fbpx
Wikipedia

Gran estación espacial modular china

La Tiangong: «Palacio celestial» o Estación espacial modular china, es una estación espacial colocada en órbita baja terrestre. La estación espacial china planeada será aproximadamente un quinto de la masa de la Estación Espacial Internacional y cerca del tamaño de la estación rusa fuera de servicio Mir. Se espera que la estación tenga una masa entre 80 a 100 toneladas métricas. Las operaciones serán controladas desde el Centro de Control y Comando Aeroespacial de Beijing en China. El lanzamiento del módulo principal, Tianhe, fue realizado el 29 de abril de 2021.[1][2]​ En 2017, se lanzó la nave de carga Tianzhou-1, la cual está basada en los laboratorios espaciales Tiangong 1 & 2.[3]

Representación a escala de la estación espacial.

Visión general

La construcción de la estación manifestará la tercera fase del programa Tiangong. Se construye en la experiencia obtenida de sus precursores, Tiangong-1 y Tiangong-2.[4][5]​ Los dirigentes chinos esperan que la búsqueda conducida en la estación mejorará la habilidad de los investigadores de conducir experimentos científicos en el espacio, más allá de la duración ofrecida por los laboratorios espaciales existentes de China.

Origen de nombre

Deng Xiaoping decidió que[cita requerida] que los nombres usados en el programa espacial, anteriormente escogidos desde la revolucionario historia de la República Popular China, serían reemplazados con nombres místicos-religiosos[6][7][8][9][10][11]

Estructura

La estación será estación espacial modular de tercera generación. Las estaciones de primera generación, como Salyut, Almaz y Skylab eran estaciones de una sola pieza y no estaban diseñadas para el reabastecimiento. Las de segunda generación, Salyut 6 y 7 y Tiangong 1 and 2, están diseñadas para el reabastecimiento a mitad de la misión. Estaciones de la tercera generación como Mir, la Estación Espacial Internacional, OPESEK y esta son estaciones espaciales modulares, puestas en órbita a partir de piezas lanzadas por separado. Los métodos de diseño modular pueden mejorar considerablemente la confiabilidad, reducir los costos, acortar el ciclo de desarrollo y cumplir con los requisitos de tareas diversificadas.

Intercambios tecnológicos

 
Modelo del lanzador para módulos, el Long March 5.

El método de ensamblaje de la estación se puede comparar con la estación espacial soviética-rusa Mir y el segmento orbital ruso de la estación espacial internacional. Si se construye la estación, China será la segunda nación en desarrollar y utilizar la localización y el acoplamiento automáticos para la construcción de la estación espacial modular. La nave espacial Shenzhou y las estaciones espaciales usan un mecanismo de acoplamiento fabricado domésticamente similar o compatible con el adaptador de acoplamiento de diseño ruso APAS.

Durante las cordiales relaciones chino-soviéticas de la década de 1950, la URSS realizó un programa cooperativo de transferencia de tecnología con China en el cual enseñaron a estudiantes chinos y proporcionaron al programa una muestra del cohete R-2.

El primero misil chino fue construido en 1958 con ingeniería inversa a partir del R-2 soviético, una versión mejorada del cohete alemán V-2.[12]​ Pero cuando el primer ministro soviético Nikita Khrushchev fue denunciado como revisionista por Mao, la relación amistosa entre los dos países se convirtió en una confrontación. Como consecuencia, toda la asistencia tecnológica soviética se retiró bruscamente después de la ruptura sino-soviética de 1960.

El desarrollo de los cohetes Larga Marcha le permitió a China un lanzamiento comercial en 1985, que desde entonces ha lanzado más de 30 satélites extranjeros, principalmente de intereses europeos y asiáticos.

En 1994, Rusia vendió parte de su avanzada tecnología espacial y de aviación a los chinos. En 1995 un acuerdo se firmó entre dos países para la transferencia tecnológica de la nave rusa Soyuz a China. En el acuerdo se incluía entrenamiento, provisión de cápsulas Soyuz, sistemas de soporte vital, sistemas de acoplamiento y trajes espaciales. En 1996 dos astronautas chinos, Wu Jie y Li Qinglong, comenzaron a entrenar en el Centro de Entrenamiento Cosmonauta Yuri Gagarin en Rusia. Después del entrenamiento, los dos volvieron a China y procedieron a entrenar a otros astronautas chinos en sitios cerca de Pekín y Jiuquan. El hardware y la información vendida por los rusos llevaron a modificaciones de la nave Phase One, eventualmente llamada Shenzhou, que se puede traducir como «barco divino». Se construyeron nuevas instalaciones de lanzamiento en el sitio de lanzamiento de Jiuquan en Mongolia, y en 1998 se implementó una maqueta del vehículo de lanzamiento Long March 2F con la nave espacial Shenzhou para la integración y las pruebas de las instalaciones.

Un representante del programa espacial tripulado chino afirmó que alrededor del año 2000, China y Rusia estaban realizando intercambios tecnológicos con respecto al desarrollo de un mecanismo de acoplamiento.[13]​ El jefe adjunto de diseño, Huang Weifen, declaró que hacia fines de 2009, la agencia china comenzó a entrenar a los astronautas sobre cómo atracar naves espaciales.[14]

Módulos

El elemento base de la estación, Core Cabin Module, proporciona soporte vital y viviendas para tres miembros de la tripulación, y provee orientación, navegación y control de orientación para la estación. El módulo también proporciona los sistemas de alimentación, propulsión y soporte vital de la estación. El módulo consta de tres secciones, viviendas, sección de servicio y un centro de acoplamiento. Las habitaciones contendrán una cocina y un baño, equipos de control de incendios, equipos de procesamiento y control atmosféricos, computadoras, aparatos científicos, equipos de comunicaciones para ver y escuchar el control terrestre en Beijing y otros equipos. En 2018 se presentó públicamente una maqueta de CCM a gran escala en la China International Aviation & Aerospace Exhibition en Zhuhai.

El primero de dos módulos de cabina de laboratorio proporcionará control adicional de aviónica, propulsión y orientación de navegación como funciones de respaldo para el CCM. Ambos MCM proporcionarán un entorno presurizado para que los investigadores realicen experimentos científicos en caída libre o microgravedad que no podrían realizarse en la Tierra durante más de unos pocos minutos. Los experimentos también se pueden colocar en el exterior de los módulos para la exposición al entorno espacial, los rayos cósmicos, el vacío y los vientos solares.

Al igual que Mir y el segmento orbital ruso de la ISS, los módulos de la estación china se ensamblarán completamente en órbita, en contraste con los segmentos orbitales de Estados Unidos de la ISS, que requirió caminar por el espacio para interconectar cables, tuberías y elementos estructurales manualmente. El puerto axial de los LCM se equipará con equipo de encuentro y primero se acoplará al puerto axial del CCM. Un brazo mecánico similar al brazo Lyappa ruso utilizado en la estación espacial Mir luego moverá el módulo a un puerto radial del CCM.

Calendario

En 2011, la estación tenía planeada ser ensamblada durante el 2020 al 2022.[15]​ Para el 2013, el módulo principal de la estación tenía planeado ser lanzado antes, en 2018, seguido por el primer módulo de laboratorio en 2020, y el segundo en 2022.[16]​ Para 2018 esto se había deslizado del 2020 al 2023.[17]

El lanzamiento del módulo central fue realizado el 29 de abril de 2021.[1]

Sistemas

Eléctrico

La potencia eléctrica es proporcionada por dos conjuntos de energía solar dirigibles en cada módulo, que utilizan células de energía solar fotovoltaica para convertir la luz solar en electricidad. La energía se almacena para alimentar la estación cuando pasa a la sombra de la Tierra. Las naves de reabastecimiento repondrán el combustible para los motores de propulsión de la estación para mantener la estación, para contrarrestar los efectos del arrastre atmosférico.

Acoplamiento

Fuentes extranjeras han declarado que el mecanismo de acoplamiento se parece mucho al APAS-89/APAS-95, con una fuente estadounidense que va tan lejos como para llamarlo un clon.2[18][19][20]​ Ha habido afirmaciones contradictorias sobre la compatibilidad del sistema chino con los mecanismos de acoplamiento actuales y futuros en la ISS.[20][21][22]

Reabastecimiento

La estación será reabastecida por naves espaciales tripuladas y naves robotizadas de carga.

Shenzhou

 
Configuración de la nave espacial Shenzhou.

El Shenzhou está diseñado principalmente para llevar a la tripulación a la órbita. Consta de tres módulos: un módulo orbital delantero (轨道舱), utilizado por la tripulación como espacio de trabajo y vivienda; un módulo de reingreso (返回 舱) en el centro, que elimina todo el equipo innecesario para hacer el retorno a la Tierra más simple y, por lo tanto, más seguro; y un módulo de servicio de popa (推进舱), que contiene motores, propelentes, enfriamiento y control de orientación y orientación. Todo lo que se coloque en los módulos orbitales o de servicio no requiere protección contra el calor, y esto aumenta el espacio disponible en la nave espacial sin aumentar el peso tanto como lo haría si esos módulos también pudieran resistir la reentrada atmosférica. Por lo tanto, tanto Soyuz como Shenzhou tienen más área de estar con menos peso que el módulo de mando y servicio de Apolo. La masa de la nave es de alrededor de 8000 kilogramos y tiene 9.25 metros (30.3 pies) de largo.

Tianzhou

El Tianzhou, un derivado modificado de la nave espacial Tiangong-1, se usará como una nave de carga robótica para reabastecer a la estación.[23]​ Se espera que la masa de lanzamiento de Tianzhou sea de alrededor de 13000 kg con una carga útil de alrededor de 6000 kg.[24]​ El lanzamiento y acoplamiento deben ser totalmente autónomos, con control de la misión y tripulación utilizados en funciones de anulación o supervisión. Este sistema se vuelve muy confiable con las estandarizaciones que brindan beneficios de costos significativos en operaciones rutinarias repetitivas. Un enfoque automatizado podría permitir el ensamblaje de módulos que orbitan otros mundos antes de las misiones tripuladas.[25]

Seguridad

Basura orbital

 
Un objeto de 7 gramos (mostrado en el centro) disparado a 7 km/s (la velocidad orbital de la estación) hizo este cráter de 15 cm en un bloque sólido de aluminio.
 
Objetos rastreables por radar, incluidos los desechos, con un anillo distintivo de satélites GEO

La estación operará en la órbita baja terrestre, de 340 a 450 kilómetros sobre la Tierra, a una inclinación orbital de 42 a 43 grados, en el centro de la termosfera de la Tierra. A esa altitud hay una gran variedad de desechos espaciales, que consisten en muchos objetos diferentes, incluyendo etapas completas de cohetes gastados, satélites muertos, fragmentos de explosión, escamas de pintura, escoria de motores de cohetes sólidos, refrigerante liberado por los satélites de propulsión nuclear RORSAT y algunos grupos restantes de las 750 000 000[26]​ agujas pequeñas del proyecto militar estadounidense West Ford. Esos objetos, además de los micrometeoroides naturales,[27]​ son una amenaza significativa. Los objetos grandes podrían destruir la estación, pero son una amenaza menor ya que sus órbitas pueden predecirse. Los objetos demasiado pequeños para ser detectados por los instrumentos ópticos y de radar, desde aproximadamente 1 cm hasta el tamaño microscópico, ascienden a trillones. A pesar de su pequeño tamaño, algunos de estos objetos siguen siendo una amenaza debido a su energía cinética y dirección en relación con la estación. Los trajes espaciales del equipo de caminatas espaciales se podrían pinchar, causando exposición al vacío.[28]

Los objetos de la basura espacial se rastrean de forma remota desde el suelo, y se puede notificar a los tripulantes de la estación. Esto permite que se realice una Maniobra de Evitación de Escombros (DAM), que utiliza propulsores en la estación para cambiar la velocidad orbital y la altitud, evitando los escombros. Los DAM se llevarán a cabo si los modelos computacionales muestran que los escombros se acercarán dentro de una cierta distancia de amenaza. Por lo general, la órbita se aumentará ahorrando combustible, ya que la órbita de la estación debe aumentarse periódicamente para contrarrestar los efectos del arrastre atmosférico. Si se identifica una amenaza de escombros orbitales demasiado tarde para que se lleve a cabo un DAM de manera segura, el equipo de la estación cierra todas las escotillas a bordo de la estación y se retira a su nave espacial Shenzhou, para que puedan evacuar en caso de que se dañe por la basura. El blindaje de micrometeorito se incorpora a la estación para proteger las secciones presurizadas y los sistemas críticos. El tipo y grosor de estos paneles varía según la exposición prevista a daños.

Radiación

Las estaciones en LA órbita terrestre baja están parcialmente protegidas del entorno espacial por el campo magnético de la Tierra. Desde una distancia promedio de aproximadamente 70000 km, dependiendo de la actividad solar, la magnetosfera comienza a desviar el viento solar alrededor de la Tierra y las estaciones espaciales en órbita. Sin embargo, las erupciones solares siguen siendo un peligro para la tripulación, que puede recibir solo unos minutos de advertencia. La tripulación de la ISS se refugió como medida de precaución en 2005 en una parte protegida más fuerte de esa estación diseñada para ese propósito durante la tormenta de protones inicial de una llamarada solar de clase X-3.[29][30]​ Pero sin la protección limitada de la magnetosfera de la Tierra, la misión tripulada planificada de China a Marte está especialmente en riesgo.

Video de la Aurora boreal tomada por la tripulación de la Expedición 28 de la ISS en un pase ascendente desde el sur de Madagascar hasta el norte de Australia sobre el Océano Índico.

Las partículas subatómicas cargadas, principalmente protones de radiación cósmica y el viento solar, normalmente son absorbidas por la atmósfera de la Tierra, cuando interactúan en cantidad suficiente su efecto se hace visible a simple vista en un fenómeno llamado aurora boreal. Sin la protección de la atmósfera de la Tierra, que absorbe esta radiación, las cuadrillas de la estación están expuestas a aproximadamente 1 sievert cada día, lo que es casi lo mismo que alguien obtendría en un año en la Tierra, de fuentes naturales. Esto resulta en un riesgo de que los miembros de la tripulación desarrollen cáncer. La radiación puede penetrar en el tejido vivo y dañar el ADN, causando daño a los cromosomas de los linfocitos. Estas células son fundamentales para el sistema inmunitario y, por lo tanto, cualquier daño en ellas podría contribuir a la disminución de la inmunidad experimentada por la tripulación. La radiación también se ha relacionado con una mayor incidencia de cataratas en los astronautas. El blindaje protector y las drogas protectoras pueden reducir los riesgos a un nivel aceptable.

Los niveles de radiación experimentados en la ISS son aproximadamente 5 veces mayores que los experimentados por los pasajeros y la tripulación de las aerolíneas. El campo electromagnético de la Tierra proporciona casi el mismo nivel de protección contra la radiación solar y de otro tipo en la órbita baja terrestre así como en la estratosfera. Los pasajeros de las aerolíneas, sin embargo, experimentan este nivel de radiación durante no más de 15 horas en los vuelos intercontinentales más largos. Por ejemplo, en un vuelo de 12 horas, un pasajero de una aerolínea experimentaría 0.1 milisievert de radiación, o una tasa de 0.2 milisieverts por día.

Cooperación internacional

En 2011, se examinó la cooperación en el campo de los vuelos espaciales tripulados entre la CMSEO y la Agencia Espacial Italiana (ASI), la participación en el desarrollo de las estaciones espaciales tripuladas de China y la cooperación con China en campos como el vuelo de los astronautas y se discutió la investigación científica.[31]​ Las áreas potenciales y las formas de cooperación futura en los campos del desarrollo de la estación espacial tripulada, la medicina espacial y la ciencia espacial también se discutieron durante la reunión.

El 22 de febrero de 2017, la Agencia Espacial Tripulada de China (CMSA) y la ASI firmaron un acuerdo para cooperar en actividades de vuelos espaciales humanos a largo plazo. Las consecuencias de este acuerdo podrían ser importantes, considerando, por un lado, la posición de liderazgo que Italia ha alcanzado en el campo del vuelo espacial humano con respecto a la creación y explotación de la Estación Espacial Internacional (Nodo 2, Nodo 3, Colón, Cúpula, Leonardo, Raffaello, Donatello, PMM, etc) y, por otro lado, el importante programa de vuelos espaciales humanos que China está desarrollando, especialmente con la creación de la estación espacial.[32]

Véase también

Referencias

  1. «China lanza módulo central de estación espacial Tianhe». Radio Internacional de China. 29 de abril de 2021. Consultado el 29 de abril de 2021. 
  2. http://www.xinhuanet.com/english/2018-07/08/c_137310103.htm
  3. ChinaPower. «What’s driving China’s race to build a space station?». Center for Strategic and International Studies. Consultado el 5 de enero de 2017.  |autor= y |apellido= redundantes (ayuda)
  4. (en Chinese (China)). China Manned Space Engineering. 31 de octubre de 2013. Archivado desde el original el 6 de marzo de 2016. Consultado el 29 de junio de 2016. 
  5. Ping, Wu (June 2016). «China Manned Space Programme: Its Achievements and Future Developments» (PDF). China Manned Space Agency. Consultado el 28 de junio de 2016. 
  6. . 平湖档案网. 11 de enero de 2007. Archivado desde el original el 8 de octubre de 2011. Consultado el 21 de julio de 2008. 
  7. . 中国运载火箭技术研究院. 28 de julio de 2008. Archivado desde el original el 13 de febrero de 2009. Consultado el 28 de julio de 2008. 
  8. «江泽民为"神舟"号飞船题名». 东方新闻. 13 de noviembre de 2003. Consultado el 21 de julio de 2008. 
  9. . 大旗网. 6 de junio de 2008. Archivado desde el original el 23 de diciembre de 2007. Consultado el 21 de julio de 2008. 
  10. «基本概况». 中国科学院上海光学精密机械研究所. 7 de septiembre de 2007. Consultado el 21 de julio de 2008. 
  11. «金怡濂让中国扬威 朱镕基赞他是"做大事的人"». 搜狐. 23 de febrero de 2003. Consultado el 21 de julio de 2008. 
  12. . 南汇医保信息网. 19 de junio de 2006. Archivado desde el original el 14 de febrero de 2009. Consultado el 8 de mayo de 2008. 
  13. . Xinhua News Agency. 3 de noviembre de 2011. Archivado desde el original el 26 de abril de 2012. Consultado el 1 de febrero de 2012. 
  14. «China next year manual spacecraft Temple docking, multiply group has completed primary». Beijing News. 4 de noviembre de 2011. Consultado el 19 de febrero de 2012. 
  15. China Details Ambitious Space Station Goals Space.com March 7, 2011
  16. Klotz, Irene (12 de noviembre de 2013). «China Unveils Space Station Research Plans». SpaceNews. Consultado el 16 de noviembre de 2013. 
  17. http://spacenews.com/chinese-space-program-insights-emerge-from-national-peoples-congress/
  18. John Cook; Valery Aksamentov; Thomas Hoffman; Wes Bruner (2011). «ISS Interface Mechanisms and their Heritage». Boeing. Consultado el 1 de febrero de 2012. 
  19. «Testimony of James Oberg: Senate Science, Technology, and Space Hearing: International Space Exploration Program». SpaceRef. 27 de abril de 2004. Consultado el 1 de febrero de 2012. 
  20. Jones, Morris (18 de noviembre de 2011). «Shenzhou for Dummies». SpaceDaily. Consultado el 1 de febrero de 2012. 
  21. «China’s First Space Station Module Readies for Liftoff». Space News. 1 de agosto de 2011. Consultado el 1 de febrero de 2012. 
  22. Go Taikonauts Team (9 de septiembre de 2011). «Chinese Docking Adapter Compatible with International Standard». Go Taikonaut. Consultado el 1 de febrero de 2012. 
  23. BNS publisher= Bramand Defence and Aerospace News (9 de septiembre de 2014). . Archivado desde el original el 5 de junio de 2015. 
  24. Ana Verayo (7 de septiembre de 2014). «China Completes Design of First Cargo Spacecraft». China Topix. 
  25. Press Trust of India (2 de marzo de 2014). «China plans to launch Tianzhou cargo ship into space by 2016». Indian Express. 
  26. David S. F. Portree; Joseph P. Loftus, Jr. (PDF). Ston.jsc.nasa.gov. Archivado desde el original el 1 de septiembre de 2000. Consultado el 12 de marzo de 2016. 
  27. F. L. Whipple (1949). «The Theory of Micrometeoroids». Popular Astronomy 57: 517. Bibcode:1949PA.....57..517W. 
  28. «Space Suit Punctures and Decompression». The Artemis Project. Consultado el 20 de julio de 2011. 
  29. Ker Than (23 de febrero de 2006). «Solar Flare Hits Earth and Mars». Space.com. 
  30. «A new kind of solar storm». NASA. 10 de junio de 2005. 
  31. «Archived copy». Archivado desde el original el 7 de julio de 2012. Consultado el 14 de enero de 2012. 
  32. . 22 de febrero de 2017. Archivado desde el original el 2 de diciembre de 2018. Consultado el 2 de diciembre de 2018. 

Enlaces externos

  • Sitio web de la Agencia Espacial China.
  •   Datos: Q5100935
  •   Multimedia: Chinese space stations

gran, estación, espacial, modular, china, este, artículo, refiere, está, relacionado, vuelo, misión, espacial, reciente, actualmente, curso, información, este, artículo, puede, cambiar, frecuentemente, favor, agregues, datos, especulativos, recuerda, colocar, . Este articulo se refiere o esta relacionado con un vuelo o mision espacial reciente o actualmente en curso La informacion de este articulo puede cambiar frecuentemente Por favor no agregues datos especulativos y recuerda colocar referencias a fuentes fiables para dar mas detalles La Tiangong Palacio celestial o Estacion espacial modular china es una estacion espacial colocada en orbita baja terrestre La estacion espacial china planeada sera aproximadamente un quinto de la masa de la Estacion Espacial Internacional y cerca del tamano de la estacion rusa fuera de servicio Mir Se espera que la estacion tenga una masa entre 80 a 100 toneladas metricas Las operaciones seran controladas desde el Centro de Control y Comando Aeroespacial de Beijing en China El lanzamiento del modulo principal Tianhe fue realizado el 29 de abril de 2021 1 2 En 2017 se lanzo la nave de carga Tianzhou 1 la cual esta basada en los laboratorios espaciales Tiangong 1 amp 2 3 Representacion a escala de la estacion espacial Indice 1 Vision general 2 Origen de nombre 3 Estructura 3 1 Intercambios tecnologicos 3 2 Modulos 3 3 Calendario 3 4 Sistemas 3 5 Electrico 3 6 Acoplamiento 4 Reabastecimiento 4 1 Shenzhou 4 2 Tianzhou 5 Seguridad 5 1 Basura orbital 5 2 Radiacion 6 Cooperacion internacional 7 Vease tambien 8 Referencias 9 Enlaces externosVision general EditarLa construccion de la estacion manifestara la tercera fase del programa Tiangong Se construye en la experiencia obtenida de sus precursores Tiangong 1 y Tiangong 2 4 5 Los dirigentes chinos esperan que la busqueda conducida en la estacion mejorara la habilidad de los investigadores de conducir experimentos cientificos en el espacio mas alla de la duracion ofrecida por los laboratorios espaciales existentes de China Origen de nombre EditarDeng Xiaoping decidio que cita requerida que los nombres usados en el programa espacial anteriormente escogidos desde la revolucionario historia de la Republica Popular China serian reemplazados con nombres misticos religiosos 6 7 8 9 10 11 Estructura EditarLa estacion sera estacion espacial modular de tercera generacion Las estaciones de primera generacion como Salyut Almaz y Skylab eran estaciones de una sola pieza y no estaban disenadas para el reabastecimiento Las de segunda generacion Salyut 6 y 7 y Tiangong 1 and 2 estan disenadas para el reabastecimiento a mitad de la mision Estaciones de la tercera generacion como Mir la Estacion Espacial Internacional OPESEK y esta son estaciones espaciales modulares puestas en orbita a partir de piezas lanzadas por separado Los metodos de diseno modular pueden mejorar considerablemente la confiabilidad reducir los costos acortar el ciclo de desarrollo y cumplir con los requisitos de tareas diversificadas Intercambios tecnologicos Editar Modelo del lanzador para modulos el Long March 5 El metodo de ensamblaje de la estacion se puede comparar con la estacion espacial sovietica rusa Mir y el segmento orbital ruso de la estacion espacial internacional Si se construye la estacion China sera la segunda nacion en desarrollar y utilizar la localizacion y el acoplamiento automaticos para la construccion de la estacion espacial modular La nave espacial Shenzhou y las estaciones espaciales usan un mecanismo de acoplamiento fabricado domesticamente similar o compatible con el adaptador de acoplamiento de diseno ruso APAS Durante las cordiales relaciones chino sovieticas de la decada de 1950 la URSS realizo un programa cooperativo de transferencia de tecnologia con China en el cual ensenaron a estudiantes chinos y proporcionaron al programa una muestra del cohete R 2 El primero misil chino fue construido en 1958 con ingenieria inversa a partir del R 2 sovietico una version mejorada del cohete aleman V 2 12 Pero cuando el primer ministro sovietico Nikita Khrushchev fue denunciado como revisionista por Mao la relacion amistosa entre los dos paises se convirtio en una confrontacion Como consecuencia toda la asistencia tecnologica sovietica se retiro bruscamente despues de la ruptura sino sovietica de 1960 El desarrollo de los cohetes Larga Marcha le permitio a China un lanzamiento comercial en 1985 que desde entonces ha lanzado mas de 30 satelites extranjeros principalmente de intereses europeos y asiaticos En 1994 Rusia vendio parte de su avanzada tecnologia espacial y de aviacion a los chinos En 1995 un acuerdo se firmo entre dos paises para la transferencia tecnologica de la nave rusa Soyuz a China En el acuerdo se incluia entrenamiento provision de capsulas Soyuz sistemas de soporte vital sistemas de acoplamiento y trajes espaciales En 1996 dos astronautas chinos Wu Jie y Li Qinglong comenzaron a entrenar en el Centro de Entrenamiento Cosmonauta Yuri Gagarin en Rusia Despues del entrenamiento los dos volvieron a China y procedieron a entrenar a otros astronautas chinos en sitios cerca de Pekin y Jiuquan El hardware y la informacion vendida por los rusos llevaron a modificaciones de la nave Phase One eventualmente llamada Shenzhou que se puede traducir como barco divino Se construyeron nuevas instalaciones de lanzamiento en el sitio de lanzamiento de Jiuquan en Mongolia y en 1998 se implemento una maqueta del vehiculo de lanzamiento Long March 2F con la nave espacial Shenzhou para la integracion y las pruebas de las instalaciones Un representante del programa espacial tripulado chino afirmo que alrededor del ano 2000 China y Rusia estaban realizando intercambios tecnologicos con respecto al desarrollo de un mecanismo de acoplamiento 13 El jefe adjunto de diseno Huang Weifen declaro que hacia fines de 2009 la agencia china comenzo a entrenar a los astronautas sobre como atracar naves espaciales 14 Modulos Editar El elemento base de la estacion Core Cabin Module proporciona soporte vital y viviendas para tres miembros de la tripulacion y provee orientacion navegacion y control de orientacion para la estacion El modulo tambien proporciona los sistemas de alimentacion propulsion y soporte vital de la estacion El modulo consta de tres secciones viviendas seccion de servicio y un centro de acoplamiento Las habitaciones contendran una cocina y un bano equipos de control de incendios equipos de procesamiento y control atmosfericos computadoras aparatos cientificos equipos de comunicaciones para ver y escuchar el control terrestre en Beijing y otros equipos En 2018 se presento publicamente una maqueta de CCM a gran escala en la China International Aviation amp Aerospace Exhibition en Zhuhai El primero de dos modulos de cabina de laboratorio proporcionara control adicional de avionica propulsion y orientacion de navegacion como funciones de respaldo para el CCM Ambos MCM proporcionaran un entorno presurizado para que los investigadores realicen experimentos cientificos en caida libre o microgravedad que no podrian realizarse en la Tierra durante mas de unos pocos minutos Los experimentos tambien se pueden colocar en el exterior de los modulos para la exposicion al entorno espacial los rayos cosmicos el vacio y los vientos solares Al igual que Mir y el segmento orbital ruso de la ISS los modulos de la estacion china se ensamblaran completamente en orbita en contraste con los segmentos orbitales de Estados Unidos de la ISS que requirio caminar por el espacio para interconectar cables tuberias y elementos estructurales manualmente El puerto axial de los LCM se equipara con equipo de encuentro y primero se acoplara al puerto axial del CCM Un brazo mecanico similar al brazo Lyappa ruso utilizado en la estacion espacial Mir luego movera el modulo a un puerto radial del CCM Calendario Editar En 2011 la estacion tenia planeada ser ensamblada durante el 2020 al 2022 15 Para el 2013 el modulo principal de la estacion tenia planeado ser lanzado antes en 2018 seguido por el primer modulo de laboratorio en 2020 y el segundo en 2022 16 Para 2018 esto se habia deslizado del 2020 al 2023 17 El lanzamiento del modulo central fue realizado el 29 de abril de 2021 1 Sistemas Editar Electrico Editar La potencia electrica es proporcionada por dos conjuntos de energia solar dirigibles en cada modulo que utilizan celulas de energia solar fotovoltaica para convertir la luz solar en electricidad La energia se almacena para alimentar la estacion cuando pasa a la sombra de la Tierra Las naves de reabastecimiento repondran el combustible para los motores de propulsion de la estacion para mantener la estacion para contrarrestar los efectos del arrastre atmosferico Acoplamiento Editar Fuentes extranjeras han declarado que el mecanismo de acoplamiento se parece mucho al APAS 89 APAS 95 con una fuente estadounidense que va tan lejos como para llamarlo un clon 2 18 19 20 Ha habido afirmaciones contradictorias sobre la compatibilidad del sistema chino con los mecanismos de acoplamiento actuales y futuros en la ISS 20 21 22 Reabastecimiento EditarLa estacion sera reabastecida por naves espaciales tripuladas y naves robotizadas de carga Shenzhou Editar Articulo principal Programa Shenzhou Configuracion de la nave espacial Shenzhou El Shenzhou esta disenado principalmente para llevar a la tripulacion a la orbita Consta de tres modulos un modulo orbital delantero 轨道舱 utilizado por la tripulacion como espacio de trabajo y vivienda un modulo de reingreso 返回 舱 en el centro que elimina todo el equipo innecesario para hacer el retorno a la Tierra mas simple y por lo tanto mas seguro y un modulo de servicio de popa 推进舱 que contiene motores propelentes enfriamiento y control de orientacion y orientacion Todo lo que se coloque en los modulos orbitales o de servicio no requiere proteccion contra el calor y esto aumenta el espacio disponible en la nave espacial sin aumentar el peso tanto como lo haria si esos modulos tambien pudieran resistir la reentrada atmosferica Por lo tanto tanto Soyuz como Shenzhou tienen mas area de estar con menos peso que el modulo de mando y servicio de Apolo La masa de la nave es de alrededor de 8000 kilogramos y tiene 9 25 metros 30 3 pies de largo Tianzhou Editar El Tianzhou un derivado modificado de la nave espacial Tiangong 1 se usara como una nave de carga robotica para reabastecer a la estacion 23 Se espera que la masa de lanzamiento de Tianzhou sea de alrededor de 13000 kg con una carga util de alrededor de 6000 kg 24 El lanzamiento y acoplamiento deben ser totalmente autonomos con control de la mision y tripulacion utilizados en funciones de anulacion o supervision Este sistema se vuelve muy confiable con las estandarizaciones que brindan beneficios de costos significativos en operaciones rutinarias repetitivas Un enfoque automatizado podria permitir el ensamblaje de modulos que orbitan otros mundos antes de las misiones tripuladas 25 Seguridad EditarBasura orbital Editar Articulo principal Basura espacial Un objeto de 7 gramos mostrado en el centro disparado a 7 km s la velocidad orbital de la estacion hizo este crater de 15 cm en un bloque solido de aluminio Objetos rastreables por radar incluidos los desechos con un anillo distintivo de satelites GEO La estacion operara en la orbita baja terrestre de 340 a 450 kilometros sobre la Tierra a una inclinacion orbital de 42 a 43 grados en el centro de la termosfera de la Tierra A esa altitud hay una gran variedad de desechos espaciales que consisten en muchos objetos diferentes incluyendo etapas completas de cohetes gastados satelites muertos fragmentos de explosion escamas de pintura escoria de motores de cohetes solidos refrigerante liberado por los satelites de propulsion nuclear RORSAT y algunos grupos restantes de las 750 000 000 26 agujas pequenas del proyecto militar estadounidense West Ford Esos objetos ademas de los micrometeoroides naturales 27 son una amenaza significativa Los objetos grandes podrian destruir la estacion pero son una amenaza menor ya que sus orbitas pueden predecirse Los objetos demasiado pequenos para ser detectados por los instrumentos opticos y de radar desde aproximadamente 1 cm hasta el tamano microscopico ascienden a trillones A pesar de su pequeno tamano algunos de estos objetos siguen siendo una amenaza debido a su energia cinetica y direccion en relacion con la estacion Los trajes espaciales del equipo de caminatas espaciales se podrian pinchar causando exposicion al vacio 28 Los objetos de la basura espacial se rastrean de forma remota desde el suelo y se puede notificar a los tripulantes de la estacion Esto permite que se realice una Maniobra de Evitacion de Escombros DAM que utiliza propulsores en la estacion para cambiar la velocidad orbital y la altitud evitando los escombros Los DAM se llevaran a cabo si los modelos computacionales muestran que los escombros se acercaran dentro de una cierta distancia de amenaza Por lo general la orbita se aumentara ahorrando combustible ya que la orbita de la estacion debe aumentarse periodicamente para contrarrestar los efectos del arrastre atmosferico Si se identifica una amenaza de escombros orbitales demasiado tarde para que se lleve a cabo un DAM de manera segura el equipo de la estacion cierra todas las escotillas a bordo de la estacion y se retira a su nave espacial Shenzhou para que puedan evacuar en caso de que se dane por la basura El blindaje de micrometeorito se incorpora a la estacion para proteger las secciones presurizadas y los sistemas criticos El tipo y grosor de estos paneles varia segun la exposicion prevista a danos Radiacion Editar Articulos principales Eyeccion de masa coronaly Aurora polar Las estaciones en LA orbita terrestre baja estan parcialmente protegidas del entorno espacial por el campo magnetico de la Tierra Desde una distancia promedio de aproximadamente 70000 km dependiendo de la actividad solar la magnetosfera comienza a desviar el viento solar alrededor de la Tierra y las estaciones espaciales en orbita Sin embargo las erupciones solares siguen siendo un peligro para la tripulacion que puede recibir solo unos minutos de advertencia La tripulacion de la ISS se refugio como medida de precaucion en 2005 en una parte protegida mas fuerte de esa estacion disenada para ese proposito durante la tormenta de protones inicial de una llamarada solar de clase X 3 29 30 Pero sin la proteccion limitada de la magnetosfera de la Tierra la mision tripulada planificada de China a Marte esta especialmente en riesgo Reproducir contenido multimedia Video de la Aurora boreal tomada por la tripulacion de la Expedicion 28 de la ISS en un pase ascendente desde el sur de Madagascar hasta el norte de Australia sobre el Oceano Indico Las particulas subatomicas cargadas principalmente protones de radiacion cosmica y el viento solar normalmente son absorbidas por la atmosfera de la Tierra cuando interactuan en cantidad suficiente su efecto se hace visible a simple vista en un fenomeno llamado aurora boreal Sin la proteccion de la atmosfera de la Tierra que absorbe esta radiacion las cuadrillas de la estacion estan expuestas a aproximadamente 1 sievert cada dia lo que es casi lo mismo que alguien obtendria en un ano en la Tierra de fuentes naturales Esto resulta en un riesgo de que los miembros de la tripulacion desarrollen cancer La radiacion puede penetrar en el tejido vivo y danar el ADN causando dano a los cromosomas de los linfocitos Estas celulas son fundamentales para el sistema inmunitario y por lo tanto cualquier dano en ellas podria contribuir a la disminucion de la inmunidad experimentada por la tripulacion La radiacion tambien se ha relacionado con una mayor incidencia de cataratas en los astronautas El blindaje protector y las drogas protectoras pueden reducir los riesgos a un nivel aceptable Los niveles de radiacion experimentados en la ISS son aproximadamente 5 veces mayores que los experimentados por los pasajeros y la tripulacion de las aerolineas El campo electromagnetico de la Tierra proporciona casi el mismo nivel de proteccion contra la radiacion solar y de otro tipo en la orbita baja terrestre asi como en la estratosfera Los pasajeros de las aerolineas sin embargo experimentan este nivel de radiacion durante no mas de 15 horas en los vuelos intercontinentales mas largos Por ejemplo en un vuelo de 12 horas un pasajero de una aerolinea experimentaria 0 1 milisievert de radiacion o una tasa de 0 2 milisieverts por dia Cooperacion internacional EditarEn 2011 se examino la cooperacion en el campo de los vuelos espaciales tripulados entre la CMSEO y la Agencia Espacial Italiana ASI la participacion en el desarrollo de las estaciones espaciales tripuladas de China y la cooperacion con China en campos como el vuelo de los astronautas y se discutio la investigacion cientifica 31 Las areas potenciales y las formas de cooperacion futura en los campos del desarrollo de la estacion espacial tripulada la medicina espacial y la ciencia espacial tambien se discutieron durante la reunion El 22 de febrero de 2017 la Agencia Espacial Tripulada de China CMSA y la ASI firmaron un acuerdo para cooperar en actividades de vuelos espaciales humanos a largo plazo Las consecuencias de este acuerdo podrian ser importantes considerando por un lado la posicion de liderazgo que Italia ha alcanzado en el campo del vuelo espacial humano con respecto a la creacion y explotacion de la Estacion Espacial Internacional Nodo 2 Nodo 3 Colon Cupula Leonardo Raffaello Donatello PMM etc y por otro lado el importante programa de vuelos espaciales humanos que China esta desarrollando especialmente con la creacion de la estacion espacial 32 Vease tambien EditarEstacion espacial Estacion Espacial Internacional Programa espacial chino Programa Shenzhou Shenzhou Telescopio espacial chino XuntianReferencias Editar a b China lanza modulo central de estacion espacial Tianhe Radio Internacional de China 29 de abril de 2021 Consultado el 29 de abril de 2021 http www xinhuanet com english 2018 07 08 c 137310103 htm ChinaPower What s driving China s race to build a space station Center for Strategic and International Studies Consultado el 5 de enero de 2017 autor y apellido redundantes ayuda 中国载人航天工程标识及空间站 货运飞船名称正式公布 CMSE logo and space station and cargo ship name officially announced en Chinese China China Manned Space Engineering 31 de octubre de 2013 Archivado desde el original el 6 de marzo de 2016 Consultado el 29 de junio de 2016 Ping Wu June 2016 China Manned Space Programme Its Achievements and Future Developments PDF China Manned Space Agency Consultado el 28 de junio de 2016 江泽民总书记为长征 2F火箭的题词 平湖档案网 11 de enero de 2007 Archivado desde el original el 8 de octubre de 2011 Consultado el 21 de julio de 2008 中国机械工业集团公司董事长任洪斌一行来中国运载火箭技术研究院考察参观 中国运载火箭技术研究院 28 de julio de 2008 Archivado desde el original el 13 de febrero de 2009 Consultado el 28 de julio de 2008 江泽民为 神舟 号飞船题名 东方新闻 13 de noviembre de 2003 Consultado el 21 de julio de 2008 中国战略秘器 神龙号 空天飞机惊艳亮相 大旗网 6 de junio de 2008 Archivado desde el original el 23 de diciembre de 2007 Consultado el 21 de julio de 2008 基本概况 中国科学院上海光学精密机械研究所 7 de septiembre de 2007 Consultado el 21 de julio de 2008 金怡濂让中国扬威 朱镕基赞他是 做大事的人 搜狐 23 de febrero de 2003 Consultado el 21 de julio de 2008 中国第一枚自行设计制造的试验 探空火箭T 7M发射场遗址 南汇医保信息网 19 de junio de 2006 Archivado desde el original el 14 de febrero de 2009 Consultado el 8 de mayo de 2008 All components of the docking mechanism was designed and manufactured in house China Xinhua News Agency 3 de noviembre de 2011 Archivado desde el original el 26 de abril de 2012 Consultado el 1 de febrero de 2012 China next year manual spacecraft Temple docking multiply group has completed primary Beijing News 4 de noviembre de 2011 Consultado el 19 de febrero de 2012 China Details Ambitious Space Station Goals Space com March 7 2011 Klotz Irene 12 de noviembre de 2013 China Unveils Space Station Research Plans SpaceNews Consultado el 16 de noviembre de 2013 http spacenews com chinese space program insights emerge from national peoples congress John Cook Valery Aksamentov Thomas Hoffman Wes Bruner 2011 ISS Interface Mechanisms and their Heritage Boeing Consultado el 1 de febrero de 2012 Testimony of James Oberg Senate Science Technology and Space Hearing International Space Exploration Program SpaceRef 27 de abril de 2004 Consultado el 1 de febrero de 2012 a b Jones Morris 18 de noviembre de 2011 Shenzhou for Dummies SpaceDaily Consultado el 1 de febrero de 2012 China s First Space Station Module Readies for Liftoff Space News 1 de agosto de 2011 Consultado el 1 de febrero de 2012 Go Taikonauts Team 9 de septiembre de 2011 Chinese Docking Adapter Compatible with International Standard Go Taikonaut Consultado el 1 de febrero de 2012 BNS publisher Bramand Defence and Aerospace News 9 de septiembre de 2014 China completes design of Tianzhou cargo spacecraft Archivado desde el original el 5 de junio de 2015 Ana Verayo 7 de septiembre de 2014 China Completes Design of First Cargo Spacecraft China Topix Press Trust of India 2 de marzo de 2014 China plans to launch Tianzhou cargo ship into space by 2016 Indian Express David S F Portree Joseph P Loftus Jr Orbital Debris A Chronology PDF Ston jsc nasa gov Archivado desde el original el 1 de septiembre de 2000 Consultado el 12 de marzo de 2016 F L Whipple 1949 The Theory of Micrometeoroids Popular Astronomy 57 517 Bibcode 1949PA 57 517W Space Suit Punctures and Decompression The Artemis Project Consultado el 20 de julio de 2011 Ker Than 23 de febrero de 2006 Solar Flare Hits Earth and Mars Space com A new kind of solar storm NASA 10 de junio de 2005 Archived copy Archivado desde el original el 7 de julio de 2012 Consultado el 14 de enero de 2012 Agreement Italy China 22 de febrero de 2017 Archivado desde el original el 2 de diciembre de 2018 Consultado el 2 de diciembre de 2018 Enlaces externos EditarSitio web de la Agencia Espacial China Datos Q5100935 Multimedia Chinese space stationsObtenido de https es wikipedia org w index php title Gran estacion espacial modular china amp oldid 136386895, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos