fbpx
Wikipedia

Propulsión espacial

Se denomina propulsión espacial a cualquier tecnología capaz de impulsar una nave por el espacio. Para efectuar viajes espaciales es necesario algún sistema de propulsión capaz de imprimir aceleración a los vehículos. Debido al vacío del espacio exterior, cualquier aceleración deberá basarse en la tercera ley Newton (o ley de acción y reacción), según la cual, «por cada fuerza que actúa sobre un cuerpo, este realiza una fuerza de igual intensidad pero de sentido contrario». De esta manera, si un objeto expulsa parte de su masa en una dirección, el resto del objeto se desplazará en sentido contrario. Este es el fundamento de los motores a reacción, también llamados de «propulsión a chorro»: en ellos, parte de la masa de la nave (el combustible) es expulsada a gran velocidad en una dirección, ocasionando que el resto de la nave se desplace en el sentido opuesto.

Proyecto Bussard, uno de los sistemas de propulsión pensados para los viajes interestelares.

El motor más empleado para la propulsión de naves espaciales es el motor cohete, pues es capaz de generar una enorme potencia y, a diferencia de otros tipos de motores, no necesita de oxígeno atmosférico para funcionar. Sin embargo, a pesar de la gran potencia de los motores cohete, no son eficientes para las enormes distancias espaciales. Con este propósito se están desarrollando los motores iónicos, que gracias a la mayor velocidad de salida del propelente pueden ser diez veces más eficientes. Aun así, ningún motor conocido hasta el momento es capaz de obtener velocidades suficientes como para plantear viajes interestelares. No obstante, existen diversas alternativas a los motores a reacción: la más inmediata la constituyen las velas solares, capaces de obtener impulso de la radiación solar, del viento solar, incluso de rayos láser o de microondas enviados desde la Tierra. No se puede descartar tampoco que en un futuro lejano sean viables otros métodos de propulsión más exóticos, como los «motores de curvatura» o motores warp.

Necesidad de sistemas de propulsión

Los satélites artificiales deben ser lanzados para ser puestos en órbita. Y una vez que han alcanzado su posición estacionaria en la órbita nominal, necesitan alguna manera de control de actitud para que se puedan mantener apuntando una cierta posición entre la Tierra, el Sol y posiblemente algunos objetos astronómicos de interés. Los satélites no sufren por lo general una resistencia aerodinámica apreciable (si bien en las órbitas más bajas todavía persiste una enrarecida atmósfera remanente). Por este motivo pueden permanecer en órbita durante largos períodos con solo una pequeña cantidad de propelente, utilizado tanto para propulsarse como para realizar pequeñas correcciones. Muchos satélites necesitan ocasionalmente moverse de unas órbitas a otras y precisan por tanto de una cierta cantidad de propelente. Cuando este tipo de satélites han agotado su capacidad para hacer estas operaciones, se dice que su vida útil se ha agotado.

Durante la fase de lanzamiento todas las naves espaciales emplean cohetes de propelente químico, bien en estado líquido (propelente y oxidante separados), o bien sólido (propelente y oxidante mezclados). Aunque para órbitas bajas y cargas medianas y pequeñas existen algunos diseños recientes, tales como el cohete Pegaso o la nave SpaceShipOne), que durante la primera fase del lanzamiento, aprovechan la sustentación aerodinámica y el oxígeno presente en la atmósfera para la combustión, evitando así tener que cargar con él en el propio cohete, reduciendo los costes.

Las naves espaciales que realizan viajes interplanetarios han de recorrer largas distancias. Por esta razón, además del lanzamiento requerido para abandonar la atmósfera de la Tierra (como en el caso de los satélites) necesitan un segundo sistema de propulsión para viajar por el espacio o, al menos, para poder corregir su trayectoria. Las naves interplanetarias realizan estas correcciones mediante pequeñas propulsiones de corta duración, mientras que generalmente, su desplazamiento principal se basa únicamente en su impulso inicial y simplemente tienen un comportamiento de caída libre a través de su órbita.

 
Concepción artística del funcionamiento y disposición de una vela solar.

La manera más simple y eficiente para cambiar de una órbita a otra desde el punto de vista de consumo de propelente se denomina transferencia de Hohmann: la nave espacial empieza en una órbita circular alrededor del Sol, y durante un corto período efectúa un impulso en la dirección de movimiento de la nave, tangente a su trayectoria. De esta manera la nave acelera o desacelera, pasando a adoptar una órbita elíptica alrededor del Sol, que es tangente a la órbita previa. La nave espacial así propulsada cae libremente en esta órbita hasta que alcanza su destino. Cuando las naves se acercan a un planeta con atmósfera, se puede recurrir al aerofrenado que a veces se emplea para el ajuste final de la órbita.[1]

Otros métodos de propulsión, tales como las velas solares, proporcionan un impulso reducido pero constante:[2]​ una nave con un sistema de propulsión de estas características podría ser capaz de viajar largas distancias interplanetarias utilizando un propelente inagotable como la radiación solar. Estas naves seguirían una trayectoria diferente a la definida por la transferencia orbital de Hohmann, ya que pueden ser permanentemente empujadas radialmente desde el Sol hacia el exterior del sistema solar.

Las naves espaciales que pretendan realizar viajes interestelares necesitarán métodos de propulsión más eficientes, pues dada la magnitud de las distancias interestelares, se necesitará de una gran velocidad para recorrerlas en un intervalo de tiempo razonable hasta llegar al destino. Adquirir estas velocidades es un reto tecnológico hoy en día.

Efectividad de los sistemas de propulsión

La masa de la Tierra genera un pozo gravitatorio: para que un cuerpo pueda escapar de esta fuerza gravitatoria ha de alcanzar una velocidad superior a los 11.2 km/s. Esta velocidad se denomina velocidad de escape. Si la nave es tripulada, su aceleración no debería diferir mucho del valor de 1 G (9.8 m/s²), pues es la aceleración a la que el cuerpo humano está acostumbrado. Si bien se han descrito casos de personas capaces de soportar aceleraciones hasta los 15 G, cuando se somete al cuerpo a periodos prolongados de caída libre se producen náuseas, debilidad muscular, reducción del sentido del sabor, falta de asimilación del calcio, y otros síntomas.[3]

Cinemática de la propulsión

Una nave espacial modifica su velocidad v mediante su sistema propulsor. Debido a la inercia, cuanta más masa posea la nave, más difícil será acelerarla. Por ello se suele hablar del momento de una nave, y para cuantificar el cambio de momento se habla de impulso. De esta manera, el objetivo de la propulsión en el espacio es crear impulso. Cuando la nave espacial es lanzada desde la Tierra, el método de propulsión empleado deberá superar la fuerza gravitacional para obtener una aceleración neta positiva. Ponerse en órbita consiste en alcanzar una velocidad tangencial tal que genere una fuerza centrípeta suficiente para compensar el efecto del campo gravitatorio de la Tierra.

La razón de cambio de la velocidad se denomina aceleración, y la razón de cambio de momento se denomina fuerza. De esta manera, para alcanzar una cierta velocidad, se puede imprimir una pequeña aceleración durante un periodo largo de tiempo, o puede imprimirse una gran aceleración durante un periodo corto de tiempo. De manera similar, se puede lograr un mismo impulso con una gran fuerza aplicada durante un corto período, o con una fuerza menor pero aplicada más tiempo. En ausencia de fuerzas externas, según las leyes de conservación del momento, para acelerar un cuerpo en el vacío parte de su masa deberá desplazarse en sentido opuesto al resto. Esta masa que se desplaza en sentido opuesto es el propelente, y su masa se denomina «masa de reacción».

Requerimientos de la propulsión a chorro

Para lograr que un cohete funcione son necesarias dos cosas:

  • Masa de reacción
  • Energía

El impulso proporcionado al expulsar una partícula de masa reactiva, si esta posee una masa de m a una velocidad v, es igual a m•v. Pero esta partícula se expulsa con una energía cinética igual a m•v2/2, que debe proceder de alguna parte. En un cohete de combustible sólido, líquido, o híbrido, el propelente debe quemarse, proporcionando energía, y los productos de la reacción se permite que fluyan hacia el exterior por la parte trasera de la nave espacial, proporcionando masa reactiva. En un propulsor iónico, se emplea la electricidad para acelerar los iones y expulsarlos. Existen otros dispositivos que proporcionan energía eléctrica como los paneles solares o un reactor nuclear, mientras que los iones son los encargados de proporcionar la masa reactiva.

Parámetros de la eficiencia de la propulsión

Cuando se menciona la eficiencia de un sistema de propulsión a chorro, los diseñadores a menudo se centran en el empleo adecuado de la masa reactiva. La masa reactiva debe llevarse necesariamente en el cohete y debe ser consumida irreversiblemente al ser usada. Una manera de medir la cantidad de impulso que es posible obtener de una cantidad dada de masa reactiva es lo que se denomina el impulso específico, llamando así a la cantidad de impulso por unidad de peso en la Tierra (se designa típicamente como  ). La unidad para este valor es segundos. Como el impulso específico se mide con relación de peso en la tierra, a menudo no es importante cuando se habla de vehículos en el espacio, por esta razón se habla a veces de impulso específico en términos de unidades de masa. Esta manera alternativa de medir el impulso específico empleando unidades de masa (kg) hace que tenga unidades de velocidad (m/s), y en realidad es igual a la velocidad de las partículas (velocidad de evacuación) del motor cohete (denominado de manera típica como  ). Resulta confuso que ambos conceptos de impulso específico se denominan de manera similar. Aunque los dos valores difieren en un factor igual a la G, la aceleración de la gravedad sobre la superficie terrestre ( ).

Un cohete con una velocidad de evacuación alta puede alcanzar el mismo impulso empleando una masa de reacción menor. Por lo tanto la energía requerida para impulsar es proporcional al cuadrado de la velocidad de evacuación de la masa reactiva, de esta manera se necesita imprimir mucha energía a la masa reactiva. Esto es un problema si es un requerimiento que el motor proporcione una gran cantidad de empuje. Para generar una gran cantidad de impulso por segundo, se debe emplear una gran cantidad de energía por segundo. De esta manera un motor altamente eficiente requiere grandes cantidades de energía para proporcionar grandes cantidades de empuje. Como resultado, la mayoría de los motores se diseñan para proporcionar bajos niveles de empuje.

Cálculos de la propulsión a chorro

Quemar el propelente de un cohete de una nave espacial es la mejor manera de producir un cambio neto de velocidad en el espacio; a esta variación la denominamos 'delta-v'. La variación total de velocidad la representamos como   de un vehículo y representa una de las incógnitas a resolver cuando se emplea la ecuación cinemática de un cohete, donde M es la masa de combustible (o de propelente), P es la masa de la carga útil (incluyendo la masa estructural del cohete), y   es la velocidad de evacuación de propelente por la tobera. Todo estos parámetros forman parte de la ecuación de Tsiolkovsky:

 

Por razones históricas, la velocidad   se escribe a menudo como

 

donde   es el impulso específico del cohete, medido en segundos, y   es la aceleración gravitatoria en la superficie terrestre. Para un viaje de largas distancias la mayoría de la masa de la nave espacial es masa reactiva. Debido a que es necesario que la masa reactiva proporcione un aumento de velocidad a la masa de la carga útil. Si se tuviera que proporcionar a una carga útil de masa P un cambio de velocidad de  , y el motor del cohete tuviera una velocidad de evacuación ve, entonces la masa M reactiva sería calculada mediante la ecuación de Tsiolkovsky mediante  

 

Para   más pequeña que la ve, esta ecuación es lineal, y puede verse que basta con emplear una pequeña masa reactiva. Si   es comparable con ve, entonces se necesita aproximadamente el doble de masa de propelente que de carga útil (lo que incluye motores, tanques de combustible, estructura, y demás). Tras este punto, el crecimiento es exponencial; las velocidades más altas que la velocidad de evacuación requieren ratios cada vez mayores de masa de propelente con respecto a la carga de pago (carga útil). Para poder lograr esto, mucha de la energía almacenada se destina a acelerar la propia masa reactiva. Además conviene recordar que los motores (Por reglas termodinámicas) nunca son 100% eficientes, liberan energía sin utilizar, pero si se asume un 100% de eficiencia se necesitaría una energía de

 

Comparando con la ecuación de cohetes (que muestra cuanta energía necesita un vehículo) y la ecuación energética (que muestra la energía total requerida) se puede comprobar que bajo la suposición de un 100% de eficiencia en el motor, no toda la energía proporcionada acaba en el vehículo, sino una parte de ella; de hecho la mayor parte de ella, acaba siendo energía cinética de la masa evacuada. Para una misión, por ejemplo, de lanzamiento y planetizaje (Aterrizar en otro planeta) es necesario tener en cuenta que hay que superar las fuerzas de gravedad (son resistentes al despegue, y provocan un aumento del propelente necesario). Es típico considerar estas caractersísticas y otras muchas para poder lograr un correcto delta-v efectivo en la misión. Por ejemplo, cuando se lanza una nave a una misión de órbita baja se requiere una delta-v de 9.3 a 10 km/s, este valor forma parte de los número integrados de los computadores de a bordo.

Por ejemplo, si se quieren enviar 10 000 kg a Marte, la   requerida para alcanzar una LEO (low earth orbit: órbita baja terrestre) es de aproximadamente 3000 m/s, empleando una órbita de transferencia de Hohmann. Si hubiera necesidad de guiar la nave se necesitaría mucho más propelente. Para ajustar el argumento, los cohetes impulsores empleados hoy en día pueden ser:

Motor Velocidad efectiva de evacuación
(m/s)
Impulso específico
(s)
Masa de propelente
(kg)
Energía requerida
(GJ)
Energía por kg
de propelente
Mínima potencia
por N de empuje
Cohete de combustible sólido 1 000 100 190 000 95 500 kJ 0,5 kW
Cohete bipropelente 5 000 500 8 200 103 12,6 MJ 2,5 kW
Propulsor iónico 50 000 5 000 620 775 1,25 GJ 25 kW

Se ha de observar que cuando se es más eficiente en el consumo de combustible los motores pueden necesitar menos peso de propelente para las mismas funciones; esta masa es casi despreciable (en relación con la masa de carga útil) para algunos de los motores. Sin embargo, es de notar que es requerida una gran cantidad de energía.

Métodos de propulsión a chorro

Los métodos de propulsión pueden clasificarse mediante la manera de acelerar la masa reactiva. Existen algunos métodos especiales para los lanzamientos, las llegadas a los planetas y los aterrizajes.[4]

Motores cohete

 
Test de un motor cohete "frío" (apagado) de la NASA (National Aeronautics and Space Administration: administración nacional de la aeronáutica y el espacio).

La mayoría de los motores cohete son motores de combustión interna motores de calor (debido en parte al protagonismo que toma la combustión). El motor de un cohete generalmente produce altas temperaturas en la masa reactiva, produciendo un gas caliente. Este se produce mediante el quemado de un combustible sólido, líquido o gaseoso con un oxidante en una cámara de combustión. Al gas extremadamente caliente se le permite escapar a través de una abertura capaz de hacer expandir el gas a una proporción alta, la abertura se denomina: tobera. Esta tobera con forma de campana le proporciona al cohete una forma característica. El efecto de la tobera provoca una aceleración drástica de las partículas transformando la mayor parte de la energía térmica en energía cinética. Las velocidades de evacuación de gases a nivel de presión normal pueden llegar a superar fácilmente casi 10 veces la velocidad del sonido.

Los cohetes que emiten plasma pueden potencialmente transportar reacciones dentro de una botella magnética y lanzar el plasma vía una tobera magnética, de tal manera que no haya contacto material con el plasma. Desde luego la máquina que haga esto es compleja, pero las investigaciones en fusión nuclear han desarrollado métodos, algunos de los cuales han sido usados en sistemas especulativos de propulsión a chorro.

Véase motor cohete para una lista de los diferentes tipos de motores cohetes empleados en la industria aeroespacial así como los diferentes formas de la cámara de combustión, incluyendo los químicos, eléctricos, solar, y nuclear.

Reactores para el lanzamiento

Los estudios muestran que los motores a reacción, tales como los ramjets o los turbojets son generalmente demasiado pesados (la razón empuje/peso es baja) para cualquier desarrollo de operaciones de lanzamiento, por esta razón se suelen lanzar desde otras naves ya en vuelo. Los sistemas de lanzamiento pueden ser lanzamiento aéreo desde un avión (como por ejemplo desde una B-29, Pegasus y White Knight) donde hacen uso de sus sistemas de propulsión.

Por otra parte, existen los aerorreactores que son motores ligeros que tienen la ventaja de tomar aire durante la fase de ascenso:

  • SABRE: un aerorreactor que emplea como combustible hidrógeno con un pre-enfriador[5]
  • ATREX: otro aerorreactor de bajo peso con pre-enfriador[6]
  • Motor de ciclo de aire líquido: Se trata de un motor que emplea hidrógeno y aire líquido antes de ser quemado en la cámara de combustión
  • Scramjet: se trata de un aerorreactor que emplea combustión supersónica

Los cohetes normalmente se lanzan desde una posición casi vertical y vuelan durante una decena de kilómetros antes de llegar a su órbita; este inicial lanzamiento vertical consume mucho propelente pero es óptimo desde el punto de vista de resistencia aerodinámica. Los aerorreactores queman propelente más eficientemente y permiten emplear una trayectoria más tangencial, los vehículos típicamente vuelan tangencialmente a la superficie de la Tierra hasta que abandonan la atmósfera terrestre, en este instante desarrollan un segundo cohete delta-v que enlaza este estado con la órbita.

Aceleración de la masa reactiva por electromagnetismo

 
Motor de prueba que acelera iones empleando fuerzas electromagnéticas.

En lugar de someter a un líquido a altas temperaturas y a la dinámica de fluidos para acelerar la masa reactiva a altas velocidades, existen una variedad de métodos que emplean las fuerzas del campo electrostático o electromagnético para acelerar la masa reactiva. Generalmente en este tipo de motores la masa reactiva es una corriente de iones. Tales motores necesitan de una fuente de energía potente para poder funcionar, y unas altas velocidades de evacuación requieren altas cantidades de energía.

Para algunas misiones la energía solar puede ser suficiente, y es empleada muy a menudo, pero para otras se requiere una fuente de energía nuclear; los motores que emplean la energía de una fuente nuclear se denominan cohetes de electricidad nuclear. Con la capacidad actual de generación de electricidad, bien sea químicamente, nuclear o solar se tiene una limitación de empuje con este tipo de propulsión.

Algunos métodos electromagnéticos:

Sistemas sin masa reactiva transportada en el cohete

 
Estudio de la NASA sobre una vela solar. La vela podría tener una magnitud de medio kilómetro.

La ley de la conservación de momento establece que cualquier motor que no emplee masa reactiva, no puede mover su centro de gravedad (cambiar la orientación es sin embargo posible). Sin embargo el espacio no está vacío, especialmente en el área del Sistema Solar, donde puede haber campos magnéticos, el viento y la radiacción solar. Muchos sistemas de propulsión intentan diseñarse de manera tal que se aprovechen de estas características. Debido a la característica difusa de estos fenómenos en el sistema solar, los motores que aprovechan estas fuentes de energía necesitan de unas estructuras de tamaño considerable. Los motores de estas características no necesitan (o en cualquier caso emplean una cantidad muy pequeña) de masa reactiva:

Para cambiar la orientación de la nave espacial en el espacio no existe sin embargo tal restricción, la ley de conservación de momento angular no impone restricciones, muchos satélites emplean un volante de inercia para controlar la orientación del satélite. Este método no es el único para controlar la actitud del mismo, se pueden emplear sistemas que aprovechen el viento solar o las fuerzas magnéticas para hacer la misma función, algunos de estos sistemas pueden diseñarse de tal manera que pueden servir como sistema secundario.

Véase también

Referencias

  1. «Surfing an alien atmosphere» (en inglés). Consultado el 3 de julio de 2010. 
  2. , artículo en inglés en el sitio web The Planetary Society
  3. , artículo en español en el sitio web FECYT. Consultado el 3 de julio de 2010
  4. A pesar de que en la época de los descensos en la Luna se utilizó la palabra «alunizaje», actualmente se recomienda utilizar la palabra «aterrizaje»[1] con respecto a cualquier cuerpo celeste, ya que esta no significa ‘descender en el planeta Tierra’ sino ‘descender en tierra firme’.[2] Así, existen los verbos:
    • amerizar (de amerizaje), que —dicho de un hidroavión o de un aparato astronáutico— significa ‘posarse en el mar’.[3]
    • amarar (de mar), que —dicho de un hidroavión o de un aparato astronáutico— significa ‘posarse en el agua’.[4]
    De lo contrario en un futuro no muy lejano habría que inventar toda una serie de verbos para adaptarse al descenso en cada cuerpo celeste: mercurizaje, venerizaje, amartizaje, ajovizaje, ganimedizaje, ioizaje, europizaje, saturnizaje, uranizaje, neptunizaje, plutonizaje, etc.
  5. «The SABRE engine», artículo en inglés en el sitio web Reaction Engines. Consultado el 5 de noviembre de 2006.
  6. Harada, Kenya, et al.: , artículo en el sitio web Institute of Space and Astronautical Science: Propulsion System Laboratory. Consultado el 5 de noviembre de 2006.
  7. , artículo en inglés del 24 de octubre de 2002 en el sitio web de la NASA.

Enlaces externos

  • , lectura obligada para aquellos que sin conocimientos técnicos desean saber algo sobre el tema.
  • en el sitio web de la NASA.
  • «Propulsión de cohetes» en el sitio web Braeunig.
  • , revista en inglés publicada en el sitio web Transtator Industries.
  • Diferentes tipos de cohetes, en el sitio web Project RHO.
  • «Earth-to-orbit transportation bibliography», la más extensa bibliografía sobre la sistemas de transporte mediante propulsión; en el sitio web Island One.
  • «Spaceflight propulsion», recopilación detallada realizada por Greg Goebel, de domino público; en el sitio web Vector Site.
  •   Datos: Q609089
  •   Multimedia: Spacecraft propulsion

propulsión, espacial, denomina, propulsión, espacial, cualquier, tecnología, capaz, impulsar, nave, espacio, para, efectuar, viajes, espaciales, necesario, algún, sistema, propulsión, capaz, imprimir, aceleración, vehículos, debido, vacío, espacio, exterior, c. Se denomina propulsion espacial a cualquier tecnologia capaz de impulsar una nave por el espacio Para efectuar viajes espaciales es necesario algun sistema de propulsion capaz de imprimir aceleracion a los vehiculos Debido al vacio del espacio exterior cualquier aceleracion debera basarse en la tercera ley Newton o ley de accion y reaccion segun la cual por cada fuerza que actua sobre un cuerpo este realiza una fuerza de igual intensidad pero de sentido contrario De esta manera si un objeto expulsa parte de su masa en una direccion el resto del objeto se desplazara en sentido contrario Este es el fundamento de los motores a reaccion tambien llamados de propulsion a chorro en ellos parte de la masa de la nave el combustible es expulsada a gran velocidad en una direccion ocasionando que el resto de la nave se desplace en el sentido opuesto Proyecto Bussard uno de los sistemas de propulsion pensados para los viajes interestelares El motor mas empleado para la propulsion de naves espaciales es el motor cohete pues es capaz de generar una enorme potencia y a diferencia de otros tipos de motores no necesita de oxigeno atmosferico para funcionar Sin embargo a pesar de la gran potencia de los motores cohete no son eficientes para las enormes distancias espaciales Con este proposito se estan desarrollando los motores ionicos que gracias a la mayor velocidad de salida del propelente pueden ser diez veces mas eficientes Aun asi ningun motor conocido hasta el momento es capaz de obtener velocidades suficientes como para plantear viajes interestelares No obstante existen diversas alternativas a los motores a reaccion la mas inmediata la constituyen las velas solares capaces de obtener impulso de la radiacion solar del viento solar incluso de rayos laser o de microondas enviados desde la Tierra No se puede descartar tampoco que en un futuro lejano sean viables otros metodos de propulsion mas exoticos como los motores de curvatura o motores warp Indice 1 Necesidad de sistemas de propulsion 2 Efectividad de los sistemas de propulsion 2 1 Cinematica de la propulsion 2 2 Requerimientos de la propulsion a chorro 2 3 Parametros de la eficiencia de la propulsion 2 4 Calculos de la propulsion a chorro 3 Metodos de propulsion a chorro 3 1 Motores cohete 3 2 Reactores para el lanzamiento 3 3 Aceleracion de la masa reactiva por electromagnetismo 3 4 Sistemas sin masa reactiva transportada en el cohete 4 Vease tambien 5 Referencias 6 Enlaces externosNecesidad de sistemas de propulsion EditarLos satelites artificiales deben ser lanzados para ser puestos en orbita Y una vez que han alcanzado su posicion estacionaria en la orbita nominal necesitan alguna manera de control de actitud para que se puedan mantener apuntando una cierta posicion entre la Tierra el Sol y posiblemente algunos objetos astronomicos de interes Los satelites no sufren por lo general una resistencia aerodinamica apreciable si bien en las orbitas mas bajas todavia persiste una enrarecida atmosfera remanente Por este motivo pueden permanecer en orbita durante largos periodos con solo una pequena cantidad de propelente utilizado tanto para propulsarse como para realizar pequenas correcciones Muchos satelites necesitan ocasionalmente moverse de unas orbitas a otras y precisan por tanto de una cierta cantidad de propelente Cuando este tipo de satelites han agotado su capacidad para hacer estas operaciones se dice que su vida util se ha agotado Durante la fase de lanzamiento todas las naves espaciales emplean cohetes de propelente quimico bien en estado liquido propelente y oxidante separados o bien solido propelente y oxidante mezclados Aunque para orbitas bajas y cargas medianas y pequenas existen algunos disenos recientes tales como el cohete Pegaso o la nave SpaceShipOne que durante la primera fase del lanzamiento aprovechan la sustentacion aerodinamica y el oxigeno presente en la atmosfera para la combustion evitando asi tener que cargar con el en el propio cohete reduciendo los costes Las naves espaciales que realizan viajes interplanetarios han de recorrer largas distancias Por esta razon ademas del lanzamiento requerido para abandonar la atmosfera de la Tierra como en el caso de los satelites necesitan un segundo sistema de propulsion para viajar por el espacio o al menos para poder corregir su trayectoria Las naves interplanetarias realizan estas correcciones mediante pequenas propulsiones de corta duracion mientras que generalmente su desplazamiento principal se basa unicamente en su impulso inicial y simplemente tienen un comportamiento de caida libre a traves de su orbita Concepcion artistica del funcionamiento y disposicion de una vela solar La manera mas simple y eficiente para cambiar de una orbita a otra desde el punto de vista de consumo de propelente se denomina transferencia de Hohmann la nave espacial empieza en una orbita circular alrededor del Sol y durante un corto periodo efectua un impulso en la direccion de movimiento de la nave tangente a su trayectoria De esta manera la nave acelera o desacelera pasando a adoptar una orbita eliptica alrededor del Sol que es tangente a la orbita previa La nave espacial asi propulsada cae libremente en esta orbita hasta que alcanza su destino Cuando las naves se acercan a un planeta con atmosfera se puede recurrir al aerofrenado que a veces se emplea para el ajuste final de la orbita 1 Otros metodos de propulsion tales como las velas solares proporcionan un impulso reducido pero constante 2 una nave con un sistema de propulsion de estas caracteristicas podria ser capaz de viajar largas distancias interplanetarias utilizando un propelente inagotable como la radiacion solar Estas naves seguirian una trayectoria diferente a la definida por la transferencia orbital de Hohmann ya que pueden ser permanentemente empujadas radialmente desde el Sol hacia el exterior del sistema solar Las naves espaciales que pretendan realizar viajes interestelares necesitaran metodos de propulsion mas eficientes pues dada la magnitud de las distancias interestelares se necesitara de una gran velocidad para recorrerlas en un intervalo de tiempo razonable hasta llegar al destino Adquirir estas velocidades es un reto tecnologico hoy en dia Efectividad de los sistemas de propulsion EditarLa masa de la Tierra genera un pozo gravitatorio para que un cuerpo pueda escapar de esta fuerza gravitatoria ha de alcanzar una velocidad superior a los 11 2 km s Esta velocidad se denomina velocidad de escape Si la nave es tripulada su aceleracion no deberia diferir mucho del valor de 1 G 9 8 m s pues es la aceleracion a la que el cuerpo humano esta acostumbrado Si bien se han descrito casos de personas capaces de soportar aceleraciones hasta los 15 G cuando se somete al cuerpo a periodos prolongados de caida libre se producen nauseas debilidad muscular reduccion del sentido del sabor falta de asimilacion del calcio y otros sintomas 3 Cinematica de la propulsion Editar Una nave espacial modifica su velocidad v mediante su sistema propulsor Debido a la inercia cuanta mas masa posea la nave mas dificil sera acelerarla Por ello se suele hablar del momento de una nave y para cuantificar el cambio de momento se habla de impulso De esta manera el objetivo de la propulsion en el espacio es crear impulso Cuando la nave espacial es lanzada desde la Tierra el metodo de propulsion empleado debera superar la fuerza gravitacional para obtener una aceleracion neta positiva Ponerse en orbita consiste en alcanzar una velocidad tangencial tal que genere una fuerza centripeta suficiente para compensar el efecto del campo gravitatorio de la Tierra La razon de cambio de la velocidad se denomina aceleracion y la razon de cambio de momento se denomina fuerza De esta manera para alcanzar una cierta velocidad se puede imprimir una pequena aceleracion durante un periodo largo de tiempo o puede imprimirse una gran aceleracion durante un periodo corto de tiempo De manera similar se puede lograr un mismo impulso con una gran fuerza aplicada durante un corto periodo o con una fuerza menor pero aplicada mas tiempo En ausencia de fuerzas externas segun las leyes de conservacion del momento para acelerar un cuerpo en el vacio parte de su masa debera desplazarse en sentido opuesto al resto Esta masa que se desplaza en sentido opuesto es el propelente y su masa se denomina masa de reaccion Requerimientos de la propulsion a chorro Editar Para lograr que un cohete funcione son necesarias dos cosas Masa de reaccion EnergiaEl impulso proporcionado al expulsar una particula de masa reactiva si esta posee una masa de m a una velocidad v es igual a m v Pero esta particula se expulsa con una energia cinetica igual a m v2 2 que debe proceder de alguna parte En un cohete de combustible solido liquido o hibrido el propelente debe quemarse proporcionando energia y los productos de la reaccion se permite que fluyan hacia el exterior por la parte trasera de la nave espacial proporcionando masa reactiva En un propulsor ionico se emplea la electricidad para acelerar los iones y expulsarlos Existen otros dispositivos que proporcionan energia electrica como los paneles solares o un reactor nuclear mientras que los iones son los encargados de proporcionar la masa reactiva Parametros de la eficiencia de la propulsion Editar Cuando se menciona la eficiencia de un sistema de propulsion a chorro los disenadores a menudo se centran en el empleo adecuado de la masa reactiva La masa reactiva debe llevarse necesariamente en el cohete y debe ser consumida irreversiblemente al ser usada Una manera de medir la cantidad de impulso que es posible obtener de una cantidad dada de masa reactiva es lo que se denomina el impulso especifico llamando asi a la cantidad de impulso por unidad de peso en la Tierra se designa tipicamente como I s p displaystyle I sp La unidad para este valor es segundos Como el impulso especifico se mide con relacion de peso en la tierra a menudo no es importante cuando se habla de vehiculos en el espacio por esta razon se habla a veces de impulso especifico en terminos de unidades de masa Esta manera alternativa de medir el impulso especifico empleando unidades de masa kg hace que tenga unidades de velocidad m s y en realidad es igual a la velocidad de las particulas velocidad de evacuacion del motor cohete denominado de manera tipica como v e displaystyle v e Resulta confuso que ambos conceptos de impulso especifico se denominan de manera similar Aunque los dos valores difieren en un factor igual a la G la aceleracion de la gravedad sobre la superficie terrestre I s p G v e displaystyle I sp G v e Un cohete con una velocidad de evacuacion alta puede alcanzar el mismo impulso empleando una masa de reaccion menor Por lo tanto la energia requerida para impulsar es proporcional al cuadrado de la velocidad de evacuacion de la masa reactiva de esta manera se necesita imprimir mucha energia a la masa reactiva Esto es un problema si es un requerimiento que el motor proporcione una gran cantidad de empuje Para generar una gran cantidad de impulso por segundo se debe emplear una gran cantidad de energia por segundo De esta manera un motor altamente eficiente requiere grandes cantidades de energia para proporcionar grandes cantidades de empuje Como resultado la mayoria de los motores se disenan para proporcionar bajos niveles de empuje Calculos de la propulsion a chorro Editar Quemar el propelente de un cohete de una nave espacial es la mejor manera de producir un cambio neto de velocidad en el espacio a esta variacion la denominamos delta v La variacion total de velocidad la representamos como D v displaystyle Delta v de un vehiculo y representa una de las incognitas a resolver cuando se emplea la ecuacion cinematica de un cohete donde M es la masa de combustible o de propelente P es la masa de la carga util incluyendo la masa estructural del cohete y v e displaystyle v e es la velocidad de evacuacion de propelente por la tobera Todo estos parametros forman parte de la ecuacion de Tsiolkovsky D v v e ln M P P displaystyle Delta v v e ln left frac M P P right Por razones historicas la velocidad v e displaystyle v e se escribe a menudo como v e I s p g o displaystyle v e I sp g o donde I s p displaystyle I sp es el impulso especifico del cohete medido en segundos y g o displaystyle g o es la aceleracion gravitatoria en la superficie terrestre Para un viaje de largas distancias la mayoria de la masa de la nave espacial es masa reactiva Debido a que es necesario que la masa reactiva proporcione un aumento de velocidad a la masa de la carga util Si se tuviera que proporcionar a una carga util de masa P un cambio de velocidad de D v displaystyle Delta v y el motor del cohete tuviera una velocidad de evacuacion ve entonces la masa M reactiva seria calculada mediante la ecuacion de Tsiolkovsky mediante I s p displaystyle I sp M P e D v v e 1 displaystyle M P left e Delta v v e 1 right Para D v displaystyle Delta v mas pequena que la ve esta ecuacion es lineal y puede verse que basta con emplear una pequena masa reactiva Si D v displaystyle Delta v es comparable con ve entonces se necesita aproximadamente el doble de masa de propelente que de carga util lo que incluye motores tanques de combustible estructura y demas Tras este punto el crecimiento es exponencial las velocidades mas altas que la velocidad de evacuacion requieren ratios cada vez mayores de masa de propelente con respecto a la carga de pago carga util Para poder lograr esto mucha de la energia almacenada se destina a acelerar la propia masa reactiva Ademas conviene recordar que los motores Por reglas termodinamicas nunca son 100 eficientes liberan energia sin utilizar pero si se asume un 100 de eficiencia se necesitaria una energia de 1 2 M v e 2 displaystyle begin matrix frac 1 2 end matrix Mv e 2 Comparando con la ecuacion de cohetes que muestra cuanta energia necesita un vehiculo y la ecuacion energetica que muestra la energia total requerida se puede comprobar que bajo la suposicion de un 100 de eficiencia en el motor no toda la energia proporcionada acaba en el vehiculo sino una parte de ella de hecho la mayor parte de ella acaba siendo energia cinetica de la masa evacuada Para una mision por ejemplo de lanzamiento y planetizaje Aterrizar en otro planeta es necesario tener en cuenta que hay que superar las fuerzas de gravedad son resistentes al despegue y provocan un aumento del propelente necesario Es tipico considerar estas caractersisticas y otras muchas para poder lograr un correcto delta v efectivo en la mision Por ejemplo cuando se lanza una nave a una mision de orbita baja se requiere una delta v de 9 3 a 10 km s este valor forma parte de los numero integrados de los computadores de a bordo Por ejemplo si se quieren enviar 10 000 kg a Marte la D v displaystyle Delta v requerida para alcanzar una LEO low earth orbit orbita baja terrestre es de aproximadamente 3000 m s empleando una orbita de transferencia de Hohmann Si hubiera necesidad de guiar la nave se necesitaria mucho mas propelente Para ajustar el argumento los cohetes impulsores empleados hoy en dia pueden ser Motor Velocidad efectiva de evacuacion m s Impulso especifico s Masa de propelente kg Energia requerida GJ Energia por kgde propelente Minima potenciapor N de empujeCohete de combustible solido 1 000 100 190 000 95 500 kJ 0 5 kWCohete bipropelente 5 000 500 8 200 103 12 6 MJ 2 5 kWPropulsor ionico 50 000 5 000 620 775 1 25 GJ 25 kWSe ha de observar que cuando se es mas eficiente en el consumo de combustible los motores pueden necesitar menos peso de propelente para las mismas funciones esta masa es casi despreciable en relacion con la masa de carga util para algunos de los motores Sin embargo es de notar que es requerida una gran cantidad de energia Metodos de propulsion a chorro EditarLos metodos de propulsion pueden clasificarse mediante la manera de acelerar la masa reactiva Existen algunos metodos especiales para los lanzamientos las llegadas a los planetas y los aterrizajes 4 Motores cohete Editar Articulo principal Motor cohete Test de un motor cohete frio apagado de la NASA National Aeronautics and Space Administration administracion nacional de la aeronautica y el espacio La mayoria de los motores cohete son motores de combustion interna motores de calor debido en parte al protagonismo que toma la combustion El motor de un cohete generalmente produce altas temperaturas en la masa reactiva produciendo un gas caliente Este se produce mediante el quemado de un combustible solido liquido o gaseoso con un oxidante en una camara de combustion Al gas extremadamente caliente se le permite escapar a traves de una abertura capaz de hacer expandir el gas a una proporcion alta la abertura se denomina tobera Esta tobera con forma de campana le proporciona al cohete una forma caracteristica El efecto de la tobera provoca una aceleracion drastica de las particulas transformando la mayor parte de la energia termica en energia cinetica Las velocidades de evacuacion de gases a nivel de presion normal pueden llegar a superar facilmente casi 10 veces la velocidad del sonido Los cohetes que emiten plasma pueden potencialmente transportar reacciones dentro de una botella magnetica y lanzar el plasma via una tobera magnetica de tal manera que no haya contacto material con el plasma Desde luego la maquina que haga esto es compleja pero las investigaciones en fusion nuclear han desarrollado metodos algunos de los cuales han sido usados en sistemas especulativos de propulsion a chorro Vease motor cohete para una lista de los diferentes tipos de motores cohetes empleados en la industria aeroespacial asi como los diferentes formas de la camara de combustion incluyendo los quimicos electricos solar y nuclear Reactores para el lanzamiento Editar Articulo principal Reactores Los estudios muestran que los motores a reaccion tales como los ramjets o los turbojets son generalmente demasiado pesados la razon empuje peso es baja para cualquier desarrollo de operaciones de lanzamiento por esta razon se suelen lanzar desde otras naves ya en vuelo Los sistemas de lanzamiento pueden ser lanzamiento aereo desde un avion como por ejemplo desde una B 29 Pegasus y White Knight donde hacen uso de sus sistemas de propulsion Por otra parte existen los aerorreactores que son motores ligeros que tienen la ventaja de tomar aire durante la fase de ascenso SABRE un aerorreactor que emplea como combustible hidrogeno con un pre enfriador 5 ATREX otro aerorreactor de bajo peso con pre enfriador 6 Motor de ciclo de aire liquido Se trata de un motor que emplea hidrogeno y aire liquido antes de ser quemado en la camara de combustion Scramjet se trata de un aerorreactor que emplea combustion supersonicaLos cohetes normalmente se lanzan desde una posicion casi vertical y vuelan durante una decena de kilometros antes de llegar a su orbita este inicial lanzamiento vertical consume mucho propelente pero es optimo desde el punto de vista de resistencia aerodinamica Los aerorreactores queman propelente mas eficientemente y permiten emplear una trayectoria mas tangencial los vehiculos tipicamente vuelan tangencialmente a la superficie de la Tierra hasta que abandonan la atmosfera terrestre en este instante desarrollan un segundo cohete delta v que enlaza este estado con la orbita Aceleracion de la masa reactiva por electromagnetismo Editar Motor de prueba que acelera iones empleando fuerzas electromagneticas En lugar de someter a un liquido a altas temperaturas y a la dinamica de fluidos para acelerar la masa reactiva a altas velocidades existen una variedad de metodos que emplean las fuerzas del campo electrostatico o electromagnetico para acelerar la masa reactiva Generalmente en este tipo de motores la masa reactiva es una corriente de iones Tales motores necesitan de una fuente de energia potente para poder funcionar y unas altas velocidades de evacuacion requieren altas cantidades de energia Para algunas misiones la energia solar puede ser suficiente y es empleada muy a menudo pero para otras se requiere una fuente de energia nuclear los motores que emplean la energia de una fuente nuclear se denominan cohetes de electricidad nuclear Con la capacidad actual de generacion de electricidad bien sea quimicamente nuclear o solar se tiene una limitacion de empuje con este tipo de propulsion Algunos metodos electromagneticos Propulsion ionica Propulsion electrostatica de iones Propulsion emision de campo electrico Propulsion mediante efecto Hall Propulsion de doble capa Helicon Propulsion sin electrodos mediante plasma aceleracion por fuerzas electromagneticas emite plasma Propulsion de pulsos inductivos Propulsion de dinamica por magnetoplasma Cohete de impulso especifico variableSistemas sin masa reactiva transportada en el cohete Editar Estudio de la NASA sobre una vela solar La vela podria tener una magnitud de medio kilometro La ley de la conservacion de momento establece que cualquier motor que no emplee masa reactiva no puede mover su centro de gravedad cambiar la orientacion es sin embargo posible Sin embargo el espacio no esta vacio especialmente en el area del Sistema Solar donde puede haber campos magneticos el viento y la radiaccion solar Muchos sistemas de propulsion intentan disenarse de manera tal que se aprovechen de estas caracteristicas Debido a la caracteristica difusa de estos fenomenos en el sistema solar los motores que aprovechan estas fuentes de energia necesitan de unas estructuras de tamano considerable Los motores de estas caracteristicas no necesitan o en cualquier caso emplean una cantidad muy pequena de masa reactiva Propulsion mediante cables 7 Propulsion mediante velas solares Propulsion mediante velas magneticas Propulsion mediante plasma mini magnetosfericoPara cambiar la orientacion de la nave espacial en el espacio no existe sin embargo tal restriccion la ley de conservacion de momento angular no impone restricciones muchos satelites emplean un volante de inercia para controlar la orientacion del satelite Este metodo no es el unico para controlar la actitud del mismo se pueden emplear sistemas que aprovechen el viento solar o las fuerzas magneticas para hacer la misma funcion algunos de estos sistemas pueden disenarse de tal manera que pueden servir como sistema secundario Vease tambien EditarNave estelar de agujero negroPropulsion espacial termonuclearReferencias Editar Surfing an alien atmosphere en ingles Consultado el 3 de julio de 2010 Solar sailing facts what we do articulo en ingles en el sitio web The Planetary Society Medicina aeroespacial articulo en espanol en el sitio web FECYT Consultado el 3 de julio de 2010 A pesar de que en la epoca de los descensos en la Luna se utilizo la palabra alunizaje actualmente se recomienda utilizar la palabra aterrizaje 1 con respecto a cualquier cuerpo celeste ya que esta no significa descender en el planeta Tierra sino descender en tierra firme 2 Asi existen los verbos amerizar de amerizaje que dicho de un hidroavion o de un aparato astronautico significa posarse en el mar 3 amarar de mar que dicho de un hidroavion o de un aparato astronautico significa posarse en el agua 4 De lo contrario en un futuro no muy lejano habria que inventar toda una serie de verbos para adaptarse al descenso en cada cuerpo celeste mercurizaje venerizaje amartizaje ajovizaje ganimedizaje ioizaje europizaje saturnizaje uranizaje neptunizaje plutonizaje etc The SABRE engine articulo en ingles en el sitio web Reaction Engines Consultado el 5 de noviembre de 2006 Harada Kenya et al Development study on precooler for ATREX engine articulo en el sitio web Institute of Space and Astronautical Science Propulsion System Laboratory Consultado el 5 de noviembre de 2006 NASA calls on industry academia for in space propulsion innovations articulo en ingles del 24 de octubre de 2002 en el sitio web de la NASA Enlaces externos EditarGuia de la NASA para principiantes lectura obligada para aquellos que sin conocimientos tecnicos desean saber algo sobre el tema Proyecto de propulsion en el sitio web de la NASA Propulsion de cohetes en el sitio web Braeunig Journal of Advanced Theoretical Propulsion revista en ingles publicada en el sitio web Transtator Industries Diferentes tipos de cohetes en el sitio web Project RHO Earth to orbit transportation bibliography la mas extensa bibliografia sobre la sistemas de transporte mediante propulsion en el sitio web Island One Spaceflight propulsion recopilacion detallada realizada por Greg Goebel de domino publico en el sitio web Vector Site Datos Q609089 Multimedia Spacecraft propulsionObtenido de https es wikipedia org w index php title Propulsion espacial amp oldid 136479236, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos