fbpx
Wikipedia

Resonancia de Fermi

Una resonancia de Fermi es el desplazamiento de las energías e intensidades de las bandas de absorción en un espectro infrarrojo o Raman. Es una consecuencia de la mezcla en mecánica cuántica.[1]​ El fenómeno fue explicado por el físico italiano Enrico Fermi.

Esquema idealizado de un modo normal y un sobretono antes y después de la resonancia de Fermi. Debajo de los espectros idealizados hay esquemas de nivel de energía idealizados.

Reglas de selección y ocurrencia

Se deben cumplir dos condiciones para que ocurra la resonancia de Fermi:

  • Los dos estados vibracionales de una molécula se transforman de acuerdo con la misma representación irreducible en su grupo de puntos moleculares. En otras palabras, las dos vibraciones deben tener las mismas simetrías (símbolos de Mulliken).
  • Las transiciones casualmente tienen las mismas energías muy similares.

La resonancia de Fermi ocurre con mayor frecuencia entre excitaciones normales y de tono, si son casi coincidentes en energía.

La resonancia de Fermi produce dos efectos. Primero, el modo de alta energía cambia a una energía más alta y el modo de baja energía cambia a una energía aún más baja. En segundo lugar, el modo más débil gana intensidad y la banda más intensa disminuye en intensidad. Las dos transiciones se pueden describir como una combinación lineal de los modos principales. La resonancia de Fermi no genera bandas adicionales en el espectro, sino más bien cambios en las bandas que de otro modo existirían.

Ejemplos

Cetonas

Los espectros infrarrojos de alta resolución de la mayoría de las cetonas revelan que la "banda de carbonilo" se divide en un doblete. La separación máxima suele ser de unos pocos cm−1. Esta división surge de la mezcla de νCO y el sobretono de los modos de plegado HCH.[2]

CO2

En la molécula de CO2, la vibración de flexión ν2 (667 cm−1) tiene simetría Πu. El primer estado excitado de ν2 se denota 0110 (sin excitación en el modo ν1 (estiramiento simétrico), un cuanto de excitación en el modo de flexión ν2 con momento angular alrededor del eje molecular igual a ± 1, sin excitación en el modo ν3 (estiramiento asimétrico)) y se transforma claramente de acuerdo con la representación irreducible Πu. Poner dos cuantos en el modo ν2 conduce a un estado con componentes de simetría (Πu × Πu) + = Σ+g + Δg. Estos se denominan 0200 y 0220, respectivamente. 0200 tiene la misma simetría (Σ+g) y una energía muy similar al primer estado excitado de v1 denotado 100 (un cuanto de excitación en el modo de estiramiento simétrico ν1, sin excitación en el modo ν2, sin excitación en el modo ν3). La frecuencia no perturbada calculada de 100 es 1337cm−1, e ignorando la anarmonía, la frecuencia de 0200 es 1334, dos veces el 667 cm−1 de 0110. Por lo tanto, los estados 0200 y 100 pueden mezclarse, produciendo una división y también un aumento significativo en la intensidad de la transición 0200, de modo que las transiciones 0200 y 100 tienen intensidades similares.

Referencias

  1. Kazuo Nakamoto “Infrared and Raman Spectra of Inorganic and Coordination Compounds: Theory and Applications in Inorganic Chemistry (Volume A)” John Wiley, 1997. ISBN 0-471-16394-5
  2. Robert M. Silverstein, Francis X. Webster, David Kiemle “Spectrometric Identification of Organic Compounds”Edition: 7th ed., John Wiley & Sons, 2005. ISBN 0-471-39362-2.
  •   Datos: Q763192

resonancia, fermi, estilo, esta, traducción, aún, sido, revisado, terceros, eres, hispanohablante, nativo, participado, esta, traducción, puedes, colaborar, revisando, adaptando, estilo, esta, otras, traducciones, acabadas, resonancia, fermi, desplazamiento, e. El estilo de esta traduccion aun no ha sido revisado por terceros Si eres hispanohablante nativo y no has participado en esta traduccion puedes colaborar revisando y adaptando el estilo de esta u otras traducciones ya acabadas Una resonancia de Fermi es el desplazamiento de las energias e intensidades de las bandas de absorcion en un espectro infrarrojo o Raman Es una consecuencia de la mezcla en mecanica cuantica 1 El fenomeno fue explicado por el fisico italiano Enrico Fermi Esquema idealizado de un modo normal y un sobretono antes y despues de la resonancia de Fermi Debajo de los espectros idealizados hay esquemas de nivel de energia idealizados Indice 1 Reglas de seleccion y ocurrencia 2 Ejemplos 2 1 Cetonas 2 2 CO2 3 ReferenciasReglas de seleccion y ocurrencia EditarSe deben cumplir dos condiciones para que ocurra la resonancia de Fermi Los dos estados vibracionales de una molecula se transforman de acuerdo con la misma representacion irreducible en su grupo de puntos moleculares En otras palabras las dos vibraciones deben tener las mismas simetrias simbolos de Mulliken Las transiciones casualmente tienen las mismas energias muy similares La resonancia de Fermi ocurre con mayor frecuencia entre excitaciones normales y de tono si son casi coincidentes en energia La resonancia de Fermi produce dos efectos Primero el modo de alta energia cambia a una energia mas alta y el modo de baja energia cambia a una energia aun mas baja En segundo lugar el modo mas debil gana intensidad y la banda mas intensa disminuye en intensidad Las dos transiciones se pueden describir como una combinacion lineal de los modos principales La resonancia de Fermi no genera bandas adicionales en el espectro sino mas bien cambios en las bandas que de otro modo existirian Ejemplos EditarCetonas Editar Los espectros infrarrojos de alta resolucion de la mayoria de las cetonas revelan que la banda de carbonilo se divide en un doblete La separacion maxima suele ser de unos pocos cm 1 Esta division surge de la mezcla de nCO y el sobretono de los modos de plegado HCH 2 CO2 Editar En la molecula de CO2 la vibracion de flexion n2 667 cm 1 tiene simetria Pu El primer estado excitado de n2 se denota 0110 sin excitacion en el modo n1 estiramiento simetrico un cuanto de excitacion en el modo de flexion n2 con momento angular alrededor del eje molecular igual a 1 sin excitacion en el modo n3 estiramiento asimetrico y se transforma claramente de acuerdo con la representacion irreducible Pu Poner dos cuantos en el modo n2 conduce a un estado con componentes de simetria Pu Pu S g Dg Estos se denominan 0200 y 0220 respectivamente 0200 tiene la misma simetria S g y una energia muy similar al primer estado excitado de v1 denotado 100 un cuanto de excitacion en el modo de estiramiento simetrico n1 sin excitacion en el modo n2 sin excitacion en el modo n3 La frecuencia no perturbada calculada de 100 es 1337cm 1 e ignorando la anarmonia la frecuencia de 0200 es 1334 dos veces el 667 cm 1 de 0110 Por lo tanto los estados 0200 y 100 pueden mezclarse produciendo una division y tambien un aumento significativo en la intensidad de la transicion 0200 de modo que las transiciones 0200 y 100 tienen intensidades similares Referencias Editar Kazuo Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds Theory and Applications in Inorganic Chemistry Volume A John Wiley 1997 ISBN 0 471 16394 5 Robert M Silverstein Francis X Webster David Kiemle Spectrometric Identification of Organic Compounds Edition 7th ed John Wiley amp Sons 2005 ISBN 0 471 39362 2 Datos Q763192Obtenido de https es wikipedia org w index php title Resonancia de Fermi amp oldid 136617809, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos