fbpx
Wikipedia

Sistema global de navegación por satélite

Un sistema global de navegación por satélite (Global Navigation Satellite System, GNSS) es una constelación de satélites que transmite rangos de señales utilizados para el posicionamiento y localización en cualquier parte del globo terrestre, ya sea en tierra, mar o aire. Estos permiten determinar las coordenadas geográficas y la altitud de un punto dado como resultado de la recepción de señales provenientes de constelaciones de satélites artificiales de la Tierra para fines de navegación, transporte, geodésicos, hidrográficos, agrícolas, y otras actividades afines.

Un sistema de navegación basado en satélites artificiales puede proporcionar a los usuarios información sobre la posición y la hora (cuatro dimensiones) con una gran exactitud, en cualquier parte del mundo, las 24 horas del día y en todas las condiciones climatológicas.

Sistema de navegación por satélite con carta náutica electrónica de un buque petrolero.

Antecedentes

 
Satélite Transit-1A.

Un temprano precursor de los sistemas de navegación por satélite fueron los sistemas terrestres LORAN y Omega, que utilizaron los radiotransmisores de baja frecuencia (100 kHz) terrestres en vez de los satélites. Estos sistemas difundían un pulso de radio desde una localización "maestra" conocida, seguido por pulsos repetidos desde un número de estaciones "esclavas". El retraso entre la recepción y el envío de la señal en las estaciones auxiliares era controlado, permitiendo a los receptores comparar el retraso entre la recepción y el retraso entre enviados. A través de este método se puede conocer la distancia a cada una de las estaciones auxiliares.

El primer sistema de navegación por satélites fue el Transit, un sistema desplegado por el ejército de Estados Unidos en los años 1960. Transit se basaba en el efecto Doppler. Los satélites viajan en trayectorias conocidas y difunden sus señales en una frecuencia conocida. La frecuencia recibida se diferencia levemente de la frecuencia difundida debido al movimiento del satélite con respecto al receptor. Monitorizando este cambio de frecuencia a intervalos cortos, el receptor puede determinar su localización a un lado o al otro del satélite; la combinación de varias de estas medidas, unida a un conocimiento exacto de la órbita del satélite pueden fijar una posición concreta.

Teoría y características fundamentales

La radionavegación por satélite se basa en el cálculo de una posición sobre la superficie terrestre midiendo las distancias de un mínimo de tres satélites de posición conocida. Un cuarto satélite aportará, además, la altitud. La precisión de las mediciones de distancia determina la exactitud de la ubicación final. En la práctica, un receptor capta las señales de sincronización emitida por los satélites que contiene la posición del satélite y el tiempo exacto en que esta fue transmitida. La posición del satélite se transmite en un mensaje de datos que se superpone en un código que sirve como referencia de la sincronización.

La precisión de la posición depende de la exactitud de la información de tiempo. Solo los cronómetros atómicos proveen la precisión requerida, del orden de nanosegundos  . Para ello el satélite utiliza un reloj atómico para estar sincronizado con todos los satélites en la constelación. El receptor compara el tiempo de la difusión, que está codificada en la transmisión, con el tiempo de la recepción, medida por un reloj interno, de forma que se mide el "tiempo de vuelo" de la señal desde el satélite.
Estos cronómetros constituyen un elemento tecnológico fundamental a bordo de los satélites que conforman las constelaciones GNSS y pueden contribuir a definir patrones de tiempo internacionales. La sincronización se mejorará con la inclusión de la señal emitida por un cuarto satélite. En el diseño de la constelación de satélites se presta especial atención a la selección del número de estos y a sus órbitas, para que siempre estén visibles en cantidad suficiente desde cualquier lugar del mundo y así asegurar la disponibilidad de señal y la precisión.

Cada medida de la distancia coloca al receptor en una cáscara esférica de radio la distancia medida. Tomando varias medidas y después buscando el punto donde se cortan, se obtiene la posición. Sin embargo, en el caso de un receptor móvil que se desplaza rápidamente, la posición de la señal se mueve mientras que las señales de varios satélites son recibidas. Además, las señales de radio tienen un leve retardo cuando pasan a través de la ionosfera. El cálculo básico procura encontrar la línea tangente más corta a cuatro cáscaras esféricas centradas en cuatro satélites. Los receptores de navegación por satélite reducen los errores usando combinaciones de señales de múltiples satélites y correlaciones múltiples, utilizando entonces técnicas como filtros de Kalman para combinar los datos parciales, afectados por ruido y en constante cambio, en una sola estimación de posición, tiempo, y velocidad.

Aplicaciones

 
El guiado de precisión hasta el objetivo de misiles y bombas inteligentes es uno de los usos militares de los GNSS.

Uso militar

El origen de la navegación por satélite fue militar. La navegación por satélite permite alcanzar una precisión que no se había conseguido hasta este momento, en los objetivos de las armas, aumentando su efectividad, y reduciendo daños no deseados mediante armamento que se vale de la señal de los GNSS que sí producían las armas convencionales. La navegación por satélite también permite que las tropas sean dirigidas y se localicen fácilmente.

En suma, se puede considerar un factor multiplicador de la fuerza. Particularmente, la capacidad de reducir muertes involuntarias tiene ventajas particulares en las guerras mantenidas por las democracias, donde la opinión pública tiene una gran influencia en la guerra. Por esta razón, un sistema de navegación por satélite es un factor esencial para cualquier potencia militar.

Navegación aérea

La navegación aérea utiliza, dentro del concepto de Sistemas Globales de Navegación por Satélites (GNSS) implementado por la Organización de Aviación Civil Internacional (OACI), los sistemas de posicionamiento, reconociéndose como un elemento clave en los sistemas de Comunicaciones, Navegación y Vigilancia que apoyan el control del tráfico aéreo (CES/ATA), así como un fundamento sobre el cual los estados pueden suministrar servicios de navegación aeronáutica mejorados. Los estados que autorizan operaciones GNEIS son los responsables de determinar si el mismo satisface los requisitos de actuación requeridos para esta actividad (de acuerdo a lo especificado por la OACI) en el espacio aéreo de su competencia y de notificar a los usuarios cuando dicha actuación no cumple con estos.

Por concepto, el GNSS es un sistema mundial de determinación de la posición y la hora, que incluye constelaciones principales de satélites, receptores de aeronave, supervisor de integridad del sistema, y sistemas de aumento que mejoran la actuación de las constelaciones centrales.

En síntesis, el GNSS es un término general que comprende a todos los sistemas de navegación por satélites, los que ya han sido implementados (GPS, GLONASS) y los que están en desarrollo (Galileo), proponiendo la utilización de satélites como soporte a la navegación, ofreciendo localización precisa de las aeronaves y cobertura en todo el globo terrestre. Se está implantando el GNSS de una manera evolutiva a medida que esté preparado para acoger el gran volumen del tráfico aéreo civil existente en la actualidad, y pueda responder a las necesidades de seguridad que requiere el sector, uno de los más exigentes del mundo.

Cuando el sistema GNSS esté completamente desarrollado, se prevé que pueda ser utilizado sin requerir ayuda de cualquier otro sistema de navegación convencional, desde el despegue hasta completar un aterrizaje de precisión Categoría , IR O IS; es decir, en todas las fases de vuelo.

Otros usos civiles

 
Navegador de un automóvil

Algunas de las aplicaciones civiles donde se utilizan las señales GNSS son las siguientes:

Sistemas de Posicionamiento por Satélites actuales

Actualmente, el Sistema de Posicionamiento Global (GPS) de los Estados Unidos de América y el Sistema Orbital Mundial de Navegación por Satélite (GLONASS) de la Federación Rusa son los únicos que forman parte del concepto GNSS. El Panel de Sistemas de Navegación (NPS), el ente de la Organización Internacional de Aviación Civil encargado de actualizar los estándares y prácticas recomendadas del GNSS, tiene en su programa de trabajo corriente el estudio de la adición del sistema de navegación por satélite Galileo desarrollado por la Unión Europea.

Otros sistemas de navegación por satélite que podrían ser o no adoptados internacionalmente para la aviación civil como parte del GNSS y que están en proceso de desarrollo son el Beidou, Compass o BNTS (BeiDou/Compass Navigation Test System) de la República Popular China, el QZSS (Quasi-Zenith Satellite System) de Japón y el IRNSS (Indian Regional Navigation Satellite System) de India.

NAVSTAR-GPS

 
Investigadores instalando instrumental meteorológico y un receptor GPS sobre el iceberg B-15A. Hoy por hoy la constelación NAVSTAR-GPS es la única con cobertura mundial.

El NAVSTAR-GPS (NAVigation System and Ranging - Global Positioning System), conocido simplemente como GPS, es un sistema de radionavegación basado en satélites que utiliza mediciones de distancia precisas de satélites GPS para determinar la posición (el GPS posee un error nominal en el cálculo de la posición de aproximadamente 15 m) y la hora en cualquier parte del mundo. El sistema es operado para el Gobierno de los Estados Unidos por su Departamento de Defensa y es el único sistema de navegación por satélite completamente operativo a fecha actual.

El sistema está formado por una constelación de 32 satélites que se mueven en órbita a 20.200 km aproximadamente, alrededor de seis planos con una inclinación de 55 grados. El número exacto de satélites varía en función de los satélites que se retiran cuando ha transcurrido su vida útil.

GLONASS

El Sistema Mundial de Navegación por Satélites (GLONASS) proporciona determinaciones tridimensionales de posición y velocidad basadas en las mediciones del tiempo de tránsito y de desviación Doppler de las señales de radio frecuencia (RF) transmitidas por los satélites GLONASS. El sistema es operado por el Ministerio de Defensa de la Federación Rusa y ha sido utilizado como reserva por algunos receptores comerciales de GPS.

Tras la desmembración de la Unión Soviética y debido a la falta de recursos, el sistema perdió operatividad al no reemplazarse los satélites. En la actualidad la constelación GLONASS vuelve a estar operativa.

Sistemas de Posicionamiento por Satélites en proyecto

Actualmente varios países intentan desarrollar sistemas propios; tal es el caso de China, Japón, India o los países pertenecientes a la Unión Europea y a la Agencia Espacial Europea.

Galileo

Galileo es la iniciativa de la Unión Europea y la Agencia Espacial Europea, que acordaron desarrollar un sistema de radionavegación por satélite de última generación y de alcance mundial propio, que brindara un servicio de ubicación en el espacio preciso y garantizado, bajo control civil, 100 veces más preciso que los actuales sistemas.

Galileo comprende una constelación de 30 satélites (24 más 4 de reserva) divididos en tres órbitas circulares, a una altitud de aproximadamente 24000 km, que cubren toda la superficie del planeta. Estos estarán apoyados por una red mundial de estaciones terrestres. El primer satélite experimental fue lanzado el 28 de diciembre de 2005 y el 21 de abril de 2011 se lanzaron los dos primeros satélites del programa.[1]​ El sistema salió a producción el 15 de diciembre de 2016[2]​ con alrededor de media constelación y será completado para 2020. El primer teléfono móvil preparado para Galileo fue de una compañía española.[3]​ En el campo del servicio para aplicaciones críticas (Safety-of-Life - SoL), se marca a un hito al implementarse los primeros sistemas de aproximación LPV-200 en el aeropuerto de Paris Charles de Gaulle.[4]

Galileo es compatible con la próxima generación de NAVSTAR-GPS que estará operativa antes del 2012. Los receptores combinan las señales de 30 satélites de Galileo y 28 del GPS, aumentando la precisión de las medidas.

Vulnerabilidades de los sistemas de posicionamiento por satélites

La vulnerabilidad más notable de los GNSS es la posibilidad de ser interferida la señal (la interferencia existe en todas las bandas de radionavegación). Existen varias fuentes de posible interferencia a los GNSS, tanto dentro de la banda como fuera de esta, particularmente por enlaces de microondas terrestres punto a punto permitidos por varios estados (1559 – 1610 MHz). Estos enlaces se irán eliminando gradualmente entre los años 2005 y 2015.

Las señales de los sistemas GNSS son vulnerables debido a la potencia relativamente baja de la señal recibida, pues provienen de satélites y cada señal cubre una fracción significativamente grande de la superficie terrestre.

En aviación, las normas y métodos recomendados (SARPS) de la OACI para los GNSS exigen un nivel de rendimiento específico en presencia de niveles de interferencia definidos por la máscara de interferencia del receptor. Estos niveles de interferencia son generalmente acordes al reglamento de la Unión Internacional de Telecomunicaciones (UIT). La interferencia de niveles superiores a la máscara puede causar pérdida de servicio pero no se permite que tal interferencia resulte en información peligrosa o que induzca a error.

Tipos de interferencia

Las interferencias pueden ser voluntarias o involuntarias.

Interferencia involuntaria

La probabilidad y consecuencias operacionales de esta interferencia varían con el medio. No se considera una amenaza importante siempre que los estados ejerzan el control y protección adecuados del espectro electromagnético, tanto para las atribuciones de frecuencias existentes como nuevas. Además, la introducción de nuevas señales GNSS en nuevas frecuencias asegurará que la interferencia no intencional no provoque la pérdida completa del servicio (salida), aunque experimente cierto deterioro en su rendimiento.

Se ha determinado que la mayor parte de los casos de interferencia de GNSS notificados proviene de los sistemas de a bordo y la experiencia con la instalación del GNSS ha permitido identificar varias fuentes de interferencia involuntaria.[5]​ Los dispositivos electrónicos portátiles también pueden causar interferencia al GNSS y a otros sistemas de navegación.

Las fuentes terrestres de interferencia incluyen actualmente las comunicaciones VHF móviles y fijas,[6]​ enlaces de radio punto a punto en la banda de frecuencias GNSS, armónicas de estaciones de televisión, ciertos sistemas de radar, sistemas de comunicaciones móviles por satélite y sistemas militares. Las ciudades grandes con fuentes considerables de interferencia de radiofrecuencias (RF), los sitios industriales, etc., son más propensos a la interferencia involuntaria que las regiones remotas, donde esta interferencia es muy poco factible. La probabilidad de esa interferencia depende de la reglamentación estatal del espectro, de la administración de frecuencias y de su cumplimiento en cada estado o región.

Interferencia intencional

Debido a su poca potencia, las señales de los GNSS pueden bloquearse con transmisores de baja potencia. Aunque no se han registrado casos de bloqueo intencional dirigido a aeronaves civiles, por ejemplo, la posibilidad de obstrucción intencional de la señal debe considerarse y evaluarse como una amenaza. Si el impacto es mínimo, la amenaza potencial es baja pues no hay motivación para interferir. La magnitud del impacto potencial puede aumentar conforme el GNSS tenga más aplicaciones y se dependa más de este sistema.

La interferencia por simulación de señales (spoofing) es la corrupción intencionada de señales de navegación para que la aeronave se desvíe y siga una trayectoria de vuelo falsa. La simulación de señales de GNSS por satélite es tecnológicamente mucho más compleja que la simulación de radioayudas a la navegación convencional basadas en tierra. La simulación de radiodifusión de datos GBAS es tan difícil como la simulación de radioayudas de aterrizaje convencional.

Aunque la interferencia por simulación de señales teóricamente puede inducir a una aeronave determinada a errores de navegación, es muy probable que se detecte con procedimientos normales.[7]​ Los sistemas de advertencia de proximidad del terreno (GPWS) y anticolisión de a bordo (ACAS) dan protección adicional contra colisiones con el terreno y con otras aeronaves. En vista de la dificultad de interferir por simulación con los GNSS, no se consideran necesarias medidas operacionales singulares para mitigarla.

Efectos ionosféricos y otros efectos atmosféricos

Las precipitaciones fuertes solo atenúan las señales de satélite GNSS una pequeña fracción de dB y no afecta las operaciones.

Los efectos troposféricos se tratan mediante el diseño del sistema y no representan un aspecto de vulnerabilidad. Pero hay dos fenómenos ionosféricos que sí deben considerarse:

  • Cambios ionosféricos rápidos y grandes. Cerca del ecuador geomagnético se observan frecuentemente cambios rápidos y grandes en la ionosfera, pero su efecto no es lo suficientemente grande como para afectar las operaciones en ruta ni las de aproximaciones que no son de precisión. Los cambios ionosféricos causan errores de telemetría que deben tenerse en cuenta en el diseño del sistema dado se pueden mitigar con el uso de sistemas de aumento GNSS (SBAS, ABAS, GBAS), aunque pueden limitar los servicios GBAS y SBAS que se proporcionen en la región ecuatorial y utilicen una frecuencia GNSS única.
  • El centelleo ionosférico. Este es insignificante en las latitudes medias pero en las regiones ecuatoriales, y en menor grado en las altas latitudes, este puede causar la pérdida temporal de las señales de uno o más satélites. La experiencia operacional en las regiones ecuatoriales ha demostrado que la probabilidad de pérdida del servicio GNSS actual es poca debido al número relativamente grande de satélites a la vista. El centelleo puede interrumpir la recepción de las radiodifusiones de los satélites de órbita geoestacionaria (GEO) del SBAS, pero es poco probable que provoque la pérdida completa del servicio GNSS y puede mitigarse con el agregado de nuevas señales y satélites GNSS.

Otras vulnerabilidades

También es necesario considerar las vulnerabilidades de los segmentos terrestre y espacial del GNSS. Existe el riesgo de número insuficiente de satélites en una constelación dada debido a la falta de recursos para mantenerla, fallos en los lanzamientos o de satélite. Una fallo del segmento de control de la constelación o un error humano pueden llegar a causar la falla de múltiples satélites de una constelación.

Otro riesgo es la interrupción del servicio o su degradación durante una situación de estado de emergencia nacional. Los países que proveen señales para la navegación por satélite pueden negar su disponibilidad, es lo que se denomina disponibilidad selectiva. El propietario de un sistema de navegación por satélite tiene la capacidad de degradar o eliminar servicios basados en los satélites de la navegación sobre cualquier territorio que desee. Así, si la navegación por satélite se convierte en un servicio esencial, los países sin sus propios sistemas de navegación por satélite se convertirán en clientes de los estados que provean estos servicios.

En el caso del tráfico aéreo si la denegación de señal es regional, se bloquearían todas las señales civiles de GNSS y el espacio aéreo afectado estaría cerrado al tránsito aéreo civil.

 
Los países proveedores de servicios GNSS pueden modificar o denegar estos ante situaciones de emergencia. En la imagen, el presidente estadounidense George W. Bush reunido con el Consejo de Seguridad Nacional tras los atentados del 11 de septiembre de 2001.

Otra situación menos probable sería la degradación o denegación de las señales de los satélites principales o de los satélites de aumento en toda el área de cobertura.

En la evaluación de los riesgos operacionales relacionados con las vulnerabilidades del GNSS hay que considerar dos aspectos principales:

  • La probabilidad de interrupción del GNSS.
  • El efecto de la interrupción.

Al considerar estos aspectos en función del espacio aéreo, los proveedores de servicios de navegación aérea pueden determinar si se necesita mitigarlos y, de ser así, a qué nivel. Se requiere mitigación para las interrupciones que tengan efectos importantes y probabilidades de ocurrir de moderadas a altas.

Las nuevas señales y constelaciones principales de satélites reducirán considerablemente la vulnerabilidad del GNSS. La utilización de señales más fuertes y las frecuencias diversas planeadas para el GPS, el GLONASS y Galileo eliminarán efectivamente el riesgo de interferencia involuntaria, pues es muy poco probable que una fuente de tal interferencia afecte simultáneamente a más de una frecuencia.

Más satélites (incluso constelaciones múltiples) eliminarán el riesgo de interrupciones completas del GNSS debidas al centelleo y la multiplicidad de frecuencias mitigará el efecto de los cambios ionosféricos. Los futuros satélites geoestacionarios mitigarán el efecto de la ionosfera en el SBAS usando satélites cuyas líneas visuales estén separadas cuando menos a 45º.

Las señales más robustas y las nuevas frecuencias del GNSS hacen más difícil interferir intencionadamente con todos los servicios GNSS. Más constelaciones principales de satélites reducen el riesgo de falla del sistema, de errores operacionales o de interrupciones de servicio. También pueden seguir proporcionando servicio mundial en el caso poco probable de que el proveedor de un elemento de GNSS modifique o deniegue el servicio debido a situaciones de regímenes de excepción de un estado.

La administración y una fuerte financiación del sistema son esenciales para la operación continua de los servicios GNSS y para mitigar las vulnerabilidades del sistema mencionadas, excepto la posible interrupción global del servicio debida a una emergencia nacional. Un medio efectivo de mitigar la vulnerabilidad de interrupción global es que los proveedores de servicios adopten una política de denegación regional en caso de emergencia nacional.

Sistemas de Aumentación GNSS

 
Avión espía no tripulado DarkStar Tier III del ejército de los EE. UU. Su aterrizaje se lleva a cabo automáticamente mediante GPS Diferencial.

Las constelaciones de GPS y GLONASS no se elaboraron para satisfacer los requisitos estrictos (precisión, integridad, disponibilidad y continuidad) de la navegación por instrumentos (IFR). Una explicación breve del significado de los requisitos operacionales es la siguiente:

  • Exactitud. Diferencia entre la posición estimada y la real (medición de errores).
  • Integridad. Confianza sobre la información total proporcionada (alertas de no utilización).
  • Continuidad. Funcionamiento sin interrupciones no programadas.
  • Disponibilidad. Es la parte del tiempo durante la cual el sistema presenta simultáneamente la exactitud, integridad y continuidad requeridas.

Para garantizar que los GNSS actuales cumplan con estos requisitos en todas las fases del vuelo (desde el despegue, en ruta, hasta un aterrizaje de precisión), para el GPS y GLONASS se requiere de diversos grados de aumentación.

Tres sistemas de aumentación, el sistema basado en la aeronave (Aircraft Based Augmentation System – ABAS), el basado en tierra (Ground Based Augmentation System - GBAS), y el basado en satélites (Satellite Based Augmentation System – SBAS), se han diseñado y normalizado para superar las limitaciones inherentes a los GPS.

Para aplicaciones en tiempo real, las correcciones de los parámetros de cada satélite de las constelaciones GNSS existentes (GPS y GLONASS) deberán ser transmitidas a los usuarios a través de equipos de radio VHF (GBAS) o si se requiere una amplia cobertura a través de satélites geoestacionarios que emitan pseudocódigos con información de corrección (SBAS).

Aumentación basada en la aeronave (ABAS)

Entre los sistemas que otorgan esta aumentación a los receptores GPS están los sistemas de Receptor con Supervisión Autónoma de la Integridad (RAIM) y la función de Detección de Fallos y Exclusión (FDE). Los ABAS proporcionan la integridad requerida para utilizar el GPS como medio único, suplementario y principal de navegación durante la salida, en ruta, la llegada y para aproximaciones de precisión en tramos inicial, intermedio y frustrado, así como las de no-precisión.

Aumentación basada en Tierra (GBAS)

GBAS es un término que comprende todos los sistemas de aumentación basadas en estaciones terrestres. Se diferencian de los SBAS en que no dependen de satélites geoestacionarios, debido a que el GBAS no está diseñado para dar servicio sobre amplias regiones geográficas.

Sistema de aumentación regional basada en Tierra (GRAS)

El GRAS (Ground based Regional Augmentation System) tiene como base al GBAS y consiste en una serie de estaciones GBAS desplegadas en un área extensa (incluso continental) interconectadas entre sí por sistemas de telecomunicaciones, permitiendo contar con una aumentación SBAS de carácter regional. Australia es el país más avanzado en estos momentos en el desarrollo e implementación de este tipo de sistemas.

Aumentación basada en Satélites (SBAS)

SBAS es un término que comprende todos los sistemas de aumentación basadas en satélites que están en desarrollo actualmente, más cualquier otro que sea desarrollado en el futuro. Las principales entidades que han desarrollado actualmente sistemas SBAS son los EE. UU. (el WAAS), Europa (el EGNOS) y Japón (el MSAS). Se encuentran en proceso de desarrollo la India (GAGAN), y en proyecto de China (SNAS) y Latinoamérica (SACCSA).

Véase también

Bibliografía

  • Doc. 9849 OACI ”Manual sobre el Sistema Mundial de Navegación por Satélites (GNSS)”. Primera Edición 2005.
  • Material de Seminarios OACI:
    • Seminario ATN/GNSS Antigua, Guatemala 1999
    • Seminario ATN/GNSS Varadero, Cuba 2002
    • Seminario GNSS Bogotá, Colombia 2005
  • Informe Final de la 11na Conferencia Mundial de Navegación Aérea, Montreal, Canadá 2003
  • Materiales del Grupo de Tareas GNSS del Subgrupo CNS/ATM del GREPECAs (OACI)(2005-2006)
  • Materiales del Grupo Coordinador del Proyecto OACI RLA/03/902 “Sistema de Aumentación GNSS para el Caribe, Centro y Sur América (SACCSA)”
  • “Evolution of The Global Navigation Satellite System (GNSS)”. C. G. Hegarty y E. Chatre. En “Proceedings of the IEEE, Vol. 96, Nº 12, Dec.2008”, pp. 1902ss

Referencias

  1. «Claves de Galileo, el primer sistema civil de navegación por satélite». 21 de octubre de 2011. Consultado el 21 de octubre de 2011. 
  2. «Galileo initial services declaration». Consultado el 18 de diciembre de 2016. 
  3. «First European Galileo-ready smartphone». Consultado el 4 de septiembre de 2016. 
  4. «First EGNOS LPV-200 approach». Consultado el 12 de julio de 2016. 
  5. Por ejemplo, emisiones no deseadas o armónicas del equipo de comunicaciones VHF y emisiones fuera de la banda y no deseadas del equipo de comunicaciones por satélite
  6. Para sistemas GNSS que utilizan también frecuencias en estas bandas, como el GBAS
  7. Por ejemplo, vigilando la trayectoria de vuelo y la distancia a los puntos de recorrido o mediante vigilancia radar

Enlaces externos

  •   Wikimedia Commons alberga una categoría multimedia sobre Sistema global de navegación por satélite.
  • GLONASS
  • GPS
  • SATELISAT (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).
  • GALILEO
  • Red GNSS de Euskadi
  • GNSS-SDR, un receptor GNSS definido por software abierto
  • Herramienta para obtener las coordenadas GPS con ayuda de Google Maps
  • López La Valle, Ramón G. (8 de agosto de 2014). Cabezal de radiofrecuencia de un receptor GNSS multibanda. Consultado el 28 de agosto de 2014. 
  •   Datos: Q179435
  •   Multimedia: Satellite navigation systems

sistema, global, navegación, satélite, sistema, global, navegación, satélite, global, navigation, satellite, system, gnss, constelación, satélites, transmite, rangos, señales, utilizados, para, posicionamiento, localización, cualquier, parte, globo, terrestre,. Un sistema global de navegacion por satelite Global Navigation Satellite System GNSS es una constelacion de satelites que transmite rangos de senales utilizados para el posicionamiento y localizacion en cualquier parte del globo terrestre ya sea en tierra mar o aire Estos permiten determinar las coordenadas geograficas y la altitud de un punto dado como resultado de la recepcion de senales provenientes de constelaciones de satelites artificiales de la Tierra para fines de navegacion transporte geodesicos hidrograficos agricolas y otras actividades afines Un sistema de navegacion basado en satelites artificiales puede proporcionar a los usuarios informacion sobre la posicion y la hora cuatro dimensiones con una gran exactitud en cualquier parte del mundo las 24 horas del dia y en todas las condiciones climatologicas Sistema de navegacion por satelite con carta nautica electronica de un buque petrolero Indice 1 Antecedentes 2 Teoria y caracteristicas fundamentales 3 Aplicaciones 3 1 Uso militar 3 2 Navegacion aerea 3 3 Otros usos civiles 4 Sistemas de Posicionamiento por Satelites actuales 4 1 NAVSTAR GPS 4 2 GLONASS 5 Sistemas de Posicionamiento por Satelites en proyecto 5 1 Galileo 6 Vulnerabilidades de los sistemas de posicionamiento por satelites 6 1 Tipos de interferencia 6 1 1 Interferencia involuntaria 6 1 2 Interferencia intencional 6 2 Efectos ionosfericos y otros efectos atmosfericos 6 3 Otras vulnerabilidades 7 Sistemas de Aumentacion GNSS 7 1 Aumentacion basada en la aeronave ABAS 7 2 Aumentacion basada en Tierra GBAS 7 3 Sistema de aumentacion regional basada en Tierra GRAS 7 4 Aumentacion basada en Satelites SBAS 8 Vease tambien 9 Bibliografia 10 Referencias 11 Enlaces externosAntecedentes Editar Satelite Transit 1A Un temprano precursor de los sistemas de navegacion por satelite fueron los sistemas terrestres LORAN y Omega que utilizaron los radiotransmisores de baja frecuencia 100 kHz terrestres en vez de los satelites Estos sistemas difundian un pulso de radio desde una localizacion maestra conocida seguido por pulsos repetidos desde un numero de estaciones esclavas El retraso entre la recepcion y el envio de la senal en las estaciones auxiliares era controlado permitiendo a los receptores comparar el retraso entre la recepcion y el retraso entre enviados A traves de este metodo se puede conocer la distancia a cada una de las estaciones auxiliares El primer sistema de navegacion por satelites fue el Transit un sistema desplegado por el ejercito de Estados Unidos en los anos 1960 Transit se basaba en el efecto Doppler Los satelites viajan en trayectorias conocidas y difunden sus senales en una frecuencia conocida La frecuencia recibida se diferencia levemente de la frecuencia difundida debido al movimiento del satelite con respecto al receptor Monitorizando este cambio de frecuencia a intervalos cortos el receptor puede determinar su localizacion a un lado o al otro del satelite la combinacion de varias de estas medidas unida a un conocimiento exacto de la orbita del satelite pueden fijar una posicion concreta Teoria y caracteristicas fundamentales EditarLa radionavegacion por satelite se basa en el calculo de una posicion sobre la superficie terrestre midiendo las distancias de un minimo de tres satelites de posicion conocida Un cuarto satelite aportara ademas la altitud La precision de las mediciones de distancia determina la exactitud de la ubicacion final En la practica un receptor capta las senales de sincronizacion emitida por los satelites que contiene la posicion del satelite y el tiempo exacto en que esta fue transmitida La posicion del satelite se transmite en un mensaje de datos que se superpone en un codigo que sirve como referencia de la sincronizacion La precision de la posicion depende de la exactitud de la informacion de tiempo Solo los cronometros atomicos proveen la precision requerida del orden de nanosegundos 10 9 s displaystyle 10 9 s Para ello el satelite utiliza un reloj atomico para estar sincronizado con todos los satelites en la constelacion El receptor compara el tiempo de la difusion que esta codificada en la transmision con el tiempo de la recepcion medida por un reloj interno de forma que se mide el tiempo de vuelo de la senal desde el satelite Estos cronometros constituyen un elemento tecnologico fundamental a bordo de los satelites que conforman las constelaciones GNSS y pueden contribuir a definir patrones de tiempo internacionales La sincronizacion se mejorara con la inclusion de la senal emitida por un cuarto satelite En el diseno de la constelacion de satelites se presta especial atencion a la seleccion del numero de estos y a sus orbitas para que siempre esten visibles en cantidad suficiente desde cualquier lugar del mundo y asi asegurar la disponibilidad de senal y la precision Cada medida de la distancia coloca al receptor en una cascara esferica de radio la distancia medida Tomando varias medidas y despues buscando el punto donde se cortan se obtiene la posicion Sin embargo en el caso de un receptor movil que se desplaza rapidamente la posicion de la senal se mueve mientras que las senales de varios satelites son recibidas Ademas las senales de radio tienen un leve retardo cuando pasan a traves de la ionosfera El calculo basico procura encontrar la linea tangente mas corta a cuatro cascaras esfericas centradas en cuatro satelites Los receptores de navegacion por satelite reducen los errores usando combinaciones de senales de multiples satelites y correlaciones multiples utilizando entonces tecnicas como filtros de Kalman para combinar los datos parciales afectados por ruido y en constante cambio en una sola estimacion de posicion tiempo y velocidad Aplicaciones Editar El guiado de precision hasta el objetivo de misiles y bombas inteligentes es uno de los usos militares de los GNSS Uso militar Editar El origen de la navegacion por satelite fue militar La navegacion por satelite permite alcanzar una precision que no se habia conseguido hasta este momento en los objetivos de las armas aumentando su efectividad y reduciendo danos no deseados mediante armamento que se vale de la senal de los GNSS que si producian las armas convencionales La navegacion por satelite tambien permite que las tropas sean dirigidas y se localicen facilmente En suma se puede considerar un factor multiplicador de la fuerza Particularmente la capacidad de reducir muertes involuntarias tiene ventajas particulares en las guerras mantenidas por las democracias donde la opinion publica tiene una gran influencia en la guerra Por esta razon un sistema de navegacion por satelite es un factor esencial para cualquier potencia militar Navegacion aerea Editar La navegacion aerea utiliza dentro del concepto de Sistemas Globales de Navegacion por Satelites GNSS implementado por la Organizacion de Aviacion Civil Internacional OACI los sistemas de posicionamiento reconociendose como un elemento clave en los sistemas de Comunicaciones Navegacion y Vigilancia que apoyan el control del trafico aereo CES ATA asi como un fundamento sobre el cual los estados pueden suministrar servicios de navegacion aeronautica mejorados Los estados que autorizan operaciones GNEIS son los responsables de determinar si el mismo satisface los requisitos de actuacion requeridos para esta actividad de acuerdo a lo especificado por la OACI en el espacio aereo de su competencia y de notificar a los usuarios cuando dicha actuacion no cumple con estos Por concepto el GNSS es un sistema mundial de determinacion de la posicion y la hora que incluye constelaciones principales de satelites receptores de aeronave supervisor de integridad del sistema y sistemas de aumento que mejoran la actuacion de las constelaciones centrales En sintesis el GNSS es un termino general que comprende a todos los sistemas de navegacion por satelites los que ya han sido implementados GPS GLONASS y los que estan en desarrollo Galileo proponiendo la utilizacion de satelites como soporte a la navegacion ofreciendo localizacion precisa de las aeronaves y cobertura en todo el globo terrestre Se esta implantando el GNSS de una manera evolutiva a medida que este preparado para acoger el gran volumen del trafico aereo civil existente en la actualidad y pueda responder a las necesidades de seguridad que requiere el sector uno de los mas exigentes del mundo Cuando el sistema GNSS este completamente desarrollado se preve que pueda ser utilizado sin requerir ayuda de cualquier otro sistema de navegacion convencional desde el despegue hasta completar un aterrizaje de precision Categoria IR O IS es decir en todas las fases de vuelo Otros usos civiles Editar Navegador de un automovil Algunas de las aplicaciones civiles donde se utilizan las senales GNSS son las siguientes Ayudas a la navegacion y orientacion en dispositivos de mano para senderismo dispositivos integrados en los automoviles camiones barcos etc Sincronizacion Sistemas de localizacion para emergencias Geomatica Seguimiento de los dispositivos usados en la fauna Etc Sistemas de Posicionamiento por Satelites actuales EditarActualmente el Sistema de Posicionamiento Global GPS de los Estados Unidos de America y el Sistema Orbital Mundial de Navegacion por Satelite GLONASS de la Federacion Rusa son los unicos que forman parte del concepto GNSS El Panel de Sistemas de Navegacion NPS el ente de la Organizacion Internacional de Aviacion Civil encargado de actualizar los estandares y practicas recomendadas del GNSS tiene en su programa de trabajo corriente el estudio de la adicion del sistema de navegacion por satelite Galileo desarrollado por la Union Europea Otros sistemas de navegacion por satelite que podrian ser o no adoptados internacionalmente para la aviacion civil como parte del GNSS y que estan en proceso de desarrollo son el Beidou Compass o BNTS BeiDou Compass Navigation Test System de la Republica Popular China el QZSS Quasi Zenith Satellite System de Japon y el IRNSS Indian Regional Navigation Satellite System de India NAVSTAR GPS Editar Investigadores instalando instrumental meteorologico y un receptor GPS sobre el iceberg B 15A Hoy por hoy la constelacion NAVSTAR GPS es la unica con cobertura mundial Articulo principal GPS El NAVSTAR GPS NAVigation System and Ranging Global Positioning System conocido simplemente como GPS es un sistema de radionavegacion basado en satelites que utiliza mediciones de distancia precisas de satelites GPS para determinar la posicion el GPS posee un error nominal en el calculo de la posicion de aproximadamente 15 m y la hora en cualquier parte del mundo El sistema es operado para el Gobierno de los Estados Unidos por su Departamento de Defensa y es el unico sistema de navegacion por satelite completamente operativo a fecha actual El sistema esta formado por una constelacion de 32 satelites que se mueven en orbita a 20 200 km aproximadamente alrededor de seis planos con una inclinacion de 55 grados El numero exacto de satelites varia en funcion de los satelites que se retiran cuando ha transcurrido su vida util GLONASS Editar Articulo principal GLONASS El Sistema Mundial de Navegacion por Satelites GLONASS proporciona determinaciones tridimensionales de posicion y velocidad basadas en las mediciones del tiempo de transito y de desviacion Doppler de las senales de radio frecuencia RF transmitidas por los satelites GLONASS El sistema es operado por el Ministerio de Defensa de la Federacion Rusa y ha sido utilizado como reserva por algunos receptores comerciales de GPS Tras la desmembracion de la Union Sovietica y debido a la falta de recursos el sistema perdio operatividad al no reemplazarse los satelites En la actualidad la constelacion GLONASS vuelve a estar operativa Sistemas de Posicionamiento por Satelites en proyecto EditarActualmente varios paises intentan desarrollar sistemas propios tal es el caso de China Japon India o los paises pertenecientes a la Union Europea y a la Agencia Espacial Europea Galileo Editar Articulo principal Sistema de navegacion Galileo Galileo es la iniciativa de la Union Europea y la Agencia Espacial Europea que acordaron desarrollar un sistema de radionavegacion por satelite de ultima generacion y de alcance mundial propio que brindara un servicio de ubicacion en el espacio preciso y garantizado bajo control civil 100 veces mas preciso que los actuales sistemas Galileo comprende una constelacion de 30 satelites 24 mas 4 de reserva divididos en tres orbitas circulares a una altitud de aproximadamente 24000 km que cubren toda la superficie del planeta Estos estaran apoyados por una red mundial de estaciones terrestres El primer satelite experimental fue lanzado el 28 de diciembre de 2005 y el 21 de abril de 2011 se lanzaron los dos primeros satelites del programa 1 El sistema salio a produccion el 15 de diciembre de 2016 2 con alrededor de media constelacion y sera completado para 2020 El primer telefono movil preparado para Galileo fue de una compania espanola 3 En el campo del servicio para aplicaciones criticas Safety of Life SoL se marca a un hito al implementarse los primeros sistemas de aproximacion LPV 200 en el aeropuerto de Paris Charles de Gaulle 4 Galileo es compatible con la proxima generacion de NAVSTAR GPS que estara operativa antes del 2012 Los receptores combinan las senales de 30 satelites de Galileo y 28 del GPS aumentando la precision de las medidas Vulnerabilidades de los sistemas de posicionamiento por satelites EditarLa vulnerabilidad mas notable de los GNSS es la posibilidad de ser interferida la senal la interferencia existe en todas las bandas de radionavegacion Existen varias fuentes de posible interferencia a los GNSS tanto dentro de la banda como fuera de esta particularmente por enlaces de microondas terrestres punto a punto permitidos por varios estados 1559 1610 MHz Estos enlaces se iran eliminando gradualmente entre los anos 2005 y 2015 Las senales de los sistemas GNSS son vulnerables debido a la potencia relativamente baja de la senal recibida pues provienen de satelites y cada senal cubre una fraccion significativamente grande de la superficie terrestre En aviacion las normas y metodos recomendados SARPS de la OACI para los GNSS exigen un nivel de rendimiento especifico en presencia de niveles de interferencia definidos por la mascara de interferencia del receptor Estos niveles de interferencia son generalmente acordes al reglamento de la Union Internacional de Telecomunicaciones UIT La interferencia de niveles superiores a la mascara puede causar perdida de servicio pero no se permite que tal interferencia resulte en informacion peligrosa o que induzca a error Tipos de interferencia Editar Las interferencias pueden ser voluntarias o involuntarias Interferencia involuntaria Editar La probabilidad y consecuencias operacionales de esta interferencia varian con el medio No se considera una amenaza importante siempre que los estados ejerzan el control y proteccion adecuados del espectro electromagnetico tanto para las atribuciones de frecuencias existentes como nuevas Ademas la introduccion de nuevas senales GNSS en nuevas frecuencias asegurara que la interferencia no intencional no provoque la perdida completa del servicio salida aunque experimente cierto deterioro en su rendimiento Se ha determinado que la mayor parte de los casos de interferencia de GNSS notificados proviene de los sistemas de a bordo y la experiencia con la instalacion del GNSS ha permitido identificar varias fuentes de interferencia involuntaria 5 Los dispositivos electronicos portatiles tambien pueden causar interferencia al GNSS y a otros sistemas de navegacion Las fuentes terrestres de interferencia incluyen actualmente las comunicaciones VHF moviles y fijas 6 enlaces de radio punto a punto en la banda de frecuencias GNSS armonicas de estaciones de television ciertos sistemas de radar sistemas de comunicaciones moviles por satelite y sistemas militares Las ciudades grandes con fuentes considerables de interferencia de radiofrecuencias RF los sitios industriales etc son mas propensos a la interferencia involuntaria que las regiones remotas donde esta interferencia es muy poco factible La probabilidad de esa interferencia depende de la reglamentacion estatal del espectro de la administracion de frecuencias y de su cumplimiento en cada estado o region Interferencia intencional Editar Debido a su poca potencia las senales de los GNSS pueden bloquearse con transmisores de baja potencia Aunque no se han registrado casos de bloqueo intencional dirigido a aeronaves civiles por ejemplo la posibilidad de obstruccion intencional de la senal debe considerarse y evaluarse como una amenaza Si el impacto es minimo la amenaza potencial es baja pues no hay motivacion para interferir La magnitud del impacto potencial puede aumentar conforme el GNSS tenga mas aplicaciones y se dependa mas de este sistema La interferencia por simulacion de senales spoofing es la corrupcion intencionada de senales de navegacion para que la aeronave se desvie y siga una trayectoria de vuelo falsa La simulacion de senales de GNSS por satelite es tecnologicamente mucho mas compleja que la simulacion de radioayudas a la navegacion convencional basadas en tierra La simulacion de radiodifusion de datos GBAS es tan dificil como la simulacion de radioayudas de aterrizaje convencional Aunque la interferencia por simulacion de senales teoricamente puede inducir a una aeronave determinada a errores de navegacion es muy probable que se detecte con procedimientos normales 7 Los sistemas de advertencia de proximidad del terreno GPWS y anticolision de a bordo ACAS dan proteccion adicional contra colisiones con el terreno y con otras aeronaves En vista de la dificultad de interferir por simulacion con los GNSS no se consideran necesarias medidas operacionales singulares para mitigarla Efectos ionosfericos y otros efectos atmosfericos Editar Las precipitaciones fuertes solo atenuan las senales de satelite GNSS una pequena fraccion de dB y no afecta las operaciones Los efectos troposfericos se tratan mediante el diseno del sistema y no representan un aspecto de vulnerabilidad Pero hay dos fenomenos ionosfericos que si deben considerarse Cambios ionosfericos rapidos y grandes Cerca del ecuador geomagnetico se observan frecuentemente cambios rapidos y grandes en la ionosfera pero su efecto no es lo suficientemente grande como para afectar las operaciones en ruta ni las de aproximaciones que no son de precision Los cambios ionosfericos causan errores de telemetria que deben tenerse en cuenta en el diseno del sistema dado se pueden mitigar con el uso de sistemas de aumento GNSS SBAS ABAS GBAS aunque pueden limitar los servicios GBAS y SBAS que se proporcionen en la region ecuatorial y utilicen una frecuencia GNSS unica El centelleo ionosferico Este es insignificante en las latitudes medias pero en las regiones ecuatoriales y en menor grado en las altas latitudes este puede causar la perdida temporal de las senales de uno o mas satelites La experiencia operacional en las regiones ecuatoriales ha demostrado que la probabilidad de perdida del servicio GNSS actual es poca debido al numero relativamente grande de satelites a la vista El centelleo puede interrumpir la recepcion de las radiodifusiones de los satelites de orbita geoestacionaria GEO del SBAS pero es poco probable que provoque la perdida completa del servicio GNSS y puede mitigarse con el agregado de nuevas senales y satelites GNSS Otras vulnerabilidades Editar Tambien es necesario considerar las vulnerabilidades de los segmentos terrestre y espacial del GNSS Existe el riesgo de numero insuficiente de satelites en una constelacion dada debido a la falta de recursos para mantenerla fallos en los lanzamientos o de satelite Una fallo del segmento de control de la constelacion o un error humano pueden llegar a causar la falla de multiples satelites de una constelacion Otro riesgo es la interrupcion del servicio o su degradacion durante una situacion de estado de emergencia nacional Los paises que proveen senales para la navegacion por satelite pueden negar su disponibilidad es lo que se denomina disponibilidad selectiva El propietario de un sistema de navegacion por satelite tiene la capacidad de degradar o eliminar servicios basados en los satelites de la navegacion sobre cualquier territorio que desee Asi si la navegacion por satelite se convierte en un servicio esencial los paises sin sus propios sistemas de navegacion por satelite se convertiran en clientes de los estados que provean estos servicios En el caso del trafico aereo si la denegacion de senal es regional se bloquearian todas las senales civiles de GNSS y el espacio aereo afectado estaria cerrado al transito aereo civil Los paises proveedores de servicios GNSS pueden modificar o denegar estos ante situaciones de emergencia En la imagen el presidente estadounidense George W Bush reunido con el Consejo de Seguridad Nacional tras los atentados del 11 de septiembre de 2001 Otra situacion menos probable seria la degradacion o denegacion de las senales de los satelites principales o de los satelites de aumento en toda el area de cobertura En la evaluacion de los riesgos operacionales relacionados con las vulnerabilidades del GNSS hay que considerar dos aspectos principales La probabilidad de interrupcion del GNSS El efecto de la interrupcion Al considerar estos aspectos en funcion del espacio aereo los proveedores de servicios de navegacion aerea pueden determinar si se necesita mitigarlos y de ser asi a que nivel Se requiere mitigacion para las interrupciones que tengan efectos importantes y probabilidades de ocurrir de moderadas a altas Las nuevas senales y constelaciones principales de satelites reduciran considerablemente la vulnerabilidad del GNSS La utilizacion de senales mas fuertes y las frecuencias diversas planeadas para el GPS el GLONASS y Galileo eliminaran efectivamente el riesgo de interferencia involuntaria pues es muy poco probable que una fuente de tal interferencia afecte simultaneamente a mas de una frecuencia Mas satelites incluso constelaciones multiples eliminaran el riesgo de interrupciones completas del GNSS debidas al centelleo y la multiplicidad de frecuencias mitigara el efecto de los cambios ionosfericos Los futuros satelites geoestacionarios mitigaran el efecto de la ionosfera en el SBAS usando satelites cuyas lineas visuales esten separadas cuando menos a 45º Las senales mas robustas y las nuevas frecuencias del GNSS hacen mas dificil interferir intencionadamente con todos los servicios GNSS Mas constelaciones principales de satelites reducen el riesgo de falla del sistema de errores operacionales o de interrupciones de servicio Tambien pueden seguir proporcionando servicio mundial en el caso poco probable de que el proveedor de un elemento de GNSS modifique o deniegue el servicio debido a situaciones de regimenes de excepcion de un estado La administracion y una fuerte financiacion del sistema son esenciales para la operacion continua de los servicios GNSS y para mitigar las vulnerabilidades del sistema mencionadas excepto la posible interrupcion global del servicio debida a una emergencia nacional Un medio efectivo de mitigar la vulnerabilidad de interrupcion global es que los proveedores de servicios adopten una politica de denegacion regional en caso de emergencia nacional Sistemas de Aumentacion GNSS Editar Avion espia no tripulado DarkStar Tier III del ejercito de los EE UU Su aterrizaje se lleva a cabo automaticamente mediante GPS Diferencial Las constelaciones de GPS y GLONASS no se elaboraron para satisfacer los requisitos estrictos precision integridad disponibilidad y continuidad de la navegacion por instrumentos IFR Una explicacion breve del significado de los requisitos operacionales es la siguiente Exactitud Diferencia entre la posicion estimada y la real medicion de errores Integridad Confianza sobre la informacion total proporcionada alertas de no utilizacion Continuidad Funcionamiento sin interrupciones no programadas Disponibilidad Es la parte del tiempo durante la cual el sistema presenta simultaneamente la exactitud integridad y continuidad requeridas Para garantizar que los GNSS actuales cumplan con estos requisitos en todas las fases del vuelo desde el despegue en ruta hasta un aterrizaje de precision para el GPS y GLONASS se requiere de diversos grados de aumentacion Tres sistemas de aumentacion el sistema basado en la aeronave Aircraft Based Augmentation System ABAS el basado en tierra Ground Based Augmentation System GBAS y el basado en satelites Satellite Based Augmentation System SBAS se han disenado y normalizado para superar las limitaciones inherentes a los GPS Para aplicaciones en tiempo real las correcciones de los parametros de cada satelite de las constelaciones GNSS existentes GPS y GLONASS deberan ser transmitidas a los usuarios a traves de equipos de radio VHF GBAS o si se requiere una amplia cobertura a traves de satelites geoestacionarios que emitan pseudocodigos con informacion de correccion SBAS Aumentacion basada en la aeronave ABAS Editar Articulo principal ABAS Entre los sistemas que otorgan esta aumentacion a los receptores GPS estan los sistemas de Receptor con Supervision Autonoma de la Integridad RAIM y la funcion de Deteccion de Fallos y Exclusion FDE Los ABAS proporcionan la integridad requerida para utilizar el GPS como medio unico suplementario y principal de navegacion durante la salida en ruta la llegada y para aproximaciones de precision en tramos inicial intermedio y frustrado asi como las de no precision Aumentacion basada en Tierra GBAS Editar Articulo principal GBAS GBAS es un termino que comprende todos los sistemas de aumentacion basadas en estaciones terrestres Se diferencian de los SBAS en que no dependen de satelites geoestacionarios debido a que el GBAS no esta disenado para dar servicio sobre amplias regiones geograficas Sistema de aumentacion regional basada en Tierra GRAS Editar Articulo principal GRAS El GRAS Ground based Regional Augmentation System tiene como base al GBAS y consiste en una serie de estaciones GBAS desplegadas en un area extensa incluso continental interconectadas entre si por sistemas de telecomunicaciones permitiendo contar con una aumentacion SBAS de caracter regional Australia es el pais mas avanzado en estos momentos en el desarrollo e implementacion de este tipo de sistemas Aumentacion basada en Satelites SBAS Editar Articulo principal SBAS SBAS es un termino que comprende todos los sistemas de aumentacion basadas en satelites que estan en desarrollo actualmente mas cualquier otro que sea desarrollado en el futuro Las principales entidades que han desarrollado actualmente sistemas SBAS son los EE UU el WAAS Europa el EGNOS y Japon el MSAS Se encuentran en proceso de desarrollo la India GAGAN y en proyecto de China SNAS y Latinoamerica SACCSA Vease tambien EditarNavegacion aerea LAV localizador automatico de vehiculos Localizacion geografica Localizacion GSM Sistema de posicionamiento en interiores Unidad de seguimiento GPSBibliografia EditarDoc 9849 OACI Manual sobre el Sistema Mundial de Navegacion por Satelites GNSS Primera Edicion 2005 Material de Seminarios OACI Seminario ATN GNSS Antigua Guatemala 1999 Seminario ATN GNSS Varadero Cuba 2002 Seminario GNSS Bogota Colombia 2005 Informe Final de la 11na Conferencia Mundial de Navegacion Aerea Montreal Canada 2003 Materiales del Grupo de Tareas GNSS del Subgrupo CNS ATM del GREPECAs OACI 2005 2006 Materiales del Grupo Coordinador del Proyecto OACI RLA 03 902 Sistema de Aumentacion GNSS para el Caribe Centro y Sur America SACCSA Evolution of The Global Navigation Satellite System GNSS C G Hegarty y E Chatre En Proceedings of the IEEE Vol 96 Nº 12 Dec 2008 pp 1902ssReferencias Editar Claves de Galileo el primer sistema civil de navegacion por satelite 21 de octubre de 2011 Consultado el 21 de octubre de 2011 Galileo initial services declaration Consultado el 18 de diciembre de 2016 First European Galileo ready smartphone Consultado el 4 de septiembre de 2016 First EGNOS LPV 200 approach Consultado el 12 de julio de 2016 Por ejemplo emisiones no deseadas o armonicas del equipo de comunicaciones VHF y emisiones fuera de la banda y no deseadas del equipo de comunicaciones por satelite Para sistemas GNSS que utilizan tambien frecuencias en estas bandas como el GBAS Por ejemplo vigilando la trayectoria de vuelo y la distancia a los puntos de recorrido o mediante vigilancia radarEnlaces externos Editar Wikimedia Commons alberga una categoria multimedia sobre Sistema global de navegacion por satelite GLONASS GPS SATELISAT enlace roto disponible en Internet Archive vease el historial la primera version y la ultima GALILEO DGPS Red GNSS de Euskadi GNSS SDR un receptor GNSS definido por software abierto Herramienta para obtener las coordenadas GPS con ayuda de Google Maps Lopez La Valle Ramon G 8 de agosto de 2014 Cabezal de radiofrecuencia de un receptor GNSS multibanda Consultado el 28 de agosto de 2014 Datos Q179435 Multimedia Satellite navigation systemsObtenido de https es wikipedia org w index php title Sistema global de navegacion por satelite amp oldid 135188249, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos