fbpx
Wikipedia

Período orbital

El periodo orbital es el tiempo que le toma a un astro recorrer su órbita. Cuando se trata de objetos que orbitan alrededor del sol existen dos tipos:

  • El periodo sideral es el tiempo que tarda el objeto en dar una vuelta completa alrededor del sol, tomando como punto de referencia una estrella fija. Se considera el auténtico período orbital del objeto y sería el que vería un observador inmóvil que no orbitara alrededor del sol.
  • El periodo sinódico es el tiempo que tarda el objeto en volver a aparecer en el mismo punto del cielo respecto al sol, cuando se observa desde la Tierra. Este periodo tiene en cuenta que la Tierra, lugar desde el cual es observado el objeto, también orbita en torno al sol. Es, por tanto, el tiempo que transcurre entre dos conjunciones sucesivas con el sol, y es el período orbital aparente.
Imagen de trazado de rayos que muestra los conceptos de inclinación, longitud del nodo ascendente y argumento de la periapsis de un objeto "menor" en una órbita elíptica alrededor de un objeto mayor.

El período sideral y el sinódico difieren ya que la Tierra, a su vez, da vueltas alrededor del Sol.

Otros períodos relacionados con el período orbital

Hay muchos períodos relacionados con las órbitas de los objetos, cada uno de los cuales se utilizan a menudo en los diversos campos de la astronomía y la astrofísica. Ejemplos de algunos de los más comunes son:

El período sideral es la cantidad de tiempo que toma un objeto para hacer una órbita completa, en relación con las estrellas. Este es el período orbital en un marco de referencia inercial (no giratorio).

El período sinódico es la cantidad de tiempo que tarda un objeto en reaparecer en el mismo punto en relación con dos o más objetos (por ejemplo, la fase lunar y su posición respecto al Sol y la Tierra se repiten cada 29,5 días sinódicos, más largos Que su órbita de 27,3 días alrededor de la Tierra, debido al movimiento de la Tierra alrededor del Sol). El tiempo entre dos oposiciones o conjunciones sucesivas es también un ejemplo del período sinódico. Para los planetas en el sistema solar, el período sinódico (con respecto a la Tierra) difiere del período sideral debido a la órbita de la Tierra alrededor del Sol.

El período draconiano, o período dracónico, es el tiempo que transcurre entre dos pasajes del objeto a través de su nodo ascendente, el punto de su órbita donde cruza la eclíptica desde el hemisferio sur hasta el hemisferio norte. Este período difiere del período sideral porque tanto el plano orbital del objeto como el plano del preceso eclíptico con respecto a las estrellas fijas, por lo que su intersección, la línea de nodos, también precesa con respecto a las estrellas fijas. Aunque el plano de la eclíptica a menudo se mantiene fijo en la posición que ocupaba en una época específica, el plano orbital del objeto todavía precesa haciendo que el período draconítico difiera del período sideral.

El período anomalístico es el tiempo que transcurre entre dos pasajes de un objeto en su periapsis (en el caso de los planetas del sistema solar, llamado perihelio), el punto de su aproximación más cercana al cuerpo atrayente. Se diferencia del período sideral porque el eje semi-mayor del objeto suele avanzar lentamente.

Además, el período tropical de la Tierra (o simplemente su "año") es el tiempo que transcurre entre dos alineaciones de su eje de rotación con el Sol, también vistas como dos pasajes del objeto en la ascensión recta cero. Un año terrestre tiene un intervalo ligeramente más corto que la órbita solar (período sideral) debido a que el eje inclinado y el plano ecuatorial avanzan lentamente (giran con respecto a las estrellas), realineándose con el Sol antes de que la órbita se complete. El ciclo de precesión de la Tierra se completa en unos 25.770 años.

Cálculo estándar del periodo orbital

Un cuerpo pequeño orbitando un cuerpo central

 
El semieje mayor (a) y el semieje menor (b) de una elipse
 
Gráfico de registro de período (T) contra eje semi-mayor (a). La pendiente de 3/2 muestra que T ∝ a3/2.

Dada una órbita circular o elíptica alrededor de un objeto masivo central, la tercera ley de Kepler, el periodo orbital T (en segundos) viene dado por:

 

donde:

  •   es el semi-eje mayor de la órbita (en metros).
  •  es el parámetro gravitacional estándar en m³ s-2
    • G es la constante gravitacional.  .
    • M es la masa del objeto más masivo.

Obsérvese que este periodo es válido para todas las órbitas cerradas, es decir, circulares y elípticas, sin importar su excentricidad.

Inversamente podemos calcular el semi-eje mayor de una órbita dado su periodo orbital con la siguiente expresión:

 

Podríamos por ejemplo calcular un caso curioso aunque poco viable en la práctica. Si quisiéramos hacer orbitar un objeto ligero en torno a una masa de 100kg con un periodo de 24 horas en una órbita circular, el radio de la misma debería ser de 1.08 metros.

Dos cuerpos orbitándose el uno al otro

En la mecánica celeste, cuando hay que tener en cuenta las masas de ambos cuerpos orbitales, el período orbital T puede calcularse de la siguiente manera:[1]

 

donde:

  • a es la suma de los ejes semimayores de las elipses en las que se mueven los centros de los cuerpos, o equivalente, el eje semimayor de la elipse en la que se mueve un cuerpo, en el marco de referencia con el otro cuerpo en el origen (que es igual a su separación constante para órbitas circulares),
  • M1 + M2 es la suma de las masas de los dos cuerpos,,
  • G es la constante gravitacional.

Tenga en cuenta que el período orbital es independiente del tamaño: para un modelo a escala sería el mismo, cuando las densidades son las mismas (véase también Orbit § Scaling in gravity).

En una trayectoria parabólica o hiperbólica, el movimiento no es periódico, y la duración de la trayectoria completa es infinita.

Cálculo del periodo sideral

Suponiendo órbitas completamente circulares, la Tierra se movería 360° en un tiempo T de 365.2425 días, mientras que el astro se movería 360° en un tiempo P (periodo sideral o real). Eso es igual al tiempo S (periodo sinódico o aparente) más una compensación por ir más o menos rápido que la Tierra. Se obtiene por lo tanto la siguiente ecuación:

 

El signo de ±360° es una suma si el astro da una vuelta a su órbita en menor tiempo que la Tierra —sea un planeta interior (diferente a Marte o la propia Tierra) o la Luna—, es una resta si el astro da una vuelta a su órbita en mayor tiempo que la Tierra —sea Marte, un planeta exterior o un planeta enano—.

Simplificando y despejando, usando el álgebra, obtenemos la siguiente fórmula:

 

Comprobación

Para comprobar la validez de la fórmula usaremos un caso real: la Luna. Si estamos en la Tierra y observamos la luna a través de los días veremos que tarda aproximadamente 29 d 12 h 44 min en su periodo sinódico (aparente desde la Tierra con respecto al sol) o bien 29.530556 días, lo cual es el valor de S. Sabemos que la Tierra tarda aproximadamente 365.256363 días en dar una vuelta al sol,[2]​ lo cual será nuestro valor T. La operación queda así:

 

El signo es positivo dado que da una vuelta a su propia órbita más rápido que la Tierra a la suya. El resultado es redondeado con seis decimales. Es el valor de 1/P y para obtener P (periodo sideral o real, de la luna en este caso) solo hacemos la operación 1÷0.036601 = 27.321659 días.

Sabemos que el periodo sideral de la luna es de aproximadamente 27 d 7 h 43 min o 27.321529 días, por lo que nuestro resultado se aproxima mucho al valor real.

Referencias

{{listaref

  •   Datos: Q37640
  1. Bradley W. Carroll, Dale A. Ostlie. An introduction to modern astrophysics. 2nd edition. Pearson 2007.
  2. Staff (7 de agosto de 2007). «Useful Constants» (en inglés). International Earth Rotation and Reference Systems Service. Consultado el 23 de septiembre de 2008. 

período, orbital, periodo, orbital, tiempo, toma, astro, recorrer, órbita, cuando, trata, objetos, orbitan, alrededor, existen, tipos, periodo, sideral, tiempo, tarda, objeto, vuelta, completa, alrededor, tomando, como, punto, referencia, estrella, fija, consi. El periodo orbital es el tiempo que le toma a un astro recorrer su orbita Cuando se trata de objetos que orbitan alrededor del sol existen dos tipos El periodo sideral es el tiempo que tarda el objeto en dar una vuelta completa alrededor del sol tomando como punto de referencia una estrella fija Se considera el autentico periodo orbital del objeto y seria el que veria un observador inmovil que no orbitara alrededor del sol El periodo sinodico es el tiempo que tarda el objeto en volver a aparecer en el mismo punto del cielo respecto al sol cuando se observa desde la Tierra Este periodo tiene en cuenta que la Tierra lugar desde el cual es observado el objeto tambien orbita en torno al sol Es por tanto el tiempo que transcurre entre dos conjunciones sucesivas con el sol y es el periodo orbital aparente Imagen de trazado de rayos que muestra los conceptos de inclinacion longitud del nodo ascendente y argumento de la periapsis de un objeto menor en una orbita eliptica alrededor de un objeto mayor El periodo sideral y el sinodico difieren ya que la Tierra a su vez da vueltas alrededor del Sol Indice 1 Otros periodos relacionados con el periodo orbital 2 Calculo estandar del periodo orbital 2 1 Un cuerpo pequeno orbitando un cuerpo central 2 2 Dos cuerpos orbitandose el uno al otro 3 Calculo del periodo sideral 3 1 Comprobacion 4 ReferenciasOtros periodos relacionados con el periodo orbital EditarHay muchos periodos relacionados con las orbitas de los objetos cada uno de los cuales se utilizan a menudo en los diversos campos de la astronomia y la astrofisica Ejemplos de algunos de los mas comunes son El periodo sideral es la cantidad de tiempo que toma un objeto para hacer una orbita completa en relacion con las estrellas Este es el periodo orbital en un marco de referencia inercial no giratorio El periodo sinodico es la cantidad de tiempo que tarda un objeto en reaparecer en el mismo punto en relacion con dos o mas objetos por ejemplo la fase lunar y su posicion respecto al Sol y la Tierra se repiten cada 29 5 dias sinodicos mas largos Que su orbita de 27 3 dias alrededor de la Tierra debido al movimiento de la Tierra alrededor del Sol El tiempo entre dos oposiciones o conjunciones sucesivas es tambien un ejemplo del periodo sinodico Para los planetas en el sistema solar el periodo sinodico con respecto a la Tierra difiere del periodo sideral debido a la orbita de la Tierra alrededor del Sol El periodo draconiano o periodo draconico es el tiempo que transcurre entre dos pasajes del objeto a traves de su nodo ascendente el punto de su orbita donde cruza la ecliptica desde el hemisferio sur hasta el hemisferio norte Este periodo difiere del periodo sideral porque tanto el plano orbital del objeto como el plano del preceso ecliptico con respecto a las estrellas fijas por lo que su interseccion la linea de nodos tambien precesa con respecto a las estrellas fijas Aunque el plano de la ecliptica a menudo se mantiene fijo en la posicion que ocupaba en una epoca especifica el plano orbital del objeto todavia precesa haciendo que el periodo draconitico difiera del periodo sideral El periodo anomalistico es el tiempo que transcurre entre dos pasajes de un objeto en su periapsis en el caso de los planetas del sistema solar llamado perihelio el punto de su aproximacion mas cercana al cuerpo atrayente Se diferencia del periodo sideral porque el eje semi mayor del objeto suele avanzar lentamente Ademas el periodo tropical de la Tierra o simplemente su ano es el tiempo que transcurre entre dos alineaciones de su eje de rotacion con el Sol tambien vistas como dos pasajes del objeto en la ascension recta cero Un ano terrestre tiene un intervalo ligeramente mas corto que la orbita solar periodo sideral debido a que el eje inclinado y el plano ecuatorial avanzan lentamente giran con respecto a las estrellas realineandose con el Sol antes de que la orbita se complete El ciclo de precesion de la Tierra se completa en unos 25 770 anos Calculo estandar del periodo orbital EditarUn cuerpo pequeno orbitando un cuerpo central Editar El semieje mayor a y el semieje menor b de una elipse Grafico de registro de periodo T contra eje semi mayor a La pendiente de 3 2 muestra que T a3 2 Dada una orbita circular o eliptica alrededor de un objeto masivo central la tercera ley de Kepler el periodo orbital T en segundos viene dado por T 2 p a 3 m displaystyle T 2 pi sqrt frac a 3 mu donde a displaystyle a es el semi eje mayor de la orbita en metros m G M displaystyle mu GM es el parametro gravitacional estandar en m s 2G es la constante gravitacional G 6 674 10 11 m 3 k g 1 s 2 displaystyle G 6 674 cdot 10 11 m 3 kg 1 s 2 M es la masa del objeto mas masivo Observese que este periodo es valido para todas las orbitas cerradas es decir circulares y elipticas sin importar su excentricidad Inversamente podemos calcular el semi eje mayor de una orbita dado su periodo orbital con la siguiente expresion a m T 2 4 p 2 3 G M T 2 4 p 2 3 displaystyle a sqrt 3 frac mu T 2 4 pi 2 sqrt 3 frac GMT 2 4 pi 2 Podriamos por ejemplo calcular un caso curioso aunque poco viable en la practica Si quisieramos hacer orbitar un objeto ligero en torno a una masa de 100kg con un periodo de 24 horas en una orbita circular el radio de la misma deberia ser de 1 08 metros Dos cuerpos orbitandose el uno al otro Editar En la mecanica celeste cuando hay que tener en cuenta las masas de ambos cuerpos orbitales el periodo orbital T puede calcularse de la siguiente manera 1 T 2 p a 3 G M 1 M 2 displaystyle T 2 pi sqrt frac a 3 G left M 1 M 2 right donde a es la suma de los ejes semimayores de las elipses en las que se mueven los centros de los cuerpos o equivalente el eje semimayor de la elipse en la que se mueve un cuerpo en el marco de referencia con el otro cuerpo en el origen que es igual a su separacion constante para orbitas circulares M1 M2 es la suma de las masas de los dos cuerpos G es la constante gravitacional Tenga en cuenta que el periodo orbital es independiente del tamano para un modelo a escala seria el mismo cuando las densidades son las mismas vease tambien Orbit Scaling in gravity En una trayectoria parabolica o hiperbolica el movimiento no es periodico y la duracion de la trayectoria completa es infinita Calculo del periodo sideral EditarSuponiendo orbitas completamente circulares la Tierra se moveria 360 en un tiempo T de 365 2425 dias mientras que el astro se moveria 360 en un tiempo P periodo sideral o real Eso es igual al tiempo S periodo sinodico o aparente mas una compensacion por ir mas o menos rapido que la Tierra Se obtiene por lo tanto la siguiente ecuacion 360 g r a d o s P S 360 g r a d o s T S 360 g r a d o s displaystyle left 360grados over P right cdot S left 360grados over T right cdot S pm 360grados El signo de 360 es una suma si el astro da una vuelta a su orbita en menor tiempo que la Tierra sea un planeta interior diferente a Marte o la propia Tierra o la Luna es una resta si el astro da una vuelta a su orbita en mayor tiempo que la Tierra sea Marte un planeta exterior o un planeta enano Simplificando y despejando usando el algebra obtenemos la siguiente formula 1 P 1 T 1 S displaystyle 1 over P 1 over T pm 1 over S Comprobacion Editar Para comprobar la validez de la formula usaremos un caso real la Luna Si estamos en la Tierra y observamos la luna a traves de los dias veremos que tarda aproximadamente 29 d 12 h 44 min en su periodo sinodico aparente desde la Tierra con respecto al sol o bien 29 530556 dias lo cual es el valor de S Sabemos que la Tierra tarda aproximadamente 365 256363 dias en dar una vuelta al sol 2 lo cual sera nuestro valor T La operacion queda asi 1 P 1 365 256363 1 29 530556 0 036601 displaystyle 1 over P 1 over 365 256363 1 over 29 530556 0 036601 El signo es positivo dado que da una vuelta a su propia orbita mas rapido que la Tierra a la suya El resultado es redondeado con seis decimales Es el valor de 1 P y para obtener P periodo sideral o real de la luna en este caso solo hacemos la operacion 1 0 036601 27 321659 dias Sabemos que el periodo sideral de la luna es de aproximadamente 27 d 7 h 43 min o 27 321529 dias por lo que nuestro resultado se aproxima mucho al valor real Referencias Editar listaref Datos Q37640 Bradley W Carroll Dale A Ostlie An introduction to modern astrophysics 2nd edition Pearson 2007 Staff 7 de agosto de 2007 Useful Constants en ingles International Earth Rotation and Reference Systems Service Consultado el 23 de septiembre de 2008 Obtenido de https es wikipedia org w index php title Periodo orbital amp oldid 135506665, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos