fbpx
Wikipedia

Memoria de acceso aleatorio

La memoria de acceso aleatorio (Random Access Memory, RAM) se utiliza como memoria de trabajo de computadoras y otros dispositivos para el sistema operativo, los programas y la mayor parte del software. En la RAM se cargan todas las instrucciones que ejecuta la unidad central de procesamiento (CPU) y otras unidades del computador, además de contener los datos que manipulan los distintos programas.

Se denominan «de acceso aleatorio» porque se puede leer o escribir en una posición de memoria con un tiempo de espera igual para cualquier posición, no siendo necesario seguir un orden para acceder (acceso secuencial) a la información de la manera más rápida posible.

Durante el encendido de la computadora, la rutina POST verifica que los módulos de RAM estén conectados de manera correcta. En el caso que no existan o no se detecten los módulos, la mayoría de tarjetas madres emiten una serie de sonidos que indican la ausencia de memoria principal. Terminado ese proceso, la memoria BIOS puede realizar un test básico sobre la memoria RAM indicando fallos mayores en la RAM

Historia

 
Integrado de silicio de 64 bits sobre un sector de memoria de núcleo magnético (finales de los 60).
 
4MiB de memoria RAM para un computador VAX de finales de los 70. Los integrados de memoria DRAM están agrupados arriba a derecha e izquierda.
 
Módulos de memoria tipo SIPP instalados directamente sobre la placa base.

Uno de los primeros tipos de memoria RAM fue la memoria de núcleo magnético, desarrollada entre 1949 y 1952 y usada en muchos computadores hasta el desarrollo de circuitos integrados a finales de los años 60 y principios de los 70. Esa memoria requería que cada bit estuviera almacenado en un toroide de material ferromagnético de algunos milímetros de diámetro, lo que resultaba en dispositivos con una capacidad de memoria muy pequeña. Antes que eso, las computadoras usaban relés y líneas de retardo de varios tipos construidas para implementar las funciones de memoria principal con o sin acceso aleatorio.

En 1969 fueron lanzadas una de las primeras memorias RAM basadas en semiconductores de silicio por parte de Intel con el integrado 3101 de 64 bits de memoria y para el siguiente año se presentó una memoria DRAM de 1024 bits, referencia 1103 que se constituyó en un hito, ya que fue la primera en ser comercializada con éxito, lo que significó el principio del fin para las memorias de núcleo magnético. En comparación con los integrados de memoria DRAM actuales, la 1103 es primitiva en varios aspectos, pero tenía un desempeño mayor que la memoria de núcleos.

En 1973 se presentó una innovación que permitió otra miniaturización y se convirtió en estándar para las memorias DRAM: la multiplexación en tiempo de la direcciones de memoria. MOSTEK lanzó la referencia MK4096 de 4096 bytes en un empaque de 16 pines,[1]​ mientras sus competidores las fabricaban en el empaque DIP de 22 pines. El esquema de direccionamiento[2]​ se convirtió en un estándar de facto debido a la gran popularidad que logró esta referencia de DRAM. Para finales de los 70 los integrados eran usados en la mayoría de computadores nuevos, se soldaban directamente a las placas base o se instalaban en zócalos, de manera que ocupaban un área extensa de circuito impreso. Con el tiempo se hizo obvio que la instalación de RAM sobre el impreso principal, impedía la miniaturización , entonces se idearon los primeros módulos de memoria como el SIPP, aprovechando las ventajas de la construcción modular. El formato SIMM fue una mejora al anterior, eliminando los pines metálicos y dejando unas áreas de cobre en uno de los bordes del impreso, muy similares a los de las tarjetas de expansión, de hecho los módulos SIPP y los primeros SIMM tienen la misma distribución de pines.

A finales de los 80 el aumento en la velocidad de los procesadores y el aumento en el ancho de banda requerido, dejaron rezagadas a las memorias DRAM con el esquema original MOSTEK, de manera que se realizaron una serie de mejoras en el direccionamiento como las siguientes:

 
Módulos formato SIMM de 30 y 72 pines, los últimos fueron utilizados con integrados tipo EDO-RAM.

FPM RAM

Fast Page Mode RAM (FPM-RAM) fue inspirado en técnicas como el Burst Mode usado en procesadores como el Intel 486.[3]​ Se implantó un modo direccionamiento en el que el controlador de memoria envía una sola dirección y recibe a cambio esa y varias consecutivas sin necesidad de generar todas las direcciones. Esto supone un ahorro de tiempos ya que ciertas operaciones son repetitivas cuando se desea acceder a muchas posiciones consecutivas. Funciona como si deseáramos visitar todas las casas en una calle: después de la primera vez no sería necesario decir el número de la calle únicamente seguir la misma. Se fabricaban con tiempos de acceso de 70 o 60 ns y fueron muy populares en sistemas basados en el 486 y los primeros Pentium.

EDO RAM

Extended Data Output RAM (EDO-RAM) fue lanzada al mercado en 1994 y con tiempos de accesos de 40 o 30 ns suponía una mejora sobre FPM, su antecesora. La EDO, también es capaz de enviar direcciones contiguas pero direcciona la columna que va a utilizar mientras que se lee la información de la columna anterior, dando como resultado una eliminación de estados de espera, manteniendo activo el búfer de salida hasta que comienza el próximo ciclo de lectura.

BEDO RAM

Burst Extended Data Output RAM (BEDO-RAM) fue la evolución de la EDO-RAM y competidora de la SDRAM, fue presentada en 1997. Era un tipo de memoria que usaba generadores internos de direcciones y accedía a más de una posición de memoria en cada ciclo de reloj, de manera que lograba un 50 % de beneficios, mejor que la EDO. Nunca salió al mercado, dado que Intel y otros fabricantes se decidieron por esquemas de memoria sincrónicos que si bien tenían mucho del direccionamiento MOSTEK, agregan funcionalidades distintas como señales de reloj.

Tipos de RAM

Las dos formas principales de RAM moderna son:

  1. SRAM (Static Random Access Memory), RAM estática, memoria estática de acceso aleatorio.
  2. DRAM (Dynamic Random Access Memory), RAM dinámica, memoria dinámica de acceso aleatorio.
    1. DRAM Asincrónica (Asynchronous Dynamic Random Access Memory), memoria de acceso aleatorio dinámica asincrónica.
      • FPM RAM (Fast Page Mode RAM)
      • EDO RAM (Extended Data Output RAM)
    2. SDRAM (Synchronous Dynamic Random-Access Memory, memoria de acceso aleatorio dinámica sincrónica)
      • Rambus:
        • RDRAM (Rambus Dynamic Random Access Memory)
        • XDR DRAM (eXtreme Data Rate Dynamic Random Access Memory)
        • XDR2 DRAM (eXtreme Data Rate two Dynamic Random Access Memory)
      • SDR SDRAM (Single Data Rate Synchronous Dynamic Random-Access Memory, SDRAM de tasa de datos simple)
      • DDR SDRAM (Double Data Rate Synchronous Dynamic Random-Access Memory, SDRAM de tasa de datos doble)
      • DDR2 SDRAM (Double Data Rate type two SDRAM, SDRAM de tasa de datos doble de tipo dos)
      • DDR3 SDRAM (Double Data Rate type three SDRAM, SDRAM de tasa de datos doble de tipo tres)
      • DDR4 SDRAM (Double Data Rate type four SDRAM, SDRAM de tasa de datos doble de tipo cuatro).
      • DDR5 SDRAM (Double Data Rate type five SDRAM, SDRAM de tasa de datos doble de tipo cinco).
      • DDR6 SDRAM (Double Data Rate type six SDRAM, SDRAM de tasa de datos doble de tipo seis).

Nomenclatura

La expresión memoria RAM se utiliza frecuentemente para describir a los módulos de memoria utilizados en las computadoras personales y servidores.

La RAM es solo una variedad de la memoria de acceso aleatorio: las ROM, memorias Flash, caché (SRAM), los registros en procesadores y otras unidades de procesamiento también poseen la cualidad de presentar retardos de acceso iguales para cualquier posición.

Los módulos de RAM son la presentación comercial de este tipo de memoria, que se compone de circuitos integrados soldados sobre un circuito impreso independiente, en otros dispositivos como las consolas de videojuegos, la RAM va soldada directamente sobre la placa principal.

Módulos de RAM

 
Formato SO-DIMM.

Los módulos de RAM son tarjetas o placas de circuito impreso que tienen soldados chips de memoria DRAM, por una o ambas caras.

La implementación DRAM se basa en una topología de circuito eléctrico que permite alcanzar densidades altas de memoria por cantidad de transistores, logrando integrados de cientos o miles de megabits. Además de DRAM, los módulos poseen un integrado que permiten la identificación de los mismos ante la computadora por medio del protocolo de comunicación Serial Presence Detect (SPD).

La conexión con los demás componentes se realiza por medio de un área de pines en uno de los filos del circuito impreso, que permiten que el módulo al ser instalado en un zócalo o ranura apropiada de la placa base, tenga buen contacto eléctrico con los controladores de memoria y las fuentes de alimentación.

La necesidad de hacer intercambiable los módulos, y de utilizar integrados de distintos fabricantes, condujo al establecimiento de estándares de la industria como los Joint Electron Device Engineering Council (JEDEC).

  1. Paquete DIP (Dual In-line Package, paquete de pines en-línea doble).
  2. Paquete SIPP (Single In-line Pin Package, paquete de pines en-línea simple): fueron los primeros módulos comerciales de memoria, de formato propietario, es decir, no había un estándar entre distintas marcas.
  3. Módulos RIMM (Rambus In-line Memory Module, módulo de memoria en-línea rambus): Fueron otros módulos propietarios bastante conocidos, ideados por la empresa RAMBUS.
  4. Módulos SIMM (Single In-line Memory Module, módulo de memoria en-línea simple): formato usado en computadoras antiguas. Tenían un bus de datos de 16 o 32 bits.
  5. Módulos DIMM (Dual In-line Memory Module, módulo de memoria en-línea dual): usado en computadoras de escritorio. Se caracterizan por tener un bus de datos de 64 bits.
  6. Módulos SO-DIMM (Small Outline DIMM): usado en computadoras portátiles. Formato miniaturizado de DIMM.
  7. Módulos FB-DIMM (Fully-Buffered Dual Inline Memory Module): usado en servidores.

Tecnologías de memoria

La tecnología de memoria actual usa una señal de sincronización para realizar las funciones de lectura/escritura de manera que siempre está sincronizada con un reloj del bus de memoria, a diferencia de las antiguas memorias FPM y EDO que eran asíncronas.

Toda la industria se decantó por las tecnologías síncronas, porque permiten construir integrados que funcionen a una frecuencia superior a 66 MHz.

Tipos de DIMM según su cantidad de contactos o pines:

Cantidad de pines Tipos de DIMM Usados por: Observaciones
072 SO-DIMM FPM-DRAM y EDO-DRAM (no el mismo que un 72-pin SIMM)
100 DIMM printer SDRAM
144 SO-DIMM SDR SDRAM
168 DIMM SDR SDRAM (menos frecuente para FPM/EDO DRAM en áreas de trabajo y/o servidores)
172 Micro-DIMM DDR SDRAM
184 DIMM DDR SDRAM
200 SO-DIMM DDR SDRAM y DDR2 SDRAM
204 SO-DIMM DDR3 SDRAM
240 DIMM DDR2 SDRAM, DDR3 SDRAM y Fully Buffered DIMM (FB-DIMM) DRAM
244 Mini-DIMM DDR2 SDRAM
 
Memorias RAM con tecnologías usadas en la actualidad.

SDR SDRAM

Memoria síncrona, con tiempos de acceso de entre 25 y 10 ns y que se presentan en módulos DIMM de 168 contactos. Fue utilizada en los Pentium II y en los Pentium III , así como en los AMD K6, AMD Athlon K7 y Duron. Está muy extendida la creencia de que se llama SDRAM a secas, y que la denominación SDR SDRAM es para diferenciarla de la memoria DDR, pero no es así, simplemente se extendió muy rápido la denominación incorrecta. El nombre correcto es SDR SDRAM ya que ambas (tanto la SDR como la DDR) son memorias síncronas dinámicas. Los tipos disponibles son:

  • PC66: SDR SDRAM, funciona a un máx de 66,6 MHz.
  • PC100: SDR SDRAM, funciona a un máx de 100 MHz.
  • PC133: SDR SDRAM, funciona a un máx de 133,3 MHz.

RDRAM

Se presentan en módulos RIMM de 184 contactos. Fue utilizada en los Pentium 4 . Era la memoria más rápida en su tiempo, pero por su elevado costo fue rápidamente cambiada por la económica DDR. Los tipos disponibles son:

  • PC600: RIMM RDRAM, funciona a un máximo de 300 MHz.
  • PC700: RIMM RDRAM, funciona a un máximo de 350 MHz.
  • PC800: RIMM RDRAM, funciona a un máximo de 400 MHz.
  • PC1066: RIMM RDRAM, funciona a un máximo de 533 MHz.
  • PC1200: RIMN RDRAM, funciona a un máximo de 600 MHz.

DDR SDRAM

Memoria síncrona, envía los datos dos veces por cada ciclo de reloj. De este modo trabaja al doble de velocidad del bus del sistema, sin necesidad de aumentar la frecuencia de reloj. Se presenta en módulos DIMM de 184 contactos en el caso de ordenador de escritorio y en módulos de 144 contactos para los ordenadores portátiles.

La nomenclatura utilizada para definir a los módulos de memoria de tipo DDR (esto incluye a los formatos DDR2, DDR3 y DDR4) es la siguiente: DDRx-yyyy PCx-zzzz; donde x representa a la generación DDR en cuestión; yyyy la frecuencia aparente o efectiva, en Megaciclos por segundo (MHz); y zzzz la máxima tasa de transferencia de datos por segundo, en Megabytes, que se puede lograr entre el módulo de memoria y el controlador de memoria. La tasa de transferencia depende de dos factores, el ancho de bus de datos (por lo general 64 bits) y la frecuencia aparente o efectiva de trabajo. La fórmula que se utiliza para calcular la máxima tasa de transferencia por segundo entre el módulo de memoria y su controlador, es la siguiente:

Tasa de transferencia en MB/s = (Frecuencia DDR efectiva) × (64 bits / 8 bits por cada byte)[4]

Por ejemplo:

1 GB DDR-400 PC-3200: Representa un módulo de 1 GB (Gigabyte) de tipo DDR; con frecuencia aparente o efectiva de trabajo de 400 MHz; y una tasa de transferencia de datos máxima de 3200 MB/s.

4 GB DDR3-2133 PC3-17000: Representa un módulo de 4 GB de tipo DDR3; frecuencia aparente o efectiva de trabajo de 2133 MHz; y una tasa de transferencia de datos máxima de 17000 MB/s.

Los tipos disponibles son:

  • PC1600 o DDR 200: funciona a un máx de 200 MHz.
  • PC2100 o DDR 266: funciona a un máx de 266,6 MHz.
  • PC2700 o DDR 333: funciona a un máx de 333,3 MHz.
  • PC3200 o DDR 400: funciona a un máx de 400 MHz.
  • PC3500 o DDR 433 funciona a un máx de 433 MHz.
  • PC4500 o DDR 500: funciona a una máx de 500 MHz.

DDR2 SDRAM

 
Módulos de memoria instalados de 256 MiB cada uno en un sistema con doble canal.

Las memorias DDR 2 son una mejora de las memorias DDR (Double Data Rate), que permiten que los búferes de entrada/salida trabajen al doble de la frecuencia del núcleo, permitiendo que durante cada ciclo de reloj se realicen cuatro transferencias. Se presentan en módulos DIMM de 240 contactos. Los tipos disponibles son:

  • PC2-3200 o DDR2-400: funciona a un máx de 400 MHz.
  • PC2-4200 o DDR2-533: funciona a un máx de 533,3 MHz.
  • PC2-5300 o DDR2-667: funciona a un máx de 666,6 MHz.
  • PC2-6400 o DDR2-800: funciona a un máx de 800 MHz.
  • PC2-8600 o DDR2-1066: funciona a un máx de 1066,6 MHz.
  • PC2-9000 o DDR2-1200: funciona a un máx de 1200 MHz.

DDR3 SDRAM

Las memorias DDR 3 son una mejora de las memorias DDR 2, proporcionan significantes mejoras en el rendimiento en niveles de bajo voltaje, lo que lleva consigo una disminución del gasto global de consumo. Los módulos DIMM DDR 3 tienen 240 pines, el mismo número que DDR 2; sin embargo, los DIMMs son físicamente incompatibles, debido a una ubicación diferente de la muesca. Los tipos disponibles son:

  • PC3-6400 o DDR3-800: funciona a un máx de 800 MHz.
  • PC3-8500 o DDR3-1066: funciona a un máx de 1066,6 MHz.
  • PC3-10600 o DDR3-1333: funciona a un máx de 1333,3 MHz.
  • PC3-12800 o DDR3-1600: funciona a un máx de 1600 MHz.
  • PC3-14900 o DDR3-1866: funciona a un máx de 1866,6 MHz.
  • PC3-17000 o DDR3-2133: funciona a un máx de 2133,3 MHz.
  • PC3-19200 o DDR3-2400: funciona a un máx de 2400 MHz.
  • PC3-21300 o DDR3-2666: funciona a un máx de 2666,6 MHz.

DDR4 SDRAM

  • PC4-1600 o DDR4-1600: funciona a un máx de 1600 MHz.
  • PC4-1866 o DDR4-1866: funciona a un máx de 1866,6 MHz.
  • PC4-17000 o DDR4-2133: funciona a un máx de 2133,3 MHz.
  • PC4-19200 o DDR4-2400: funciona a un máx de 2400 MHz.
  • PC4-25600 o DDR4-2666: funciona a un máx de 2666,6 MHz.

Relación con el resto del sistema

 
Diagrama de la arquitectura de un ordenador.

Dentro de la jerarquía de memoria, la RAM se encuentra en un nivel después de los registros del procesador y de las cachés en cuanto a velocidad.

Los módulos de RAM se conectan eléctricamente a un controlador de memoria que gestiona las señales entrantes y salientes de los integrados DRAM. Las señales son de tres tipos: direccionamiento, datos y señales de control. En el módulo de memoria esas señales están divididas en dos buses y un conjunto misceláneo de líneas de control y alimentación. Entre todas forman el bus de memoria que conecta la RAM con su controlador:

  • Bus de datos: son las líneas que llevan información entre los integrados y el controlador. Por lo general, están agrupados en octetos siendo de 8, 16, 32 y 64 bits, cantidad que debe igualar el ancho del bus de datos del procesador. En el pasado, algunos formatos de módulo, no tenían un ancho de bus igual al del procesador. En ese caso había que montar módulos en pares o en situaciones extremas, de a 4 módulos, para completar lo que se denominaba banco de memoria, de otro modo el sistema no funciona. Esa fue la principal razón para aumentar el número de pines en los módulos, igualando al ancho de bus de procesadores como el Pentium a 64 bits, a principios de los años 1990.
  • Bus de direcciones: es un bus en el cual se colocan las direcciones de memoria a las que se requiere acceder. No es igual al bus de direcciones del resto del sistema, ya que está multiplexado de manera que la dirección se envía en dos etapas. Para ello, el controlador realiza temporizaciones y usa las líneas de control. En cada estándar de módulo se establece un tamaño máximo en bits de este bus, estableciendo un límite teórico de la capacidad máxima por módulo.
  • Señales misceláneas: entre las que están las de la alimentación (Vdd, Vss) que se encargan de entregar potencia a los integrados. Están las líneas de comunicación para el integrado de presencia (Serial Presence Detect) que sirve para identificar cada módulo. Están las líneas de control entre las que se encuentran las llamadas RAS (Row Address Strobe) y CAS (Column Address Strobe) que controlan el bus de direcciones, por último están las señales de reloj en las memorias sincrónicas SDRAM.

Algunos controladores de memoria en sistemas como PC y servidores se encuentran embebidos en el llamado puente norte (North Bridge) de la placa base. Otros sistemas incluyen el controlador dentro del mismo procesador (en el caso de los procesadores desde AMD Athlon 64 e Intel Core i7 y posteriores). En la mayoría de los casos el tipo de memoria que puede manejar el sistema está limitado por los sockets para RAM instalados en la placa base, a pesar de que los controladores de memoria en muchos casos son capaces de conectarse con tecnologías de memoria distintas.

Una característica especial de algunos controladores de memoria, es el manejo de la tecnología canal doble o doble canal (Dual Channel), donde el controlador maneja bancos de memoria de 128 bits, siendo capaz de entregar los datos de manera intercalada, optando por uno u otro canal, reduciendo las latencias vistas por el procesador. La mejora en el desempeño es variable y depende de la configuración y uso del equipo. Esta característica ha promovido la modificación de los controladores de memoria, resultando en la aparición de nuevos chipsets (la serie 865 y 875 de Intel) o de nuevos zócalos de procesador en los AMD (el 939 con canal doble , reemplazo el 754 de canal sencillo). Los equipos de gamas media y alta por lo general se fabrican basados en chipsets o zócalos que soportan doble canal o superior, como en el caso del zócalo (socket) 1366 de Intel, que usaba un triple canal de memoria, o su nuevo LGA 2011 que usa cuádruple canal.

Detección y corrección de errores

Existen dos clases de errores en los sistemas de memoria, las fallas (Hard fails) que son daños en el hardware y los errores (soft errors) provocados por causas fortuitas. Los primeros son relativamente fáciles de detectar (en algunas condiciones el diagnóstico es equivocado), los segundos al ser resultado de eventos aleatorios, son más difíciles de hallar. En la actualidad la confiabilidad de las memorias RAM frente a los errores, es suficientemente alta como para no realizar verificación sobre los datos almacenados, por lo menos para aplicaciones de oficina y caseras. En los usos más críticos, se aplican técnicas de corrección y detección de errores basadas en diferentes estrategias:

  • La técnica del bit de paridad consiste en guardar un bit adicional por cada byte de datos y en la lectura se comprueba si el número de unos es par (“paridad par”) o impar (“paridad impar”), detectándose así el error.
  • Una técnica mejor es la que usa “código de autochequeo y autocorrector” (error-correcting code, ECC), que permite detectar errores de 1 a 4 bits y corregir errores que afecten a un solo bit. Esta técnica se usa solo en sistemas que requieren alta fiabilidad.

Por lo general, los sistemas con cualquier tipo de protección contra errores tiene un coste más alto, y sufren de pequeñas penalizaciones en desempeño, con respecto a los sistemas sin protección. Para tener un sistema con ECC o paridad, el chipset y las memorias deben tener soporte para esas tecnologías. La mayoría de placas base no poseen dicho soporte.

Para los fallos de memoria se pueden utilizar herramientas de software especializadas que realizan pruebas sobre los módulos de memoria RAM. Entre estos programas uno de los más conocidos es la aplicación Memtest86+ que detecta fallos de memoria.

RAM registrada

Es un tipo de módulo usado frecuentemente en servidores, posee circuitos integrados que se encargan de repetir las señales de control y direcciones: las señales de reloj son reconstruidas con ayuda del PLL que está ubicado en el módulo mismo. Las señales de datos se conectan de la misma forma que en los módulos no registrados: de manera directa entre los integrados de memoria y el controlador. Los sistemas con memoria registrada permiten conectar más módulos de memoria y de una capacidad más alta, sin que haya perturbaciones en las señales del controlador de memoria, permitiendo el manejo de grandes cantidades de memoria RAM. Entre las desventajas de los sistemas de memoria registrada están el hecho de que se agrega un ciclo de retardo para cada solicitud de acceso a una posición no consecutiva y un precio más alto que los módulos no registrados. La memoria registrada es incompatible con los controladores de memoria que no soportan el modo registrado, a pesar de que se pueden instalar físicamente en el zócalo. Se pueden reconocer visualmente porque tienen un integrado mediano, cerca del centro geométrico del circuito impreso, además de que estos módulos suelen ser algo más altos.[5]

Durante el año 2006 varias marcas lanzaron al mercado sistemas con memoria FB-DIMM que en su momento se pensaron como los sucesores de la memoria registrada, pero se abandonó esa tecnología en 2007 dado que ofrecía pocas ventajas sobre el diseño tradicional de memoria registrada y los nuevos modelos con memoria DDR3.[6]

Véase también

Referencias

  1. . Archivado desde el original el 12 de enero de 2012. Consultado el 2009. 
  2. «Datasheet & Application Note Database, PDF, Circuits, Datasheets / Datasheet Archive». 
  3. «The HP Vectra 486 memory controller / Hewlett-Packard Journal /Find Articles at BNET». Consultado el 2009. 
  4. «Cómo funciona la memoria de una computadora». 
  5. http://www.theinquirer.net/inquirer/news/1014319/fb-dimm-dead-rddr3-king
  •   Datos: Q5295
  •   Multimedia: RAM

memoria, acceso, aleatorio, este, artículo, sección, tiene, referencias, pero, necesita, más, para, complementar, verificabilidad, este, aviso, puesto, octubre, 2015, redirige, aquí, para, otras, acepciones, véase, desambiguación, memoria, acceso, aleatorio, r. Este articulo o seccion tiene referencias pero necesita mas para complementar su verificabilidad Este aviso fue puesto el 31 de octubre de 2015 RAM redirige aqui Para otras acepciones vease RAM desambiguacion La memoria de acceso aleatorio Random Access Memory RAM se utiliza como memoria de trabajo de computadoras y otros dispositivos para el sistema operativo los programas y la mayor parte del software En la RAM se cargan todas las instrucciones que ejecuta la unidad central de procesamiento CPU y otras unidades del computador ademas de contener los datos que manipulan los distintos programas Se denominan de acceso aleatorio porque se puede leer o escribir en una posicion de memoria con un tiempo de espera igual para cualquier posicion no siendo necesario seguir un orden para acceder acceso secuencial a la informacion de la manera mas rapida posible Durante el encendido de la computadora la rutina POST verifica que los modulos de RAM esten conectados de manera correcta En el caso que no existan o no se detecten los modulos la mayoria de tarjetas madres emiten una serie de sonidos que indican la ausencia de memoria principal Terminado ese proceso la memoria BIOS puede realizar un test basico sobre la memoria RAM indicando fallos mayores en la RAM Indice 1 Historia 1 1 FPM RAM 1 2 EDO RAM 1 3 BEDO RAM 2 Tipos de RAM 3 Nomenclatura 4 Modulos de RAM 5 Tecnologias de memoria 5 1 SDR SDRAM 5 2 RDRAM 5 3 DDR SDRAM 5 4 DDR2 SDRAM 5 5 DDR3 SDRAM 5 6 DDR4 SDRAM 6 Relacion con el resto del sistema 7 Deteccion y correccion de errores 8 RAM registrada 9 Vease tambien 10 ReferenciasHistoria Editar Integrado de silicio de 64 bits sobre un sector de memoria de nucleo magnetico finales de los 60 4MiB de memoria RAM para un computador VAX de finales de los 70 Los integrados de memoria DRAM estan agrupados arriba a derecha e izquierda Modulos de memoria tipo SIPP instalados directamente sobre la placa base Uno de los primeros tipos de memoria RAM fue la memoria de nucleo magnetico desarrollada entre 1949 y 1952 y usada en muchos computadores hasta el desarrollo de circuitos integrados a finales de los anos 60 y principios de los 70 Esa memoria requeria que cada bit estuviera almacenado en un toroide de material ferromagnetico de algunos milimetros de diametro lo que resultaba en dispositivos con una capacidad de memoria muy pequena Antes que eso las computadoras usaban reles y lineas de retardo de varios tipos construidas para implementar las funciones de memoria principal con o sin acceso aleatorio En 1969 fueron lanzadas una de las primeras memorias RAM basadas en semiconductores de silicio por parte de Intel con el integrado 3101 de 64 bits de memoria y para el siguiente ano se presento una memoria DRAM de 1024 bits referencia 1103 que se constituyo en un hito ya que fue la primera en ser comercializada con exito lo que significo el principio del fin para las memorias de nucleo magnetico En comparacion con los integrados de memoria DRAM actuales la 1103 es primitiva en varios aspectos pero tenia un desempeno mayor que la memoria de nucleos En 1973 se presento una innovacion que permitio otra miniaturizacion y se convirtio en estandar para las memorias DRAM la multiplexacion en tiempo de la direcciones de memoria MOSTEK lanzo la referencia MK4096 de 4096 bytes en un empaque de 16 pines 1 mientras sus competidores las fabricaban en el empaque DIP de 22 pines El esquema de direccionamiento 2 se convirtio en un estandar de facto debido a la gran popularidad que logro esta referencia de DRAM Para finales de los 70 los integrados eran usados en la mayoria de computadores nuevos se soldaban directamente a las placas base o se instalaban en zocalos de manera que ocupaban un area extensa de circuito impreso Con el tiempo se hizo obvio que la instalacion de RAM sobre el impreso principal impedia la miniaturizacion entonces se idearon los primeros modulos de memoria como el SIPP aprovechando las ventajas de la construccion modular El formato SIMM fue una mejora al anterior eliminando los pines metalicos y dejando unas areas de cobre en uno de los bordes del impreso muy similares a los de las tarjetas de expansion de hecho los modulos SIPP y los primeros SIMM tienen la misma distribucion de pines A finales de los 80 el aumento en la velocidad de los procesadores y el aumento en el ancho de banda requerido dejaron rezagadas a las memorias DRAM con el esquema original MOSTEK de manera que se realizaron una serie de mejoras en el direccionamiento como las siguientes Modulos formato SIMM de 30 y 72 pines los ultimos fueron utilizados con integrados tipo EDO RAM FPM RAM Editar Fast Page Mode RAM FPM RAM fue inspirado en tecnicas como el Burst Mode usado en procesadores como el Intel 486 3 Se implanto un modo direccionamiento en el que el controlador de memoria envia una sola direccion y recibe a cambio esa y varias consecutivas sin necesidad de generar todas las direcciones Esto supone un ahorro de tiempos ya que ciertas operaciones son repetitivas cuando se desea acceder a muchas posiciones consecutivas Funciona como si desearamos visitar todas las casas en una calle despues de la primera vez no seria necesario decir el numero de la calle unicamente seguir la misma Se fabricaban con tiempos de acceso de 70 o 60 ns y fueron muy populares en sistemas basados en el 486 y los primeros Pentium EDO RAM Editar Extended Data Output RAM EDO RAM fue lanzada al mercado en 1994 y con tiempos de accesos de 40 o 30 ns suponia una mejora sobre FPM su antecesora La EDO tambien es capaz de enviar direcciones contiguas pero direcciona la columna que va a utilizar mientras que se lee la informacion de la columna anterior dando como resultado una eliminacion de estados de espera manteniendo activo el bufer de salida hasta que comienza el proximo ciclo de lectura BEDO RAM Editar Burst Extended Data Output RAM BEDO RAM fue la evolucion de la EDO RAM y competidora de la SDRAM fue presentada en 1997 Era un tipo de memoria que usaba generadores internos de direcciones y accedia a mas de una posicion de memoria en cada ciclo de reloj de manera que lograba un 50 de beneficios mejor que la EDO Nunca salio al mercado dado que Intel y otros fabricantes se decidieron por esquemas de memoria sincronicos que si bien tenian mucho del direccionamiento MOSTEK agregan funcionalidades distintas como senales de reloj Tipos de RAM EditarLas dos formas principales de RAM moderna son SRAM Static Random Access Memory RAM estatica memoria estatica de acceso aleatorio volatiles no volatiles NVRAM non volatile random access memory memoria de acceso aleatorio no volatil MRAM magnetoresistive random access memory memoria de acceso aleatorio magnetorresistiva o magnetica DRAM Dynamic Random Access Memory RAM dinamica memoria dinamica de acceso aleatorio DRAM Asincronica Asynchronous Dynamic Random Access Memory memoria de acceso aleatorio dinamica asincronica FPM RAM Fast Page Mode RAM EDO RAM Extended Data Output RAM SDRAM Synchronous Dynamic Random Access Memory memoria de acceso aleatorio dinamica sincronica Rambus RDRAM Rambus Dynamic Random Access Memory XDR DRAM eXtreme Data Rate Dynamic Random Access Memory XDR2 DRAM eXtreme Data Rate two Dynamic Random Access Memory SDR SDRAM Single Data Rate Synchronous Dynamic Random Access Memory SDRAM de tasa de datos simple DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory SDRAM de tasa de datos doble DDR2 SDRAM Double Data Rate type two SDRAM SDRAM de tasa de datos doble de tipo dos DDR3 SDRAM Double Data Rate type three SDRAM SDRAM de tasa de datos doble de tipo tres DDR4 SDRAM Double Data Rate type four SDRAM SDRAM de tasa de datos doble de tipo cuatro DDR5 SDRAM Double Data Rate type five SDRAM SDRAM de tasa de datos doble de tipo cinco DDR6 SDRAM Double Data Rate type six SDRAM SDRAM de tasa de datos doble de tipo seis Nomenclatura EditarLa expresion memoria RAM se utiliza frecuentemente para describir a los modulos de memoria utilizados en las computadoras personales y servidores La RAM es solo una variedad de la memoria de acceso aleatorio las ROM memorias Flash cache SRAM los registros en procesadores y otras unidades de procesamiento tambien poseen la cualidad de presentar retardos de acceso iguales para cualquier posicion Los modulos de RAM son la presentacion comercial de este tipo de memoria que se compone de circuitos integrados soldados sobre un circuito impreso independiente en otros dispositivos como las consolas de videojuegos la RAM va soldada directamente sobre la placa principal Modulos de RAM Editar Formato SO DIMM Los modulos de RAM son tarjetas o placas de circuito impreso que tienen soldados chips de memoria DRAM por una o ambas caras La implementacion DRAM se basa en una topologia de circuito electrico que permite alcanzar densidades altas de memoria por cantidad de transistores logrando integrados de cientos o miles de megabits Ademas de DRAM los modulos poseen un integrado que permiten la identificacion de los mismos ante la computadora por medio del protocolo de comunicacion Serial Presence Detect SPD La conexion con los demas componentes se realiza por medio de un area de pines en uno de los filos del circuito impreso que permiten que el modulo al ser instalado en un zocalo o ranura apropiada de la placa base tenga buen contacto electrico con los controladores de memoria y las fuentes de alimentacion La necesidad de hacer intercambiable los modulos y de utilizar integrados de distintos fabricantes condujo al establecimiento de estandares de la industria como los Joint Electron Device Engineering Council JEDEC Paquete DIP Dual In line Package paquete de pines en linea doble Paquete SIPP Single In line Pin Package paquete de pines en linea simple fueron los primeros modulos comerciales de memoria de formato propietario es decir no habia un estandar entre distintas marcas Modulos RIMM Rambus In line Memory Module modulo de memoria en linea rambus Fueron otros modulos propietarios bastante conocidos ideados por la empresa RAMBUS Modulos SIMM Single In line Memory Module modulo de memoria en linea simple formato usado en computadoras antiguas Tenian un bus de datos de 16 o 32 bits Modulos DIMM Dual In line Memory Module modulo de memoria en linea dual usado en computadoras de escritorio Se caracterizan por tener un bus de datos de 64 bits Modulos SO DIMM Small Outline DIMM usado en computadoras portatiles Formato miniaturizado de DIMM Modulos FB DIMM Fully Buffered Dual Inline Memory Module usado en servidores Tecnologias de memoria EditarLa tecnologia de memoria actual usa una senal de sincronizacion para realizar las funciones de lectura escritura de manera que siempre esta sincronizada con un reloj del bus de memoria a diferencia de las antiguas memorias FPM y EDO que eran asincronas Toda la industria se decanto por las tecnologias sincronas porque permiten construir integrados que funcionen a una frecuencia superior a 66 MHz Tipos de DIMM segun su cantidad de contactos o pines Cantidad de pines Tipos de DIMM Usados por Observaciones072 SO DIMM FPM DRAM y EDO DRAM no el mismo que un 72 pin SIMM 100 DIMM printer SDRAM144 SO DIMM SDR SDRAM168 DIMM SDR SDRAM menos frecuente para FPM EDO DRAM en areas de trabajo y o servidores 172 Micro DIMM DDR SDRAM184 DIMM DDR SDRAM200 SO DIMM DDR SDRAM y DDR2 SDRAM204 SO DIMM DDR3 SDRAM240 DIMM DDR2 SDRAM DDR3 SDRAM y Fully Buffered DIMM FB DIMM DRAM244 Mini DIMM DDR2 SDRAM Memorias RAM con tecnologias usadas en la actualidad SDR SDRAM Editar Articulo principal SDR SDRAM Memoria sincrona con tiempos de acceso de entre 25 y 10 ns y que se presentan en modulos DIMM de 168 contactos Fue utilizada en los Pentium II y en los Pentium III asi como en los AMD K6 AMD Athlon K7 y Duron Esta muy extendida la creencia de que se llama SDRAM a secas y que la denominacion SDR SDRAM es para diferenciarla de la memoria DDR pero no es asi simplemente se extendio muy rapido la denominacion incorrecta El nombre correcto es SDR SDRAM ya que ambas tanto la SDR como la DDR son memorias sincronas dinamicas Los tipos disponibles son PC66 SDR SDRAM funciona a un max de 66 6 MHz PC100 SDR SDRAM funciona a un max de 100 MHz PC133 SDR SDRAM funciona a un max de 133 3 MHz RDRAM Editar Articulo principal RDRAM Se presentan en modulos RIMM de 184 contactos Fue utilizada en los Pentium 4 Era la memoria mas rapida en su tiempo pero por su elevado costo fue rapidamente cambiada por la economica DDR Los tipos disponibles son PC600 RIMM RDRAM funciona a un maximo de 300 MHz PC700 RIMM RDRAM funciona a un maximo de 350 MHz PC800 RIMM RDRAM funciona a un maximo de 400 MHz PC1066 RIMM RDRAM funciona a un maximo de 533 MHz PC1200 RIMN RDRAM funciona a un maximo de 600 MHz DDR SDRAM Editar Articulo principal DDR SDRAM Memoria sincrona envia los datos dos veces por cada ciclo de reloj De este modo trabaja al doble de velocidad del bus del sistema sin necesidad de aumentar la frecuencia de reloj Se presenta en modulos DIMM de 184 contactos en el caso de ordenador de escritorio y en modulos de 144 contactos para los ordenadores portatiles La nomenclatura utilizada para definir a los modulos de memoria de tipo DDR esto incluye a los formatos DDR2 DDR3 y DDR4 es la siguiente DDRx yyyy PCx zzzz donde x representa a la generacion DDR en cuestion yyyy la frecuencia aparente o efectiva en Megaciclos por segundo MHz y zzzz la maxima tasa de transferencia de datos por segundo en Megabytes que se puede lograr entre el modulo de memoria y el controlador de memoria La tasa de transferencia depende de dos factores el ancho de bus de datos por lo general 64 bits y la frecuencia aparente o efectiva de trabajo La formula que se utiliza para calcular la maxima tasa de transferencia por segundo entre el modulo de memoria y su controlador es la siguiente Tasa de transferencia en MB s Frecuencia DDR efectiva 64 bits 8 bits por cada byte 4 Por ejemplo 1 GB DDR 400 PC 3200 Representa un modulo de 1 GB Gigabyte de tipo DDR con frecuencia aparente o efectiva de trabajo de 400 MHz y una tasa de transferencia de datos maxima de 3200 MB s 4 GB DDR3 2133 PC3 17000 Representa un modulo de 4 GB de tipo DDR3 frecuencia aparente o efectiva de trabajo de 2133 MHz y una tasa de transferencia de datos maxima de 17000 MB s Los tipos disponibles son PC1600 o DDR 200 funciona a un max de 200 MHz PC2100 o DDR 266 funciona a un max de 266 6 MHz PC2700 o DDR 333 funciona a un max de 333 3 MHz PC3200 o DDR 400 funciona a un max de 400 MHz PC3500 o DDR 433 funciona a un max de 433 MHz PC4500 o DDR 500 funciona a una max de 500 MHz DDR2 SDRAM Editar Articulo principal DDR2 SDRAM Modulos de memoria instalados de 256 MiB cada uno en un sistema con doble canal Las memorias DDR 2 son una mejora de las memorias DDR Double Data Rate que permiten que los buferes de entrada salida trabajen al doble de la frecuencia del nucleo permitiendo que durante cada ciclo de reloj se realicen cuatro transferencias Se presentan en modulos DIMM de 240 contactos Los tipos disponibles son PC2 3200 o DDR2 400 funciona a un max de 400 MHz PC2 4200 o DDR2 533 funciona a un max de 533 3 MHz PC2 5300 o DDR2 667 funciona a un max de 666 6 MHz PC2 6400 o DDR2 800 funciona a un max de 800 MHz PC2 8600 o DDR2 1066 funciona a un max de 1066 6 MHz PC2 9000 o DDR2 1200 funciona a un max de 1200 MHz DDR3 SDRAM Editar Articulo principal DDR3 SDRAM Las memorias DDR 3 son una mejora de las memorias DDR 2 proporcionan significantes mejoras en el rendimiento en niveles de bajo voltaje lo que lleva consigo una disminucion del gasto global de consumo Los modulos DIMM DDR 3 tienen 240 pines el mismo numero que DDR 2 sin embargo los DIMMs son fisicamente incompatibles debido a una ubicacion diferente de la muesca Los tipos disponibles son PC3 6400 o DDR3 800 funciona a un max de 800 MHz PC3 8500 o DDR3 1066 funciona a un max de 1066 6 MHz PC3 10600 o DDR3 1333 funciona a un max de 1333 3 MHz PC3 12800 o DDR3 1600 funciona a un max de 1600 MHz PC3 14900 o DDR3 1866 funciona a un max de 1866 6 MHz PC3 17000 o DDR3 2133 funciona a un max de 2133 3 MHz PC3 19200 o DDR3 2400 funciona a un max de 2400 MHz PC3 21300 o DDR3 2666 funciona a un max de 2666 6 MHz DDR4 SDRAM Editar Articulo principal DDR4 SDRAM PC4 1600 o DDR4 1600 funciona a un max de 1600 MHz PC4 1866 o DDR4 1866 funciona a un max de 1866 6 MHz PC4 17000 o DDR4 2133 funciona a un max de 2133 3 MHz PC4 19200 o DDR4 2400 funciona a un max de 2400 MHz PC4 25600 o DDR4 2666 funciona a un max de 2666 6 MHz Relacion con el resto del sistema Editar Diagrama de la arquitectura de un ordenador Dentro de la jerarquia de memoria la RAM se encuentra en un nivel despues de los registros del procesador y de las caches en cuanto a velocidad Los modulos de RAM se conectan electricamente a un controlador de memoria que gestiona las senales entrantes y salientes de los integrados DRAM Las senales son de tres tipos direccionamiento datos y senales de control En el modulo de memoria esas senales estan divididas en dos buses y un conjunto miscelaneo de lineas de control y alimentacion Entre todas forman el bus de memoria que conecta la RAM con su controlador Bus de datos son las lineas que llevan informacion entre los integrados y el controlador Por lo general estan agrupados en octetos siendo de 8 16 32 y 64 bits cantidad que debe igualar el ancho del bus de datos del procesador En el pasado algunos formatos de modulo no tenian un ancho de bus igual al del procesador En ese caso habia que montar modulos en pares o en situaciones extremas de a 4 modulos para completar lo que se denominaba banco de memoria de otro modo el sistema no funciona Esa fue la principal razon para aumentar el numero de pines en los modulos igualando al ancho de bus de procesadores como el Pentium a 64 bits a principios de los anos 1990 Bus de direcciones es un bus en el cual se colocan las direcciones de memoria a las que se requiere acceder No es igual al bus de direcciones del resto del sistema ya que esta multiplexado de manera que la direccion se envia en dos etapas Para ello el controlador realiza temporizaciones y usa las lineas de control En cada estandar de modulo se establece un tamano maximo en bits de este bus estableciendo un limite teorico de la capacidad maxima por modulo Senales miscelaneas entre las que estan las de la alimentacion Vdd Vss que se encargan de entregar potencia a los integrados Estan las lineas de comunicacion para el integrado de presencia Serial Presence Detect que sirve para identificar cada modulo Estan las lineas de control entre las que se encuentran las llamadas RAS Row Address Strobe y CAS Column Address Strobe que controlan el bus de direcciones por ultimo estan las senales de reloj en las memorias sincronicas SDRAM Algunos controladores de memoria en sistemas como PC y servidores se encuentran embebidos en el llamado puente norte North Bridge de la placa base Otros sistemas incluyen el controlador dentro del mismo procesador en el caso de los procesadores desde AMD Athlon 64 e Intel Core i7 y posteriores En la mayoria de los casos el tipo de memoria que puede manejar el sistema esta limitado por los sockets para RAM instalados en la placa base a pesar de que los controladores de memoria en muchos casos son capaces de conectarse con tecnologias de memoria distintas Una caracteristica especial de algunos controladores de memoria es el manejo de la tecnologia canal doble o doble canal Dual Channel donde el controlador maneja bancos de memoria de 128 bits siendo capaz de entregar los datos de manera intercalada optando por uno u otro canal reduciendo las latencias vistas por el procesador La mejora en el desempeno es variable y depende de la configuracion y uso del equipo Esta caracteristica ha promovido la modificacion de los controladores de memoria resultando en la aparicion de nuevos chipsets la serie 865 y 875 de Intel o de nuevos zocalos de procesador en los AMD el 939 con canal doble reemplazo el 754 de canal sencillo Los equipos de gamas media y alta por lo general se fabrican basados en chipsets o zocalos que soportan doble canal o superior como en el caso del zocalo socket 1366 de Intel que usaba un triple canal de memoria o su nuevo LGA 2011 que usa cuadruple canal Deteccion y correccion de errores EditarExisten dos clases de errores en los sistemas de memoria las fallas Hard fails que son danos en el hardware y los errores soft errors provocados por causas fortuitas Los primeros son relativamente faciles de detectar en algunas condiciones el diagnostico es equivocado los segundos al ser resultado de eventos aleatorios son mas dificiles de hallar En la actualidad la confiabilidad de las memorias RAM frente a los errores es suficientemente alta como para no realizar verificacion sobre los datos almacenados por lo menos para aplicaciones de oficina y caseras En los usos mas criticos se aplican tecnicas de correccion y deteccion de errores basadas en diferentes estrategias La tecnica del bit de paridad consiste en guardar un bit adicional por cada byte de datos y en la lectura se comprueba si el numero de unos es par paridad par o impar paridad impar detectandose asi el error Una tecnica mejor es la que usa codigo de autochequeo y autocorrector error correcting code ECC que permite detectar errores de 1 a 4 bits y corregir errores que afecten a un solo bit Esta tecnica se usa solo en sistemas que requieren alta fiabilidad Por lo general los sistemas con cualquier tipo de proteccion contra errores tiene un coste mas alto y sufren de pequenas penalizaciones en desempeno con respecto a los sistemas sin proteccion Para tener un sistema con ECC o paridad el chipset y las memorias deben tener soporte para esas tecnologias La mayoria de placas base no poseen dicho soporte Para los fallos de memoria se pueden utilizar herramientas de software especializadas que realizan pruebas sobre los modulos de memoria RAM Entre estos programas uno de los mas conocidos es la aplicacion Memtest86 que detecta fallos de memoria RAM registrada EditarEs un tipo de modulo usado frecuentemente en servidores posee circuitos integrados que se encargan de repetir las senales de control y direcciones las senales de reloj son reconstruidas con ayuda del PLL que esta ubicado en el modulo mismo Las senales de datos se conectan de la misma forma que en los modulos no registrados de manera directa entre los integrados de memoria y el controlador Los sistemas con memoria registrada permiten conectar mas modulos de memoria y de una capacidad mas alta sin que haya perturbaciones en las senales del controlador de memoria permitiendo el manejo de grandes cantidades de memoria RAM Entre las desventajas de los sistemas de memoria registrada estan el hecho de que se agrega un ciclo de retardo para cada solicitud de acceso a una posicion no consecutiva y un precio mas alto que los modulos no registrados La memoria registrada es incompatible con los controladores de memoria que no soportan el modo registrado a pesar de que se pueden instalar fisicamente en el zocalo Se pueden reconocer visualmente porque tienen un integrado mediano cerca del centro geometrico del circuito impreso ademas de que estos modulos suelen ser algo mas altos 5 Durante el ano 2006 varias marcas lanzaron al mercado sistemas con memoria FB DIMM que en su momento se pensaron como los sucesores de la memoria registrada pero se abandono esa tecnologia en 2007 dado que ofrecia pocas ventajas sobre el diseno tradicional de memoria registrada y los nuevos modelos con memoria DDR3 6 Vease tambien EditarAcceso aleatorio Circuito impreso Circuito integrado Doble canal DRAM Joint Electron Device Engineering Council Memoria informatica Memoria FRAM Memoria grafica de acceso aleatorio Memoria principal Memoria de semiconductor Memoria de solo lectura Memoria volatil Ranura de expansion RDRAM Serial Presence Detect SRAM Tecnologia de montaje superficial Zocalo electronica Referencias Editar Mostek Firsts Archivado desde el original el 12 de enero de 2012 Consultado el 2009 Datasheet amp Application Note Database PDF Circuits Datasheets Datasheet Archive The HP Vectra 486 memory controller Hewlett Packard Journal Find Articles at BNET Consultado el 2009 Como funciona la memoria de una computadora https web archive org web 20120310085510 http download micron com pdf datasheets modules ddr2 HTJ S36C512 1Gx72 pdf http www theinquirer net inquirer news 1014319 fb dimm dead rddr3 king Datos Q5295 Multimedia RAMObtenido de https es wikipedia org w index php title Memoria de acceso aleatorio amp oldid 136734544, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos