fbpx
Wikipedia

Tiempo atmosférico

El tiempo atmosférico o meteorológico es el estado de la atmósfera en un momento y lugar determinado[1]​ definido por diversas variables meteorológicas[2]​ como la temperatura, la presión, el viento, la radiación solar, la humedad y la precipitación.[3][4]​ La mayoría de los fenómenos del tiempo ocurren en la troposfera[5][6]​, la capa por debajo de la Estratósfera, siendo la capa inferior de la atmósfera que está en contacto con la superficie. Es importante diferenciar tiempo de clima, ya que este último se refiere a las condiciones atmosféricas promedio que caracterizan a un lugar.[7]​ Esos promedios suelen realizarse en periodos de varias décadas.

Tormenta cerca de Gazrajau (Madeira).

El tiempo es impulsado por la presión de aire, la temperatura y las diferencias de humedad entre un lugar y otro. Estas diferencias pueden ocurrir debido al ángulo del sol en cualquier sitio particular, el cual varía por latitud desde los trópicos. [8]​El fuerte contraste de temperatura entre el aire polar y el tropical da origen a las circulaciones atmosféricas de mayor escala: la Célula de Hadley, la célula de Ferrel, la célula polar y la corriente en chorro[8]​. Sistemas de tiempo en las latitudes medias, como los ciclones extratropicales, son causados por inestabilidades del flujo de corriente en chorro. Debido a que el eje de la Tierra está inclinado en relación a su plano orbital, la luz solar incide en ángulos diferentes en los distintos meses del año. Sobre la superficie de la Tierra, las temperaturas normalmente varían anualmente entre ±40 °C.[8]​ A lo largo de miles de años, cambios en la órbita terrestre pueden afectar la cantidad y distribución de la energía solar recibida por la Tierra, influenciando así el clima a largo plazo y el cambio climático global.

Las diferencias de temperatura de la superficie a su vez causan diferencias de presión. Las altitudes más elevadas son más frías que las bajas debido a diferencias en calentamiento de compresión. El pronóstico del tiempo es la aplicación de la ciencia y tecnología para pronosticar el estado de la atmósfera para un momento futuro y una ubicación dada. El sistema es un caótico; cambios tan pequeños a una parte del sistema puede crecer para tener efectos grandes en todo el sistema. A través de la historia, han existido intentos humanos de controlar el tiempo y existe evidencia de que las actividades humanas como la agricultura y la industria han modificado los patrones atmosféricos.

El estudio sobre cómo funciona el tiempo en otros planetas han sido útiles en comprender su funcionamiento en la Tierra. Un lugar famoso en el sistema solar, es la Gran Mancha Roja de Júpiter, es una tormenta anticiclónica que existe desde al menos 300 años. No obstante, el tiempo no se limita a los cuerpos planetarios. La corona de una estrella se pierde constantemente en el espacio, creando lo que esencialmente es una muy delgada atmósfera a través del sistema solar. El transporte de masa expulsado del Sol se conoce como viento solar.

Origen y flujo de la energía atmosférica

 
Una imagen de satélite de la NASA de la desembocadura del Amazonas nos muestra algunos de los flujos de energía en la atmósfera: los rayos solares calientan la superficie terrestre, las tierras en primer lugar (con mayor rapidez) y las aguas después (más lentamente). El calentamiento de las tierras calienta a su vez el aire superficial, que se eleva, enfriándose y condensándose la humedad atmosférica que se convierte en agua líquida que forma las nubes. Mientras tanto, el agua de los grandes ríos amazónicos está absorbiendo la radiación solar más lentamente por lo que no hay evaporación de sus aguas y, por lo tanto, tampoco hay calentamiento del aire en esas áreas, no hay convección ni condensación en ellas.

La insolación

Casi la totalidad de la energía solar que genera todos los cambios atmosféricos procede de la radiación solar, es decir, de la insolación. Pero los rayos solares no calientan directamente al aire atmosférico por la propiedad del aire en su conjunto de la diatermancia que explica que la atmósfera se deja atravesar por los rayos solares sin prácticamente calentarse. Así el calentamiento de la atmósfera por la radiación solar es indirecto: los rayos solares calientan primero la litósfera (de manera rápida) y la hidrósfera (más lentamente que la litosfera). Cuando tanto la litósfera como la hidrósfera se han calentado, van cediendo ese calor a la atmósfera, la primera rápidamente y la segunda más lentamente, todo ello de acuerdo a lo explicado sobre el calentamiento de la litosfera y la hidrosfera en el artículo ya citado (diatermancia). La imagen del delta del río Amazonas que aquí se presenta está tomada durante la mañana. Si la comparásemos con una imagen similar durante el anochecer ese mismo día (ello se hace posible, no en una imagen del espectro visible, sino en una imagen infrarroja) veríamos que la situación se invierte, apareciendo mayor condensación sobre los ríos que sobre las tierras.

 
2015 – 5to Año global más caliente en el registro (desde 1880) hasta el 2021 – Los colores indican las anomalías de temperatura (NASA/NOAA; 20 de enero de 2016).[9]

Debido a que el eje de la Tierra está inclinado con respecto a su plano orbital, la luz solar incide en diferentes ángulos en diferentes épocas del año. En junio, el hemisferio norte está inclinado hacia el sol, por lo que en cualquier latitud del hemisferio norte la luz solar cae más directamente en ese lugar que en diciembre.[10]​ Este efecto provoca estaciones. Durante miles a cientos de miles de años, los cambios en los parámetros orbitales de la Tierra afectan la cantidad y distribución de la energía solar recibida por la Tierra e influyen en el clima a largo plazo. (Ver ciclos de Milankovitch).[11]

El calentamiento solar desigual (la formación de zonas de gradientes de temperatura y humedad, o frontogénesis) también puede deberse al clima mismo en forma de nubosidad y precipitación.[12]​ Las altitudes más altas son típicamente más frías que las altitudes más bajas, lo que es el resultado de una temperatura superficial más alta y un calentamiento por radiación, que produce la tasa de caída adiabática. [13][14]​ En algunas situaciones, la temperatura aumenta con la altura. Este fenómeno se conoce como inversión y puede hacer que las cimas de las montañas sean más cálidas que los valles que se encuentran debajo. Las inversiones pueden conducir a la formación de niebla y, a menudo, actúan como un límite que suprime el desarrollo de tormentas eléctricas. A escalas locales, las diferencias de temperatura pueden ocurrir porque diferentes superficies (como océanos, bosques, capas de hielo u objetos artificiales) tienen diferentes características físicas como reflectividad, rugosidad o contenido de humedad.

Otras fuentes de energía atmosférica

 
Erupción del Volcán Mayón en la isla de Luzón, Filipinas, en 1984. Puede verse a la izquierda una nube formada por vapor de agua muy caliente de la erupción al enfriarse con la temperatura ambiente.
 
Fuente hidrotermal submarina, cuya energía produce el ambiente que posibilita la existencia de fauna abisal en sus alrededores a pesar de la enorme presión que existe por la gran profundidad del fondo oceánico.

Además de la radiación solar existen tres fuentes menores de energía térmica que pueden calentar la atmósfera:

  • La energía geotérmica de los puntos calientes en el fondo oceánico. Esta energía pasa al agua oceánica que se calienta o llega incluso a hervir, evaporándose con lo que absorbe calor que, al condensarse, pasa al aire atmosférico (por ejemplo, la última erupción submarina en la isla de El Hierro en las Islas Canarias).
  • Las erupciones volcánicas también pueden llegar a calentar la atmósfera de manera directa, sin que la radiación solar intervenga.
  • La transpiración de plantas y animales así como la respiración de los seres vivos. Esta última fuente de calor es muy importante, como nos muestran las fotografías infrarrojas de las zonas de vegetación presentes en la superficie terrestre. Sin embargo, estas tres fuentes de calor resultan insignificantes cuando las comparamos con la energía solar recibida en la superficie terrestre. Si aquí se señalan es para aclarar la idea inicial de este tema de que la casi totalidad de la energía que se almacena en la atmósfera procede de la radiación solar. Y de las tres fuentes de calentamiento distinto a la radiación solar, la formada por la transpiración de la vegetación es la más importante por su estabilidad en el tiempo y por usar el CO2 como materia prima, además de la liberación de oxígeno libre, sin lo cual la vida de los animales se haría imposible.

Fenómenos meteorológicos

 
Huracán Luis en 1995.

El tiempo cambia movido por las diferencias de energía solar percibida en cada área diferenciada de acuerdo con una escala de tiempo que va desde menos de un día (diferencias de radiación entre el día y la noche) hasta períodos estacionales a lo largo del año. Las estaciones meteorológicas miden las distintas variables locales del tiempo como la temperatura, la presión atmosférica, la humedad, la nubosidad, el viento y el monto pluviométrico de las lluvias o precipitaciones. Conocidas estas variables directas, se pueden averiguar otras derivadas, como la presión de vapor de condensación, la temperatura de sensación o la temperatura de bochorno.

Mediante redes de estaciones meteorológicas locales, estaciones en barcos y satélites meteorológicos, la meteorología intenta averiguar las variables meteorológicas en los vértices de una malla tridimensional del menor tamaño posible. A partir de estas condiciones iniciales y aplicando las leyes de la física, se intenta predecir la evolución del tiempo. Para ello hay que usar potentes ordenadores que se encargan de realizar los cálculos usando un modelo predictivo de tipo empírico.

Pronóstico meteorológico

La realización de pronósticos meteorológicos a una escala regional y, especialmente, a escala local, constituye hoy en día una actividad sumamente importante y extendida en casi todo el mundo y en numerosas actividades. La organización de la aviación civil (horarios, previsiones, alternativas de vuelo, etc.) depende en gran manera, y cada vez más, de los pronósticos meteorológicos muy detallados. Lo mismo sucede con otros tipos de actividades (agricultura, transporte, comercio, servicios de todo tipo, etc.). Esta actividad se basa en los datos suministrados por las estaciones meteorológicas estratégicamente ubicadas e intercomunicadas entre sí y por la información obtenida en tiempo real de multitud de satélites meteorológicos, principalmente, satélites geoestacionarios, drones (vuelos no tripulados) y otros medios de obtención de datos atmosféricos.

Un ejemplo de los datos obtenidos casi en tiempo real y con imágenes en secuencia del hemisferio occidental y sectores del mismo (que permiten ver el movimiento de las masas nubosas, desplazamiento y energía transportada por las nubes, etc.) son los que proporciona el sitio web de la NASA de satélites geoestacionarios Goes (http://www.goes.noaa.gov/). Una visión animada de la secuencia de imágenes del Caribe y Atlántico al norte del ecuador y que se actualizan cada 30 minutos, puede verse en: [1].

Efecto sobre los humanos

El clima, visto desde una perspectiva antropológica, es algo que todos los humanos en el mundo experimentan constantemente a través de sus sentidos, al menos mientras están afuera. Hay conocimientos construidos social y científicamente sobre qué es el clima, qué lo hace cambiar, el efecto que tiene en los humanos en diferentes situaciones, etc.[15]​ Por lo tanto, el clima es algo sobre lo que la gente suele comunicarse. Los países cuentan con un Servicio Meteorológico Nacional que generalmente produce un informe anual de muertes, lesiones y costos totales de daños que incluyen cultivos y propiedades. Por ejemplo en Estados Unidos a partir de 2019, los tornados han tenido el mayor impacto en los seres humanos con 42 muertes y han costado daños a cultivos y propiedades de más de 3 mil millones de dólares.[16]

Efectos sobre las poblaciones

 
Nueva Orleans, Luisiana, luego de haber sido alcanzada por el huracán Katrina. Katrina fue un huracán categoría 3 cuando alcanzó tierra firme si bien fue un huracán categoría 5 mientras se desplazaba por el Golfo de México.

El clima ha jugado un papel importante y, a veces, directo en la historia de la humanidad. Aparte de los cambios climáticos que han provocado la deriva gradual de las poblaciones (por ejemplo, la desertificación del Medio Oriente y la formación de puentes terrestres durante los períodos glaciares), los fenómenos meteorológicos extremos han provocado movimientos de población a menor escala y se han inmiscuido directamente en los acontecimientos históricos. Uno de esos eventos es la salvación de Japón de la invasión de la flota mongola de Kublai Khan por los vientos Kamikaze en 1281.[17]​ Las reclamaciones francesas sobre Florida llegaron a su fin en 1565 cuando un huracán destruyó la flota francesa, lo que permitió a España conquistar Fort Caroline.[18]​ Más recientemente, el huracán Katrina redistribuyó a más de un millón de personas de la costa central del Golfo en otras partes de los Estados Unidos, convirtiéndose en la diáspora más grande en la historia de los Estados Unidos.[19]

La Pequeña Edad de Hielo produjo la pérdida de cosechas y hambrunas en Europa. Durante el período denominado la Fluctuación Grindelwald (1560-1630), eventos producto de actividades volcánicas[20]​ parece que produjeron eventos meterorológicos extremos.[21]​ Estos incluyeron sequías, tormentas y ventiscas fuera de temporada, además de causar la expansión del glaciar suizo Grindelwald. La década de 1690 vio la peor hambruna en Francia desde la Edad Media. Finlandia sufrió una hambruna severa en 1696-1697, durante la cual murió aproximadamente un tercio de la población finlandesa.[22]

Modificación

La aspiración de controlar el clima es evidente a lo largo de la historia de la humanidad: desde los antiguos rituales destinados a traer lluvia para las cosechas hasta la Operación Popeye del ejércoto de los Estados Unidos, un intento de interrumpir las líneas de suministro alargando el monzón de Vietnam del Norte. Los intentos más exitosos de influir en el clima involucran la siembra de nubes; incluyen las técnicas de dispersión de niebla y nubes stratus bajas empleadas por los principales aeropuertos, técnicas utilizadas para aumentar las precipitaciones invernales sobre las montañas y técnicas para suprimir el granizo.[23]​ Un ejemplo reciente de control del clima fue la preparación de China para los Juegos Olímpicos de Verano de 2008. China disparó 1.104 cohetes de dispersión de lluvia desde 21 sitios en la ciudad de Beijing en un esfuerzo por mantener la lluvia alejada de la ceremonia inaugural de los juegos el 8 de agosto de 2008. Guo Hu, jefe de la Oficina Meteorológica Municipal de Beijing (BMB), confirmó el éxito de la operación con 100 milímetros cayendo en la ciudad de Baoding de la provincia de Hebei, al suroeste y en el distrito de Fangshan de Beijing registrando una precipitación de 25 milímetros.[24]

Si bien no existen pruebas concluyentes de la eficacia de estas técnicas, existen numerosas pruebas de que la actividad humana, como la agricultura y la industria, produce modificaciones climáticas involuntarias: [23]

Los efectos de la modificación climática inadvertida pueden representar graves amenazas para muchos aspectos de la civilización, incluidos los ecosistemas, los recursos naturales, la producción de alimentos y fibras, el desarrollo económico y la salud humana.[27]

Clima extraterrestre en el Sistema Solar

 
La Gran Mancha Roja de Júpiter en febrero de 1979, fotografiada por la nave no tripulada de la NASA Voyager 1.

El estudio de cómo funciona el clima en otros planetas ha resultado útil para comprender cómo funciona en la Tierra.[28]​ El clima en otros planetas sigue muchos de los mismos principios físicos que el clima en Tierra, pero ocurre en diferentes escalas y en atmósferas que tienen diferente composición química. La misión Cassini-Huygens a Titán descubrió nubes formadas a partir de metano o etano que depositan lluvia compuesta de metano líquido y otros compuestos orgánicos.[29]​ La atmósfera de la Tierra incluye seis zonas de circulación latitudinales, tres en cada hemisferio.[30]​ En contraste el aspecto en franjas de Júpiter indica la presencia de numerosas zonas,[31]​ Titán tiene una sola corriente en chorro cerca del paralelo 50 de latitud norte,[32]​ y Venus tiene una sola corriente en chorro cerca del ecuador.[33]

Uno de los hitos más famosos del Sistema Solar, la Gran Mancha Roja de Júpiter, es una tormenta anticiclónica que se sabe que ha existido durante al menos 300 años.[34]​ En otros gigantes gaseosos, la falta de superficie permite que el viento alcance velocidades enormes: ráfagas de hasta 2100 km/h se han medido en el planeta Neptuno.[35]​ Esto ha creado un acertijo para los científicos planetarios. En última instancia, el clima es creado por energía solar y la cantidad de energía recibida por Neptuno es solo aproximadamente 1900 de la recibida por la Tierra, sin embargo, la intensidad de los fenómenos climáticos en Neptuno es mucho mayor que en la Tierra.[36]​ Los vientos planetarios más fuertes descubiertos hasta ahora están en el planeta extrasolar HD 189733 b, que se cree que tiene vientos del este que se mueven a más de 9600 km/h.[37]

Véase también

Referencias

  1. Servicio Nacional de Meteorología e Hidrología (SeNaMHi) (Septiembre 2018). Un buen clima. Glosario de términos meteorológicos.. Perú. p. 8. 
  2. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) (Agosto de 2019). Glosario Meteorológico. Colombia. p. 286. 
  3. Rodríguez Jiménez, Rosa María; Benito Capa, Águeda; Portela Lozano, Adelaida (2004). Meteorología y Climatología. Fundación Española para la Ciencia y la Tecnología (FECYT). p. 12 a 33. 
  4. Merriam-Webster Dictionary. Weather. Retrieved on 27 June 2008.
  5. Glossary of Meteorology. Hydrosphere. (enlace roto disponible en ). Retrieved on 27 June 2008.
  6. . Glossary of Meteorology. 28 de septiembre de 2012. Consultado el 11 de octubre de 2020. 
  7. «Diccionario y glosario en climatología». Laboratorio de Climatología - Universidad de alicante. Última actualización: 8-Sep-2016. 
  8. L., Hartmann, Dennis (2016-01-02). Global physical climatology. Elsevier. pp. 165–76. ISBN 9780123285317
  9. Brown, Dwayne; Cabbage, Michael; McCarthy, Leslie; Norton, Karen (20 January 2016). «NASA, NOAA Analyses Reveal Record-Shattering Global Warm Temperatures in 2015». NASA. Consultado el 21 de enero de 2016. 
  10. Windows to the Universe. Earth's Tilt Is the Reason for the Seasons! (enlace roto disponible en ). Retrieved on 28 June 2008.
  11. Milankovitch, Milutin. Canon of Insolation and the Ice Age Problem. Zavod za Udz̆benike i Nastavna Sredstva: Belgrade, 1941. ISBN 86-17-06619-9.
  12. Ron W. Przybylinski. The Concept of Frontogenesis and its Application to Winter Weather Forecasting. Retrieved on 28 June 2008.
  13. Mark Zachary Jacobson (2005). Fundamentals of Atmospheric Modeling (2nd edición). Cambridge University Press. ISBN 978-0-521-83970-9. OCLC 243560910. 
  14. C. Donald Ahrens (2006). Meteorology Today (8th edición). Brooks/Cole Publishing. ISBN 978-0-495-01162-0. OCLC 224863929. 
  15. Crate, Susan A; Nuttall, Mark, eds. (2009). Anthropology and Climate Change: From Encounters to Actions. Walnut Creek, CA: Left Coast Press. pp. 70-86, i.e. the chapter 'Climate and weather discourse in anthropology: from determinism to uncertain futures' by Nicholas Peterson & Kenneth Broad. 
  16. United States. National Weather Service. Office of Climate, Water, Weather Services, & National Climatic Data Center. (2000). Weather Related Fatality and Injury Statistics.
  17. James P. Delgado. Relics of the Kamikaze. Retrieved on 28 June 2008.
  18. Mike Strong. Fort Caroline National Memorial. (enlace roto disponible en ). Retrieved on 28 June 2008.
  19. Anthony E. Ladd, John Marszalek, and Duane A. Gill. The Other Diaspora: New Orleans Student Evacuation Impacts and Responses Surrounding Hurricane Katrina. (enlace roto disponible en ). Retrieved on 29 March 2008.
  20. Jason Wolfe, Volcanoes and Climate Change, NASA, 28 July 2020). Date retrieved: 28 May 2021.
  21. Jones, Evan T.; Hewlett, Rose; Mackay, Anson W. (5 de mayo de 2021). «Weird weather in Bristol during the Grindelwald Fluctuation (1560–1630)». Weather 76 (4): 104-110. Bibcode:2021Wthr...76..104J. doi:10.1002/wea.3846 – via Wiley Online Library. 
  22. "Famine in Scotland: The 'Ill Years' of the 1690s". Karen J. Cullen (2010). Edinburgh University Press. p. 21. ISBN 0-7486-3887-3
  23. American Meteorological Society (enlace roto disponible en ).
  24. Huanet, Xin (9 August 2008). «Beijing disperses rain to dry Olympic night». Chinaview. Consultado el 24 August 2008. 
  25. Intergovernmental Panel on Climate Change
  26. Zhang, Guang (28 January 2012). «Cities Affect Temperatures for Thousands of Miles». ScienceDaily. 
  27. Intergovernmental Panel on Climate Change
  28. Britt, Robert Roy (6 March 2001). . Space.com. Archivado desde el original el 2 de mayo de 2001. 
  29. M. Fulchignoni; F. Ferri; F. Angrilli; A. Bar-Nun; M.A. Barucci; G. Bianchini et al. (2002). «The Characterisation of Titan's Atmospheric Physical Properties by the Huygens Atmospheric Structure Instrument (Hasi)». Space Science Reviews 104 (1): 395-431. Bibcode:2002SSRv..104..395F. doi:10.1023/A:1023688607077. 
  30. Jet Propulsion Laboratory. Overview – Climate: The Spherical Shape of the Earth: Climatic Zones. (enlace roto disponible en ). Consultado 28 junio 2008.
  31. Anne Minard. Jupiter's "Jet Stream" Heated by Surface, Not Sun. Consultado 28 junio 2008.
  32. ESA: Cassini–Huygens. The jet stream of Titan. Retrieved on 28 June 2008.
  33. Georgia State University. The Environment of Venus. Retrieved on 28 June 2008.
  34. Ellen Cohen. . Hayden Planetarium. Archivado desde el original el 8 August 2007. Consultado el 16 November 2007. 
  35. Suomi, V.E.; Limaye, S.S.; Johnson, D.R. (1991). «High Winds of Neptune: A possible mechanism». Science 251 (4996): 929-932. Bibcode:1991Sci...251..929S. PMID 17847386. doi:10.1126/science.251.4996.929. 
  36. Sromovsky, Lawrence A. (14 October 1998). «Hubble Provides a Moving Look at Neptune's Stormy Disposition». HubbleSite. 
  37. Knutson, Heather A.; David Charbonneau; Lori E. Allen; Jonathan J. Fortney; Eric Agol; Nicolas B. Cowan et al. (10 de mayo de 2007). «A map of the day–night contrast of the extrasolar planet HD 189733b». Nature 447 (7141): 183-186. Bibcode:2007Natur.447..183K. PMID 17495920. arXiv:0705.0993. doi:10.1038/nature05782. 

Enlaces externos

  •   Datos: Q11663
  •   Multimedia: Weather
  •   Citas célebres: Tiempo atmosférico

tiempo, atmosférico, para, otros, usos, este, término, véase, tiempo, desambiguación, este, artículo, sección, necesita, referencias, aparezcan, publicación, acreditada, este, aviso, puesto, marzo, 2016, tiempo, atmosférico, meteorológico, estado, atmósfera, m. Para otros usos de este termino vease Tiempo desambiguacion Este articulo o seccion necesita referencias que aparezcan en una publicacion acreditada Este aviso fue puesto el 1 de marzo de 2016 El tiempo atmosferico o meteorologico es el estado de la atmosfera en un momento y lugar determinado 1 definido por diversas variables meteorologicas 2 como la temperatura la presion el viento la radiacion solar la humedad y la precipitacion 3 4 La mayoria de los fenomenos del tiempo ocurren en la troposfera 5 6 la capa por debajo de la Estratosfera siendo la capa inferior de la atmosfera que esta en contacto con la superficie Es importante diferenciar tiempo de clima ya que este ultimo se refiere a las condiciones atmosfericas promedio que caracterizan a un lugar 7 Esos promedios suelen realizarse en periodos de varias decadas Tormenta cerca de Gazrajau Madeira El tiempo es impulsado por la presion de aire la temperatura y las diferencias de humedad entre un lugar y otro Estas diferencias pueden ocurrir debido al angulo del sol en cualquier sitio particular el cual varia por latitud desde los tropicos 8 El fuerte contraste de temperatura entre el aire polar y el tropical da origen a las circulaciones atmosfericas de mayor escala la Celula de Hadley la celula de Ferrel la celula polar y la corriente en chorro 8 Sistemas de tiempo en las latitudes medias como los ciclones extratropicales son causados por inestabilidades del flujo de corriente en chorro Debido a que el eje de la Tierra esta inclinado en relacion a su plano orbital la luz solar incide en angulos diferentes en los distintos meses del ano Sobre la superficie de la Tierra las temperaturas normalmente varian anualmente entre 40 C 8 A lo largo de miles de anos cambios en la orbita terrestre pueden afectar la cantidad y distribucion de la energia solar recibida por la Tierra influenciando asi el clima a largo plazo y el cambio climatico global Las diferencias de temperatura de la superficie a su vez causan diferencias de presion Las altitudes mas elevadas son mas frias que las bajas debido a diferencias en calentamiento de compresion El pronostico del tiempo es la aplicacion de la ciencia y tecnologia para pronosticar el estado de la atmosfera para un momento futuro y una ubicacion dada El sistema es un caotico cambios tan pequenos a una parte del sistema puede crecer para tener efectos grandes en todo el sistema A traves de la historia han existido intentos humanos de controlar el tiempo y existe evidencia de que las actividades humanas como la agricultura y la industria han modificado los patrones atmosfericos El estudio sobre como funciona el tiempo en otros planetas han sido utiles en comprender su funcionamiento en la Tierra Un lugar famoso en el sistema solar es la Gran Mancha Roja de Jupiter es una tormenta anticiclonica que existe desde al menos 300 anos No obstante el tiempo no se limita a los cuerpos planetarios La corona de una estrella se pierde constantemente en el espacio creando lo que esencialmente es una muy delgada atmosfera a traves del sistema solar El transporte de masa expulsado del Sol se conoce como viento solar Indice 1 Origen y flujo de la energia atmosferica 1 1 La insolacion 1 2 Otras fuentes de energia atmosferica 2 Fenomenos meteorologicos 3 Pronostico meteorologico 4 Efecto sobre los humanos 4 1 Efectos sobre las poblaciones 5 Modificacion 6 Clima extraterrestre en el Sistema Solar 7 Vease tambien 8 Referencias 9 Enlaces externosOrigen y flujo de la energia atmosferica Editar Una imagen de satelite de la NASA de la desembocadura del Amazonas nos muestra algunos de los flujos de energia en la atmosfera los rayos solares calientan la superficie terrestre las tierras en primer lugar con mayor rapidez y las aguas despues mas lentamente El calentamiento de las tierras calienta a su vez el aire superficial que se eleva enfriandose y condensandose la humedad atmosferica que se convierte en agua liquida que forma las nubes Mientras tanto el agua de los grandes rios amazonicos esta absorbiendo la radiacion solar mas lentamente por lo que no hay evaporacion de sus aguas y por lo tanto tampoco hay calentamiento del aire en esas areas no hay conveccion ni condensacion en ellas La insolacion Editar Casi la totalidad de la energia solar que genera todos los cambios atmosfericos procede de la radiacion solar es decir de la insolacion Pero los rayos solares no calientan directamente al aire atmosferico por la propiedad del aire en su conjunto de la diatermancia que explica que la atmosfera se deja atravesar por los rayos solares sin practicamente calentarse Asi el calentamiento de la atmosfera por la radiacion solar es indirecto los rayos solares calientan primero la litosfera de manera rapida y la hidrosfera mas lentamente que la litosfera Cuando tanto la litosfera como la hidrosfera se han calentado van cediendo ese calor a la atmosfera la primera rapidamente y la segunda mas lentamente todo ello de acuerdo a lo explicado sobre el calentamiento de la litosfera y la hidrosfera en el articulo ya citado diatermancia La imagen del delta del rio Amazonas que aqui se presenta esta tomada durante la manana Si la comparasemos con una imagen similar durante el anochecer ese mismo dia ello se hace posible no en una imagen del espectro visible sino en una imagen infrarroja veriamos que la situacion se invierte apareciendo mayor condensacion sobre los rios que sobre las tierras 2015 5to Ano global mas caliente en el registro desde 1880 hasta el 2021 Los colores indican las anomalias de temperatura NASA NOAA 20 de enero de 2016 9 Debido a que el eje de la Tierra esta inclinado con respecto a su plano orbital la luz solar incide en diferentes angulos en diferentes epocas del ano En junio el hemisferio norte esta inclinado hacia el sol por lo que en cualquier latitud del hemisferio norte la luz solar cae mas directamente en ese lugar que en diciembre 10 Este efecto provoca estaciones Durante miles a cientos de miles de anos los cambios en los parametros orbitales de la Tierra afectan la cantidad y distribucion de la energia solar recibida por la Tierra e influyen en el clima a largo plazo Ver ciclos de Milankovitch 11 El calentamiento solar desigual la formacion de zonas de gradientes de temperatura y humedad o frontogenesis tambien puede deberse al clima mismo en forma de nubosidad y precipitacion 12 Las altitudes mas altas son tipicamente mas frias que las altitudes mas bajas lo que es el resultado de una temperatura superficial mas alta y un calentamiento por radiacion que produce la tasa de caida adiabatica 13 14 En algunas situaciones la temperatura aumenta con la altura Este fenomeno se conoce como inversion y puede hacer que las cimas de las montanas sean mas calidas que los valles que se encuentran debajo Las inversiones pueden conducir a la formacion de niebla y a menudo actuan como un limite que suprime el desarrollo de tormentas electricas A escalas locales las diferencias de temperatura pueden ocurrir porque diferentes superficies como oceanos bosques capas de hielo u objetos artificiales tienen diferentes caracteristicas fisicas como reflectividad rugosidad o contenido de humedad Otras fuentes de energia atmosferica Editar Erupcion del Volcan Mayon en la isla de Luzon Filipinas en 1984 Puede verse a la izquierda una nube formada por vapor de agua muy caliente de la erupcion al enfriarse con la temperatura ambiente Fuente hidrotermal submarina cuya energia produce el ambiente que posibilita la existencia de fauna abisal en sus alrededores a pesar de la enorme presion que existe por la gran profundidad del fondo oceanico Ademas de la radiacion solar existen tres fuentes menores de energia termica que pueden calentar la atmosfera La energia geotermica de los puntos calientes en el fondo oceanico Esta energia pasa al agua oceanica que se calienta o llega incluso a hervir evaporandose con lo que absorbe calor que al condensarse pasa al aire atmosferico por ejemplo la ultima erupcion submarina en la isla de El Hierro en las Islas Canarias Las erupciones volcanicas tambien pueden llegar a calentar la atmosfera de manera directa sin que la radiacion solar intervenga La transpiracion de plantas y animales asi como la respiracion de los seres vivos Esta ultima fuente de calor es muy importante como nos muestran las fotografias infrarrojas de las zonas de vegetacion presentes en la superficie terrestre Sin embargo estas tres fuentes de calor resultan insignificantes cuando las comparamos con la energia solar recibida en la superficie terrestre Si aqui se senalan es para aclarar la idea inicial de este tema de que la casi totalidad de la energia que se almacena en la atmosfera procede de la radiacion solar Y de las tres fuentes de calentamiento distinto a la radiacion solar la formada por la transpiracion de la vegetacion es la mas importante por su estabilidad en el tiempo y por usar el CO2 como materia prima ademas de la liberacion de oxigeno libre sin lo cual la vida de los animales se haria imposible Fenomenos meteorologicos EditarArticulo principal Meteorologia Articulo principal Dinamica atmosferica Huracan Luis en 1995 El tiempo cambia movido por las diferencias de energia solar percibida en cada area diferenciada de acuerdo con una escala de tiempo que va desde menos de un dia diferencias de radiacion entre el dia y la noche hasta periodos estacionales a lo largo del ano Las estaciones meteorologicas miden las distintas variables locales del tiempo como la temperatura la presion atmosferica la humedad la nubosidad el viento y el monto pluviometrico de las lluvias o precipitaciones Conocidas estas variables directas se pueden averiguar otras derivadas como la presion de vapor de condensacion la temperatura de sensacion o la temperatura de bochorno Mediante redes de estaciones meteorologicas locales estaciones en barcos y satelites meteorologicos la meteorologia intenta averiguar las variables meteorologicas en los vertices de una malla tridimensional del menor tamano posible A partir de estas condiciones iniciales y aplicando las leyes de la fisica se intenta predecir la evolucion del tiempo Para ello hay que usar potentes ordenadores que se encargan de realizar los calculos usando un modelo predictivo de tipo empirico Pronostico meteorologico EditarArticulo principal Pronostico del tiempo La realizacion de pronosticos meteorologicos a una escala regional y especialmente a escala local constituye hoy en dia una actividad sumamente importante y extendida en casi todo el mundo y en numerosas actividades La organizacion de la aviacion civil horarios previsiones alternativas de vuelo etc depende en gran manera y cada vez mas de los pronosticos meteorologicos muy detallados Lo mismo sucede con otros tipos de actividades agricultura transporte comercio servicios de todo tipo etc Esta actividad se basa en los datos suministrados por las estaciones meteorologicas estrategicamente ubicadas e intercomunicadas entre si y por la informacion obtenida en tiempo real de multitud de satelites meteorologicos principalmente satelites geoestacionarios drones vuelos no tripulados y otros medios de obtencion de datos atmosfericos Un ejemplo de los datos obtenidos casi en tiempo real y con imagenes en secuencia del hemisferio occidental y sectores del mismo que permiten ver el movimiento de las masas nubosas desplazamiento y energia transportada por las nubes etc son los que proporciona el sitio web de la NASA de satelites geoestacionarios Goes http www goes noaa gov Una vision animada de la secuencia de imagenes del Caribe y Atlantico al norte del ecuador y que se actualizan cada 30 minutos puede verse en 1 Efecto sobre los humanos EditarEl clima visto desde una perspectiva antropologica es algo que todos los humanos en el mundo experimentan constantemente a traves de sus sentidos al menos mientras estan afuera Hay conocimientos construidos social y cientificamente sobre que es el clima que lo hace cambiar el efecto que tiene en los humanos en diferentes situaciones etc 15 Por lo tanto el clima es algo sobre lo que la gente suele comunicarse Los paises cuentan con un Servicio Meteorologico Nacional que generalmente produce un informe anual de muertes lesiones y costos totales de danos que incluyen cultivos y propiedades Por ejemplo en Estados Unidos a partir de 2019 los tornados han tenido el mayor impacto en los seres humanos con 42 muertes y han costado danos a cultivos y propiedades de mas de 3 mil millones de dolares 16 Efectos sobre las poblaciones Editar Nueva Orleans Luisiana luego de haber sido alcanzada por el huracan Katrina Katrina fue un huracan categoria 3 cuando alcanzo tierra firme si bien fue un huracan categoria 5 mientras se desplazaba por el Golfo de Mexico El clima ha jugado un papel importante y a veces directo en la historia de la humanidad Aparte de los cambios climaticos que han provocado la deriva gradual de las poblaciones por ejemplo la desertificacion del Medio Oriente y la formacion de puentes terrestres durante los periodos glaciares los fenomenos meteorologicos extremos han provocado movimientos de poblacion a menor escala y se han inmiscuido directamente en los acontecimientos historicos Uno de esos eventos es la salvacion de Japon de la invasion de la flota mongola de Kublai Khan por los vientos Kamikaze en 1281 17 Las reclamaciones francesas sobre Florida llegaron a su fin en 1565 cuando un huracan destruyo la flota francesa lo que permitio a Espana conquistar Fort Caroline 18 Mas recientemente el huracan Katrina redistribuyo a mas de un millon de personas de la costa central del Golfo en otras partes de los Estados Unidos convirtiendose en la diaspora mas grande en la historia de los Estados Unidos 19 La Pequena Edad de Hielo produjo la perdida de cosechas y hambrunas en Europa Durante el periodo denominado la Fluctuacion Grindelwald 1560 1630 eventos producto de actividades volcanicas 20 parece que produjeron eventos meterorologicos extremos 21 Estos incluyeron sequias tormentas y ventiscas fuera de temporada ademas de causar la expansion del glaciar suizo Grindelwald La decada de 1690 vio la peor hambruna en Francia desde la Edad Media Finlandia sufrio una hambruna severa en 1696 1697 durante la cual murio aproximadamente un tercio de la poblacion finlandesa 22 Modificacion EditarLa aspiracion de controlar el clima es evidente a lo largo de la historia de la humanidad desde los antiguos rituales destinados a traer lluvia para las cosechas hasta la Operacion Popeye del ejercoto de los Estados Unidos un intento de interrumpir las lineas de suministro alargando el monzon de Vietnam del Norte Los intentos mas exitosos de influir en el clima involucran la siembra de nubes incluyen las tecnicas de dispersion de niebla y nubes stratus bajas empleadas por los principales aeropuertos tecnicas utilizadas para aumentar las precipitaciones invernales sobre las montanas y tecnicas para suprimir el granizo 23 Un ejemplo reciente de control del clima fue la preparacion de China para los Juegos Olimpicos de Verano de 2008 China disparo 1 104 cohetes de dispersion de lluvia desde 21 sitios en la ciudad de Beijing en un esfuerzo por mantener la lluvia alejada de la ceremonia inaugural de los juegos el 8 de agosto de 2008 Guo Hu jefe de la Oficina Meteorologica Municipal de Beijing BMB confirmo el exito de la operacion con 100 milimetros cayendo en la ciudad de Baoding de la provincia de Hebei al suroeste y en el distrito de Fangshan de Beijing registrando una precipitacion de 25 milimetros 24 Si bien no existen pruebas concluyentes de la eficacia de estas tecnicas existen numerosas pruebas de que la actividad humana como la agricultura y la industria produce modificaciones climaticas involuntarias 23 La lluvia acida causada por la emision industrial de dioxido de azufre y oxidos de nitrogeno a la atmosfera afecta negativamente a los lagos la vegetacion y las estructuras de agua dulce Los contaminantes antropogenicos reducen la calidad del aire y la visibilidad Se espera que el cambio climatico causado por las actividades humanas que emiten gases de efecto invernadero al aire afecte la frecuencia de eventos climaticos extremos como sequias temperaturas extremas inundaciones vientos fuertes y tormentas severas 25 Se ha demostrado que el calor generado por las grandes areas metropolitanas afecta minuciosamente el clima cercano incluso a distancias de hasta 1 600 kilometros 26 Los efectos de la modificacion climatica inadvertida pueden representar graves amenazas para muchos aspectos de la civilizacion incluidos los ecosistemas los recursos naturales la produccion de alimentos y fibras el desarrollo economico y la salud humana 27 Clima extraterrestre en el Sistema Solar Editar La Gran Mancha Roja de Jupiter en febrero de 1979 fotografiada por la nave no tripulada de la NASA Voyager 1 El estudio de como funciona el clima en otros planetas ha resultado util para comprender como funciona en la Tierra 28 El clima en otros planetas sigue muchos de los mismos principios fisicos que el clima en Tierra pero ocurre en diferentes escalas y en atmosferas que tienen diferente composicion quimica La mision Cassini Huygens a Titan descubrio nubes formadas a partir de metano o etano que depositan lluvia compuesta de metano liquido y otros compuestos organicos 29 La atmosfera de la Tierra incluye seis zonas de circulacion latitudinales tres en cada hemisferio 30 En contraste el aspecto en franjas de Jupiter indica la presencia de numerosas zonas 31 Titan tiene una sola corriente en chorro cerca del paralelo 50 de latitud norte 32 y Venus tiene una sola corriente en chorro cerca del ecuador 33 Uno de los hitos mas famosos del Sistema Solar la Gran Mancha Roja de Jupiter es una tormenta anticiclonica que se sabe que ha existido durante al menos 300 anos 34 En otros gigantes gaseosos la falta de superficie permite que el viento alcance velocidades enormes rafagas de hasta 2100 km h se han medido en el planeta Neptuno 35 Esto ha creado un acertijo para los cientificos planetarios En ultima instancia el clima es creado por energia solar y la cantidad de energia recibida por Neptuno es solo aproximadamente 1 900 de la recibida por la Tierra sin embargo la intensidad de los fenomenos climaticos en Neptuno es mucho mayor que en la Tierra 36 Los vientos planetarios mas fuertes descubiertos hasta ahora estan en el planeta extrasolar HD 189733 b que se cree que tiene vientos del este que se mueven a mas de 9600 km h 37 Vease tambien EditarBoletin meteorologico Estacion meteorologica Erupcion de El Hierro de 2011 Meteorologia Pronostico meteorologicoReferencias Editar Servicio Nacional de Meteorologia e Hidrologia SeNaMHi Septiembre 2018 Un buen clima Glosario de terminos meteorologicos Peru p 8 Instituto de Hidrologia Meteorologia y Estudios Ambientales IDEAM Agosto de 2019 Glosario Meteorologico Colombia p 286 Rodriguez Jimenez Rosa Maria Benito Capa Agueda Portela Lozano Adelaida 2004 Meteorologia y Climatologia Fundacion Espanola para la Ciencia y la Tecnologia FECYT p 12 a 33 Merriam Webster Dictionary Weather Retrieved on 27 June 2008 Glossary of Meteorology Hydrosphere enlace roto disponible en este archivo Retrieved on 27 June 2008 Troposphere Glossary of Meteorology 28 de septiembre de 2012 Consultado el 11 de octubre de 2020 Diccionario y glosario en climatologia Laboratorio de Climatologia Universidad de alicante Ultima actualizacion 8 Sep 2016 a b c L Hartmann Dennis 2016 01 02 Global physical climatology Elsevier pp 165 76 ISBN 9780123285317 Brown Dwayne Cabbage Michael McCarthy Leslie Norton Karen 20 January 2016 NASA NOAA Analyses Reveal Record Shattering Global Warm Temperatures in 2015 NASA Consultado el 21 de enero de 2016 Windows to the Universe Earth s Tilt Is the Reason for the Seasons enlace roto disponible en este archivo Retrieved on 28 June 2008 Milankovitch Milutin Canon of Insolation and the Ice Age Problem Zavod za Udz benike i Nastavna Sredstva Belgrade 1941 ISBN 86 17 06619 9 Ron W Przybylinski The Concept of Frontogenesis and its Application to Winter Weather Forecasting Retrieved on 28 June 2008 Mark Zachary Jacobson 2005 Fundamentals of Atmospheric Modeling 2nd edicion Cambridge University Press ISBN 978 0 521 83970 9 OCLC 243560910 C Donald Ahrens 2006 Meteorology Today 8th edicion Brooks Cole Publishing ISBN 978 0 495 01162 0 OCLC 224863929 Crate Susan A Nuttall Mark eds 2009 Anthropology and Climate Change From Encounters to Actions Walnut Creek CA Left Coast Press pp 70 86 i e the chapter Climate and weather discourse in anthropology from determinism to uncertain futures by Nicholas Peterson amp Kenneth Broad United States National Weather Service Office of Climate Water Weather Services amp National Climatic Data Center 2000 Weather Related Fatality and Injury Statistics James P Delgado Relics of the Kamikaze Retrieved on 28 June 2008 Mike Strong Fort Caroline National Memorial enlace roto disponible en este archivo Retrieved on 28 June 2008 Anthony E Ladd John Marszalek and Duane A Gill The Other Diaspora New Orleans Student Evacuation Impacts and Responses Surrounding Hurricane Katrina enlace roto disponible en este archivo Retrieved on 29 March 2008 Jason Wolfe Volcanoes and Climate Change NASA 28 July 2020 Date retrieved 28 May 2021 Jones Evan T Hewlett Rose Mackay Anson W 5 de mayo de 2021 Weird weather in Bristol during the Grindelwald Fluctuation 1560 1630 Weather 76 4 104 110 Bibcode 2021Wthr 76 104J doi 10 1002 wea 3846 via Wiley Online Library Famine in Scotland The Ill Years of the 1690s Karen J Cullen 2010 Edinburgh University Press p 21 ISBN 0 7486 3887 3 a b American Meteorological Society enlace roto disponible en este archivo Huanet Xin 9 August 2008 Beijing disperses rain to dry Olympic night Chinaview Consultado el 24 August 2008 Intergovernmental Panel on Climate Change Zhang Guang 28 January 2012 Cities Affect Temperatures for Thousands of Miles ScienceDaily Intergovernmental Panel on Climate Change Britt Robert Roy 6 March 2001 The Worst Weather in the Solar System Space com Archivado desde el original el 2 de mayo de 2001 M Fulchignoni F Ferri F Angrilli A Bar Nun M A Barucci G Bianchini et al 2002 The Characterisation of Titan s Atmospheric Physical Properties by the Huygens Atmospheric Structure Instrument Hasi Space Science Reviews 104 1 395 431 Bibcode 2002SSRv 104 395F doi 10 1023 A 1023688607077 Jet Propulsion Laboratory Overview Climate The Spherical Shape of the Earth Climatic Zones enlace roto disponible en este archivo Consultado 28 junio 2008 Anne Minard Jupiter s Jet Stream Heated by Surface Not Sun Consultado 28 junio 2008 ESA Cassini Huygens The jet stream of Titan Retrieved on 28 June 2008 Georgia State University The Environment of Venus Retrieved on 28 June 2008 Ellen Cohen Jupiter s Great Red Spot Hayden Planetarium Archivado desde el original el 8 August 2007 Consultado el 16 November 2007 Suomi V E Limaye S S Johnson D R 1991 High Winds of Neptune A possible mechanism Science 251 4996 929 932 Bibcode 1991Sci 251 929S PMID 17847386 doi 10 1126 science 251 4996 929 Sromovsky Lawrence A 14 October 1998 Hubble Provides a Moving Look at Neptune s Stormy Disposition HubbleSite Knutson Heather A David Charbonneau Lori E Allen Jonathan J Fortney Eric Agol Nicolas B Cowan et al 10 de mayo de 2007 A map of the day night contrast of the extrasolar planet HD 189733b Nature 447 7141 183 186 Bibcode 2007Natur 447 183K PMID 17495920 arXiv 0705 0993 doi 10 1038 nature05782 Enlaces externos Editar Wikimedia Commons alberga una categoria multimedia sobre Tiempo atmosferico Wikimedia Commons alberga una galeria multimedia sobre Mapas del tiempo Datos Q11663 Multimedia Weather Citas celebres Tiempo atmosfericoObtenido de https es wikipedia org w index php title Tiempo atmosferico amp oldid 136494602, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos