU): McGraw-Hill. pp. 620-655. ISBN 978-0-07-175462-0. 
  •   Datos: Q776995
  •   Multimedia: Neuromuscular junction / Q776995

unión, neuromuscular, unión, neuromuscular, unión, mioneural, sinapsis, neuromuscular, estructura, celular, especializada, para, contacto, entre, axón, neurona, motora, membrana, fibra, muscular, neuronas, motoras, transmiten, impulso, nervioso, larga, distanc. La union neuromuscular union mioneural o sinapsis neuromuscular es una estructura celular especializada para el contacto entre el axon de una neurona motora y la membrana de una fibra muscular 1 Las neuronas motoras transmiten el impulso nervioso a larga distancia desde su cuerpo celular o soma hasta su membrana presinaptica El impulso que viaja por el axon llega hasta el extremo en el que se liberan vesiculas repletas de acetilcolina que es el neurotransmisor La aceticolina liberada fuera de la neurona se une a los receptores de la membrana postsinaptica de la fibra muscular Debido a que la membrana postsinaptica es electricamente excitable por la union del neurotransmisor a los receptores el impulso nervioso de la neurona motora logra transmitirse desde el extremo del axon hacia la fibra muscular 2 Union neuromuscularMicrografia electronica que muestra una seccion transversal de la union neuromuscular T es el axon terminal M es la fibra muscular La flecha muestra los pliegues de union con la lamina basal Las densidades postsinapticas pueden verse en las puntas entre los pliegues La escala es de 0 3 micras Fuente NIMHVista detallada de la union neuromuscular 1 Terminal presinaptica2 Sarcolema3 Vesicula sinaptica4 Receptor nicotinico5 MitocondriaNombre y clasificacionSinonimosSinapsis neuromuscularLatinsynapsis neuromuscularis junctio neuromuscularisTHH2 00 06 1 02001THH2 00 06 1 02001 Aviso medico editar datos en Wikidata Indice 1 Estructura 2 Fisiologia de la union neuromuscular 2 1 Transmision del impulso electrico 2 2 Formacion y liberacion de acetilcolina 2 3 Degradacion de la acetilcolina y vuelta al estado de reposo 3 Formacion de las uniones durante el desarrollo 4 Patologias 4 1 Enfermedades autoinmunes 4 1 1 Miastenia Gravis 4 1 2 Sindrome de Lambert Eaton 4 2 Sindromes miastenicos congenitos 4 3 Toxinas que afectan a la transmision del impulso nervioso 4 3 1 Garrapatas 4 3 2 Otros artropodos 4 3 3 Veneno de serpientes 4 3 4 Microorganismos 4 3 5 Intoxicacion por compuestos organofosfatos y carbamatos 5 ReferenciasEstructura EditarLas fibras nerviosas motoras estan canalizadas en los nervios desde su salida del sistema nervioso central Las fibras nerviosas estan constituidas por el axon que transmite el impulso nervioso y por las vainas de mielina que protegen al axon y estan constituidas por celulas de Schwann Con los nervios proyectandose hacia los musculos la fibra nerviosa motora pierde la cobertura de mielina y se divide en pequenas ramas axonicas cerca del area de las fibras musculares en el musculo preparadas para recibir la sinapsis Estos lugares en la fibra muscular son modificaciones de la membrana denominadas placas motoras siendo una por cada fibra muscular Sobre cada placa motora la rama axonica se ensancha para conformarse como un boton presinaptico La sinapsis entre el axon y la fibra muscular es protegida por una celula de Schwann que aisla tambien la union neuromuscular con el exterior 3 En un corte transversal de la union neuromuscular se distinguen tres partes La membrana presinaptica de la neurona motora o motoneurona Especializacion del axon para la acumulacion y liberacion del neurotransmisor cuando recibe el impulso nervioso El axon con esta conformacion se denomina axon terminal aunque tambien recibe el nombre de boton presinaptico o boton terminal Este boton presinaptico contiene multitud de mitocondrias y vesiculas esfericas de 60 nanometros de diametro rellenas de acetilcolina como neurotransmisor 4 Un espacio sinaptico o hendidura sinaptica Es el espacio entre el boton presinaptico y la membrana de la fibra muscular La hendidura sinaptica tiene entre 30 y 50 nanometros de ancho Entre ambas membranas se interpone una lamina basal que continua por los pliegues que forma la membrana postsinaptica creando hendiduras secundarias 4 La lamina basal en el espacio sinaptico contiene proteinas estructurales como colageno o laminina Existen diferencias en la longitud de las hendiduras secundarias entre las fibras musculares lentas y rapidas 4 Membrana postsinaptica de la fibra muscular Presenta la placa motora rica en proteinas receptoras de los neurotransmisores En las uniones colinergicas que son las mediadas por la acetilcolina se encuentran en una proporcion de aproximadamente 104 10 000 diez mil receptores por cada mm2 en la placa motora Igualmente se pueden encontrar en las hendiduras sinapticas secundarias y aunque el numero es menor contribuyen a la accion de los neurotransmisores 3 5 En la membrana basal de las hendiduras sinapticas tambien hay gran concentracion de enzimas acetilcolinesterasas liberadas por la celulas musculares para degradar la acetilcolina unida a las membranas y permitir que la membrana muscular retorne al estado de reposo 3 File Electron micrograph of neuromuscular junction cross section jpgSeccion transversal de una union neuromuscular T arriba es el axon terminal repleto de vesiculas M es la fibra muscular La flecha blanca a la derecha muestra los pliegues de union con la lamina basal Las densidades postsinapticas pueden verse en las puntas entre los pliegues La escala es de 0 3 micras Microscopio electronico Las uniones neuromusculares de las fibras musculares lisas inervadas por fibras nerviosas del sistema nerviosos autonomo no presentan una estructura tan definida en las membranas pre y postsinaptica y su espacio sinaptico es de menor diametro Ademas a diferencia de los axones motores que liberan siempre acetilcolina el neurotransmisor para las fibras nerviosas simpaticas es la noradrenalina y para las fibras nerviosas parasimpaticas la aceticolina colinergica En las uniones no colinergicas de las fibras parasimpaticas los nucleosidos funcionan tambien como neurotransmisores 4 6 Fisiologia de la union neuromuscular EditarTransmision del impulso electrico Editar La membrana de la motoneurona es electricamente excitable y transmite el impulso nervioso desde el sistema nervioso central hasta el boton terminal El impulso nervioso despolariza la membrana presinaptica que activa los canales de calcio dependiente de voltaje Esta activacion permite la incorporacion de grandes cantidades de iones de calcio al interior del axon terminal 3 6 Formacion y liberacion de acetilcolina Editar Las vesiculas de aproximadamente 50 nanometros nm de diametro son generadas a partir del aparato de Golgi localizadas en el sistema nervioso central La acetilcolina es sintetizada en el terminal del axon que son encapsuladas en las vesiculas que contienen aproximadamente 10 000 moleculas de acetilcolina Las vesiculas son transportada a la membrana presinaptica en donde se llegan a acumular alrededor de 300 000 vesiculas 2 7 Cuando un impulso nervioso llega al boton presinaptico se abren los canales de calcio activados por voltaje que permite la incorporacion de gran cantidad de iones calcio al interior Estos iones atraen las vesiculas a la membrana presinaptica para fusionarse con la membrana terminal y liberando al espacio sinaptico las moleculas de acetilcolina por exocitosis 8 Los receptores de acetilcolina estan constituidos por cinco subunidades dos subunidades alfa y tres subunidades beta delta y gamma Se disponen de forma radial formando un canal que permanece cerrado hasta que dos moleculas de acetilcolina se unen a las subunidades alfa Esta union produce un cambio conformacional que abre el canal para el paso de iones de sodio al interior de la fibra muscular 8 La incorporacion de gran cantidad de iones de sodio causa la despolarizacion de la membrana postsinaptica al generar un potencial positivo en la placa motora que inicia un potencial de accion La propagacion del potencial de accion a lo largo de la membrana de la fibra muscular desemboca en la contraccion de la fibra muscular 4 8 Degradacion de la acetilcolina y vuelta al estado de reposo Editar Mientras moleculas de acetilcolina esten liberadas en el espacio sinaptico se seguiran activando los receptores de aceticolina Para que la membrana de la placa muscular vuelva al estado de reposo el neurotransmisor se elimina por dos medios Algunas moleculas difunden hacia el exterior del espacio sinaptico donde ya no pueden participar en la despolarizacion de la membrana 8 La mayor parte de la acetilcolina es degradada por la enzima acetilcolinesterasa que es liberada por la fibra muscular La enzima divide cada neurotransmisor en dos subunidades acetato y colina Las subunidades son reabsorbidas por el boton sinaptico o se terminan de degradar en el espacio sinaptico 4 La catalisis es una de las mas rapidas conocidas de manera que aproximadamente 5 moleculas de acetilcolina por milisegundo son degradadas por la enzima acetilcolinesterasa La proporcion de receptores de membrana acetilcolina es aproximadamente 5 a 10 veces mayor de enzima acetilcolinesterasa lo que permite una interaccion de 50 a 75 de toda la acetilcolina liberada con los receptores en la membrana postsinaptica 7 Formacion de las uniones durante el desarrollo EditarLos componentes del axon terminal y de la placa motora de la fibra muscular son sintetizadas e interaccionan entre si para constituir las uniones neuromusculares durante el desarrollo embrionario Los axones motores en desarrollo se extienden hacia los musculos en formacion Los conos axonicos de las neuronas llegan cuando los mioblastos se fusionan para constituir los miotubos Los axones se dividen en varias ramas para dividir las diferentes fibras musculares en formacion Los conos axonicos minutos despues hacer contacto con la membrana de la fibra muscular tienen capacidad de liberar acetilcolina con capacidad de transmitir el impulso nervioso 9 La union primitiva pese a ser debil desencadena cambios en la membrana postsinaptica Los miotubos en formacion para constituir las fibras musculares presentan receptores de acetilcolina de manera dispersa a lo largo de su membrana La constitucion de las sinapsis neuromusculares conduce a una concentracion de los receptores de la acetilcolina en las placas musculares que se observan en las uniones maduras En un dia o dos el axon terminal y placa motora son estructuras diferenciables y en una semana el boton terminal se ensancha para cubrir toda la placa motora el citoesqueleto despeja el area que es rellena por multitud de mitocondrias y vesiculas de acetilcolina Otros componentes sintetizados por la fibra muscular como Agrin MuSK o las proteinas de adhesion como las cadherinas participan en la constitucion y estabilizacion de las uniones neuromusculares durante todo el proceso de sinaptogenesis 9 Patologias EditarExisten patologias relacionadas con la union neuromuscular que generan dificultades motoras Enfermedades autoinmunes Editar Miastenia Gravis Editar Miastenia Gravis es una enfermedad autoinmune que afecta a la transmision del impulso nervioso del axon terminal a la fibra muscular 7 El sistema inmunitario del organismo ataca a los receptores de la acetilcolina de la membrana postsinaptica de las fibra musculares Como consecuencia no hay transmision del impulso nervioso y la membrana muscular no se despolariza La manifestacion clinica es una progresiva debilidad muscular e incapacidad de realizar movimientos 4 10 11 Afecta entre el 2 y 20 personas por cada millon de habitantes con preferencia entre la poblacion femenina y su desarrollo suele ser tardio en occidente si bien la incidencia en juveniles es mas frecuente entre la poblacion asiatica La enfermedad se ha observado que es heredable en el 2 de los casos 7 10 Actualmente no existe tratamiento para la cura completa de un cuadro de miastenia gravis pero si para mitigar los peores manifestaciones de la enfermedad Uno de los tratamientos mas comunes es el uso de inhibidores de la expression de acetilcolinesterasa para compensar la perdida de receptores de acetilcolina En otro tipo de casos puede resultar efectivo la administracion de esteroides o de inmunomoduladores que atacan a los anticuerpos que atacan a los componentes de la placa motora que provocan la enfermedad En casos donde se observa un desarrollo anomalo del timo una extirpacion parcial o completa del mismo puede significar una mejoria 7 10 La miastenia gravis fue descrita sistematicamente por primera vez por Thomas Willis en el siglo XVII El primer tratamiento con exito de la enfermedad fue desarrollado por Mary Walker en la decada de 1930 al identificar que una inhibicion de la enzima acetilcolinesterasa causaba una mejoria en los pacientes En los anos 70 se descubre que la causa de la enfermedad es un ataque autoinmune de los receptores de acetilcolina en las placas motoras y se empiezan a determinar los primeros marcadores mediante serologia para facilitar el diagnostico de la enfermedad 7 Sindrome de Lambert Eaton Editar El sindrome Lambert Eaton es una enfermedad autoinmune neurodegenerativa debido a una fusion anormal de las vesiculas que contienen acetilcolina en la membrana presinaptica El sistema inmunitario ataca principalmente a las proteinas responsables de la liberacion de los iones de calcio intracelular que sirve de senal para la el trafico interno de las vesiculas y su fusion con la membrana presinaptica Como consecuencia la cantidad de moleculas de acetilcolina liberadas al espacio sinaptico esta reducido y la transmision del impulso nerviosos se ve comprometida Los primeros sintomas de la enfermedad es debilidad muscular preferentemente en los miembros inferiores A continuacion se producen otras manifestaciones como perdida de reflejos y paralisis de los musculos inervados por los nervios craneales como los extraoculares En estadios mas avanzados tambien se observan afecciones propias del sistema nerviosos autonomo como sequedad en la boca respuesta retardada del reflejo pupilar estrenimiento o ausencia de sudoracion 11 12 Este sindrome suele estar asociado a diversos canceres de pulmon Tambien pueden estar asociados con otro tipo de tumores en pancreas y ovarios 4 11 12 Es una enfermedad que rara vez se presenta en ninos que a su vez presenta una escasa incidencia en adultos de 1 caso cada 3 5 millones de personas Un tercio de los pacientes son mujeres que presentan las primeras manifestaciones de la enfermedad a los 35 anos y aproximadamente los dos tercios restantes corresponden a varones hacia los 60 anos de edad 12 La primera caracterizacion de la enfermedad fue realizada en la decada de 1950 11 12 Los tratamientos para combatir el sindroma Lambert Eaton suelen perseguir en primer lugar la cura del cancer que suele venir asociado a la enfermedad con la esperanza de que la remision del tumor ayude tambien a la recuperacion del paciente del trastorno autoinmune En los casos que esto no es posible suele prepararse un tratamiento individualizado que incluyen la administracion de inmunoglobulinas y otras drogas que han demostrado su eficacia como la guanidina 11 12 En otros casos la transfusion periodica de plasma sanguineo permite una mejora en el paciente al observarse una mejora de la transmision del potencial nervioso Sin embargo es un tratamiento que no se ha generalizado y solo se ha probado a nivel experimental 12 Sindromes miastenicos congenitos Editar Comprenden un conjunto de enfermedades congenitas relacionadas con la expresion deficiente de alguno de los componentes de la union neuromuscular Las deficiencias mas comunes suelen aparecer al nacer o en los primeros anos de vida mientras que las patologias que aparecen en la edad adulta se asocian con genotipos especificos 12 El conjunto total de estos sindromes es de una incidencia baja de menos de 4 enfermos por cada millon de habitantes para los al menos 18 sindromes identificados en relacion con 17 genotipos diferentes Las patologias se suelen clasificar de acuerdo a la parte de la union neuromuscular afectada para facilitar el diagnostico y tratamiento 12 Sindromes presinapticos Representan un 5 de todos los casos documentados Suelen estar relacionados con una produccion deficiente de acetilcolina o su liberacion por las vesiculas presinapticas 11 12 Sindromes sinapticos Comprenden mutaciones en las proteinas componentes de la membrana basal o relacionado con la liberacion de la enzima acetilcolinesterasa al espacio sinaptico Comprenden alrededor del 15 de todos los sindromes miastenicos congenitos 12 Sindromes postsinapticos Representan la mayoria de casos debido a la mayor proporcion de proteinas que participan en la membrana postsinaptica Algunas de las mutaciones se relacionan con el proceso de concentracion de los receptores de aceticolina durante el desarrollo embrionario como el gen que codifica para la proteina Agrin u otros genes que igualmente codifican proteinas esenciales para la formacion de la placa motora como MuSK LRP4 Dok 7 o rapsyn Otro conjunto de sindromes postsinaptico estan relacionados con una deficiencia en alguna de la las subunidades que conforman los receptores de acetilcolina en la membrana postsinaptica De acuerdo a la subunidad afectada la patologia puede ser mas o menos benigna para el paciente 11 12 Toxinas que afectan a la transmision del impulso nervioso Editar Garrapatas Editar Las garrapatas son los vectores de varias enfermedades La saliva de las garrapatas de la familia de Ixodidae garrapatas de coraza dura es una toxina que puede causar paralisis muscular en algunas especies aparte del ser humano como perros y gatos Varios dias tras la mordedura el paciente desarrolla los primeros sintomas en forma de irritabilidad somnolencia diarrea y fiebre Menos de 48 horas despues se manifiesta debilidad muscular y paralisis progresiva en los miembros Una vez retirada la garrapata los sintomas remiten en unos pocos dias Es una patologia endemica del norte de America y Oceania aunque las especies de garrapatas australianas pueden desarrollar una variante mas severa Se desconoce el mecanismo exacto aunque se asume que la accion de la toxina bloquea la liberacion de acetilcolina de los axones terminales 12 Otros artropodos Editar Otros aracnidos producen toxinas que afectan dramaticamente la transmision del impulso nervioso El veneno de la viuda negra contiene una neurotoxina que estimula la liberacion incontrolada de neurotransmisores como la adrenalina dopamina y acetilcolina que vacian las vesiculas en la membrana presinaptica de los terminales axonicos en el sistema nervioso central y periferico 12 El primer sintoma suele ser un dolor intenso en la zona de la mordedura Con la toxina afectando a la internacion autonoma de los vasos sanguineos se observa una vasoconstriccion seguido de una rigidez muscular provocado por la hiperactividad de la acetilcolina liberada que se va extendiendo hacia el cuerpo Con el tiempo se experimenta espasmos en la pared del abdomen dolor de cabeza y dificultad para respirar por una bronconstriccion En los casos mas extremos se puede llegar a observar una miocarditis o inflamacion del tejido muscular cardiaco que puede llegar a ser fatal 12 El veneno de diversas especies de escorpiones tambien provocan una hiperliberacion de las vesiculas repletas de acetilcolina en el terminal axonico Tras el pinchazo el paciente experimenta debilidad muscular acompanada de hipertension arterial arritmias cardiacas miocarditis e incluso edema pulmonar 12 Veneno de serpientes Editar Diversas especies de serpientes elapidos que comprenden especies como cobras mambas o serpientes de coral producen neurotoxinas especializadas en el bloqueo de la transmision del impulso nervioso De acuerdo a la toxina producida algunos venenos inhiben la transmision presinapticamente mientras que otros venenos actuan en una inhibicion postsinaptica del impulso nervioso 12 Los primeros sintomas comienzan a los pocos minutos aunque pueden retrasarse a las 12 horas dependiendo de la especie Las primeras manifestaciones clinicas son debilidad en los miembros acompanado de dolor muscular y nauseas El cierre del parpado es frecuente y la hipersalivacion puede o no ocurrir de acuerdo al tipo de veneno El bloqueo de la transmision del impulso nervioso es una caracteristica propia del veneno de los elapidos y aunque no atraviesen la barrera hematoencefalica otras manifestaciones de sus toxinas pueden afectar a otras areas sistema nervioso como bajada de la tension arterial e hipoxia Si no recibe atencion medica adecuada la muerte acontece antes de las 48 horas aunque puede ser antes dependiendo de la especie 12 El veneno de las serpientes marinas comparte muchas de las caracteristicas de las serpientes terrestres al pertenecer a la misma familia Elapidae 12 Microorganismos Editar La toxina botulinica liberada por la bacteria Clostridium botulinum actua en la membrana presinaptica impidiendo la liberacion de la acetilcolina y provocando la destruccion del terminal del axon que puede regenerarse para volver a hacer sinapsis en la misma placa motora Aproximadamente son identificados unos 1000 casos anuales alrededor del mundo la mayoria entre la poblacion infantil por consumir aguas contaminadas 10 Las bacterias se alojan en el sistema digestivo liberando toxinas cuyas primeras manifestaciones son disminucion del tono muscular ausencia de reflejos dificultad en la respiracion estrenimiento y actividad anormal en los musculos internados por los nervios craneales En los casos mas extremos el paciente puede experimentar debilidad y paralisis descendente desde los musculos de cabeza y cuello hacia los miembros La dificultad respiratoria puede agravarse hasta llegar a provocar la muerte El tratamiento por intoxicacion de Clostridium botulinum es la administracion de antitoxinas 4 10 La toxina botulinica aislada por otra parte se le ha encontrado uso en clinica y en ciertos tratamientos de belleza 4 Intoxicacion por compuestos organofosfatos y carbamatos Editar Algunos de los insecticidas usados en agricultura contienen en su composicion organofosfatos y carbamatos En forma de plaguicidas estos compuestos se encuentran en baja concentracion para la eliminacion de los insectos sin afectar a los seres humanos Sin embargo estos compuestos tambien se pueden utilizar a altas concentraciones como venenos o siendo los constituyentes de diversas armas biologicas En menos de 24 horas tras la exposicion el paciente comienza un cuadro de aumento de saliva lagrimeo incontinencia y defecacion acompanados de otros sintomas como respiracion arritmica paralisis de los miembros y delirios Una parada respiratoria por un debilitamiento fatal en los musculos del diafragma e intercostales suele ser la causa de la muerte en los casos de envenenamiento extremo Los organofosfatos y carbamatos inhiben de manera total o temporal las enzimas acetilcolinesterasas provocando una hiperactividad en la transmision del impulso nervioso a la membrana postsinaptica de la fibra muscular 12 Referencias Editar OMS OPS BIREME ed Union neuromuscular Descriptores en Ciencias de la Salud Biblioteca Virtual en Salud a b Mancall Elliott L 2011 Chapter 2 Overview of the Microstructure of the Nervous System En David G Brock ed Gray s Clinical Neuroanatomy en ingles Elsevier pp 11 31 ISBN 978 1 4160 4705 6 a b c d Greenstein Ben Greenstein Adam 2000 Cellular Structures Color Atlas of Neuroscience en ingles New York Thieme pp 72 131 ISBN 0 86577 710 1 a b c d e f g h i j Elliott L Mancall David G Brock ed 2011 Chapter 22 Neuromuscular Junction Gray s Clinical Neuroanatomy en ingles Filadelfia EE UU Elsevier pp 377 380 ISBN 978 1 4160 4705 6 Abdillahi Omar et al 2020 Physiology Neuromuscular Junction Fisiologia union neuromuscular en ingles a b Snell Richard S 2014 3 Fibras nerviosas nervios perifericos terminaciones receptoras y efectoras dermatomas y actividad muscular Neuroanatomia Clinica 7a edicion Barcelona Espana Wolkers Klwer pp 140 241 ISBN 978 0 7817 9427 5 a b c d e f Amato Anthony A Russell James A 2016 25 Autoimmune Myasthenia Gravis Neuromuscular Disorders en ingles 2ª edicion Nueva York EE UU McGraw Hill pp 581 619 ISBN 978 0 07 175462 0 a b c d Guyton Arthur C Hall John E 2011 7 Excitacion del musculo esqueletico transmision neuromuscular y acoplamiento excitacion contraccion En Elsevier ed Guyton y Hall Tratado de Fisiologia Medica 12 edicion Barcelona Espana pp 83 89 ISBN 978 84 8086 819 8 a b Patton Bruce Burgess Robert W 2005 Chapter 10 Synaptogenesis Developmental Neurobiology en ingles 4th edicion New York Kluwer Academic pp 269 316 ISBN 0 306 48330 0 a b c d e Toy Eugene C Simpson Ericka Pleitez Milvia Rosenfield David Tintner Ron 2008 Case Files Neurology en ingles Nueva York EE UU McGraw Hill doi 10 1036 0071482873 a b c d e f g James S Nelson Hernando Mena Joseph E Parisi Sydney S Schochet Jr ed 2003 23 Neuromuscular diseases Principles and Practice of Neuropathology en ingles 2ª edicion Nueva York EE UU Oxford University Press pp 524 577 a b c d e f g h i j k l m n n o p q r Amato Anthony A Russell James A 2016 26 Other Disorders of Neuromuscular Transmission Neuromuscular Disorders en ingles 2ª edicion Nueva York EE UU McGraw Hill pp 620 655 ISBN 978 0 07 175462 0 Datos Q776995 Multimedia Neuromuscular junction Q776995 Obtenido de https es wikipedia org w index php title Union neuromuscular amp oldid 145776844, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos