fbpx
Wikipedia

Fecundación in vitro

La fecundación in vitro, FIV o (IVF en inglés) es una técnica por la cual la fecundación de los ovocitos por los espermatozoides se realiza fuera del cuerpo de la madre. La FIV es el principal tratamiento para la esterilidad cuando otros métodos de reproducción asistida no han tenido éxito. El proceso implica el control hormonal del proceso ovulatorio, extrayendo uno o varios ovocitos de los ovarios maternos, para permitir que sean fecundados por espermatozoides en un medio líquido. El óvulo fecundado (cigoto) puede entonces ser transferido al útero de la mujer, en vistas a que implante en el útero y continúe su desarrollo hasta el parto.

Fertilización In Vitro.

In vitro

El término in vitro es un término en latín que significa ‘en cristal’. Se utiliza porque en los primeros experimentos biológicos en los que se realizaban cultivos de tejidos fuera de los organismos vivos de los cuales procedían, se realizaban en contenedores de cristal, tales como tubos de ensayo, probetas o placas de Petri. En la actualidad, el término in vitro se refiere a cualquier procedimiento biológico que se realiza fuera del organismo en el que tendría lugar normalmente, para distinguirlo de un experimento in vivo donde el tejido permanece dentro del organismo vivo en el que normalmente se encuentra. Coloquialmente, a los bebés concebidos a través de FIV se les denominaba bebés probeta, refiriéndose a contenedores de cristal o plástico denominados probetas, que se utilizan frecuentemente en los laboratorios de química y biología. Sin embargo, normalmente la fecundación in vitro se realiza en placas planas denominadas placas de Petri; las placas de Petri utilizadas más a menudo están producidas en plástico, sin embargo, el nombre FIV sigue conservándose.

Indicaciones

Inicialmente la FIV se desarrolló para superar situaciones de infertilidad debidos a problemas en las trompas de Falopio, pero posteriormente se observó que la técnica tenía éxito también en otros casos de infertilidad. La introducción de la inyección intracitoplasmática de espermatozoides (ICSI) soluciona en gran medida los problemas de infertilidad masculina.

Para que un tratamiento de FIV tenga éxito, es necesario disponer de ovocitos sanos, espermatozoides que puedan fecundarlos y un útero que pueda mantener un embarazo. Aunque en algunos países los tratamientos de FIV están cubiertos por los servicios sanitarios sociales, normalmente se recurre a esta técnica cuando otras opciones han fallado, debido a que la FIV conlleva costos elevados.

La FIV puede utilizarse también en mujeres menopáusicas, utilizando ovocitos procedentes de una donante. Asimismo es una técnica que puede considerarse en pacientes que han sufrido una pérdida total o parcial de fecundidad debido a un tratamiento agresivo frente a una patología grave (como el cáncer).

Método

Estimulación ovárica

Previamente a la fecundación in vitro, generalmente en el tercer día de la menstruación se estimula el desarrollo de folículos múltiples en los ovarios mediante tratamientos hormonales. En la mayoría de las pacientes se emplean inyecciones de gonadotropinas (generalmente análogos de la FSH), pudiendo realizar algún análisis complementario de niveles hormonales como estradiol o progesterona, y del crecimiento folicular mediante ultrasonografía ginecológica. El tiempo de estimulación necesario es variable, normalmente se necesitan 8-12 días de inyecciones. La ovulación espontánea durante el ciclo se previene por el uso de agonistas GnRH (aGnRH) o antagonistas GnRH (agGnRH), que bloquean el pico espontáneo de la hormona luteinizante (LH). Ambas generan, en otras palabras, lo que se conoce como un hipogonadismo hipogonadotrofo reversible. Sin embargo, los agonistas de la GnRH se diferencian de los antagonistas principalmente porque su efecto no es inmediato, sino que desencadenan en primera instancia un pico de FSH y LH (efecto flare-up), produciéndose un bloqueo posterior en la liberación de gonadotropinas por la saturación de los receptores de GnRH de la cascada de activación. Sin embargo, existen diferentes protocolos de estimulación que varían en el día de inicio, medicamentos empleados y métodos para prevenir e inducir el pico de la hormona luteinizante (LH). En la actualidad, se está empleando también como estimulante de la ovulación un análogo de la FSH generado por recombinación: la corifolitropina alfa. Esta molécula contiene un fragmento de la gonadotropina coriónica humana, lo que le da un perfil farmacocinético muy favorable, disminuyendo las dosis de fármaco en comparación con la FSH convencional.[1]

Básicamente, si en el laboratorio el equipo se decanta por un tratamiento con aGnRH, se pueden escoger entre un protocolo corto y uno largo:

- Protocolo largo: los agonistas de la GnRH se suministran a la paciente varios días antes del nuevo ciclo y durante la administración de las gonadotropinas exógenas. Entre sus múltiples ventajas destaca que, con él, se asegura la no liberación prematura de LH, lo que garantiza la invalidación de toda ovulación precoz. A su vez, este hecho permite al embriólogo planificar sin margen de error la fecha de la captación folicular. Por otra parte, se asegura que el desarrollo de los folículos se sincronice. Desgraciadamente, con la aplicación de este protocolo, la probabilidad de que se produzca un síndrome de hiperestimulación ovárica (SHO) se multiplica, y se requiere un soporte de fase lútea (administración de progesterona), así como una mayor cantidad de gonadotropinas.

- Protocolo corto: los agonistas de la GnRH comienzan a suministrarse en los primeros días del ciclo, casi al mismo tiempo que las gonadotropinas exógenas. La principal virtud de este procedimiento es que consigue mejores resultados en mujeres con baja respuesta, aunque este hecho aún no ha sido completamente demostrado. En cambio, la aplicación de este protocolo multiplica el riesgo de que se produzcan picos de LH (induciendo entonces una ovulación precoz) y no posibilita un desarrollo sincrónico de los folículos. En definitiva, se establece control sobre el desarrollo folicular mucho menor.

Por otra parte, cuando se emplean antagonistas de la GnRH, solo se establece un protocolo, en el cual se administra la sustancia bloqueante varios días después del inicio del ciclo, al mismo tiempo que se suministran gonadotropinas recombinantes o purificadas de la orina.

Los protocolos de estimulación ovárica se han convertido en complejos y costosos. Por esto, parece haber una tendencia a nivel mundial dirigida a reducir la cantidad y la dosis de los medicamentos empleados durante la estimulación con el fin de reducir los riesgos y costos asociados a estos tratamientos [6]. Ejemplo de estos esfuerzos son los tratamientos FIV con Ciclos Naturales, además de los protocolos FIV con mínima estimulación desarrollados por los grupos de New Hope Fertility y la Kato Ladies Clinic, dirigidos por los doctores John Zhang en NY , el Dr. O. Kato en Tokio [8], y el Dr. Chávez-Badiola en México .

Extracción de ovocitos

Cuando se considera que la maduración de los folículos es adecuada, se administra a la paciente gonadotropina coriónica humana (β-hCG) o algún agonista de la GnRH. La primera actúa como un análogo de la hormona luteinizante (LH); mientras que la segunda induce un disparo de la propia hormona luteinizante (LH). En cualquiera de los casos, el medicamento provocará la ovulación alrededor de 36 horas después de la inyección, pero el procedimiento de extracción tiene lugar justo antes de que esto ocurra.

La extracción de los ovocitos se programa unas 36 horas después de la inducción de la ovulación y se realiza por vía transvaginal, utilizando una aguja guiada por ultrasonido, que pincha la pared vaginal para alcanzar los ovarios. Un médico aspira los folículos ayudado por un ecógrafo y recoge el líquido folicular en unos tubos que serán introducidos a un termobloque hasta que pasen al laboratorio. El líquido folicular es un fluido amarillento y seroso que contiene linfocitos y células de la granulosa aisladas o formando cúmulos con o sin ovocitos. A medida que se punciona el ovario el líquido folicular se vuelve de color rojo (hemático) debido a la hemorragia provocada por la punción. La sangre es tóxica para el ovocito pues contiene muchos anticuerpos, por lo que una vez que se termine la punción habrá que eliminarla. Este paso se realiza en el laboratorio, donde se procesa el líquido de la punción con el objetivo de recuperar los ovocitos contenidos en el líquido; de esta manera se obtendrán los ovocitos, se hará un lavado de los mismos y se clasificarán según su morfología. Estos tres pasos se tienen que realizar en el menor tiempo posible para evitar el efecto de la temperatura, a la que los ovocitos son muy sensibles, y el daño producido por el líquido hemático.

  • Temperatura: el ovocito es el elemento más sensible a la temperatura de todo el laboratorio. Tiene que estar a 37ºC en el incubador, de forma que un solo grado de diferencia es suficiente para que se desnaturalice el ovocito. De hecho, si ésta bajo de 34 °C el huso meiótico despolimerizará, y cuando se vuelva a forma puede crear anomalías cromosómicas, de forma que el ovocito será fecundable pero no dará lugar a un embrión normal.

Se deben aislar los complejos cúmulo-corona-ovocitos que se llegan a observar a simple vista (varios mm de diámetro).

Así, una vez realizada la extracción de ovocitos, la muestra se mira al microscopio óptico para seleccionar los cúmulos ooforos. Luego, estos se limpian de las células de la granulosa para quedarnos solo con el ovocito. Este proceso se conoce como denudación.

  • Medios: durante este proceso se emplean diferentes medios de cultivo con diferente composición:
  • En los tubos: 0,1 ml de medio tamponado (HEPES) con heparina para evitar la formación de coágulos.
  • El medio HEPES (que debe estar desde el día anterior a ser utilizado en una estufa a 37 °C) acumulará temporalmente los cúmulos mientras se realiza la punción. Además será empleado para lavar y reducir el tamaño de los cúmulos antes de pasar al incubador.
  • Placas de cultivo: con un medio simple rico en glucosa (por ejemplo HTF + HSA 10 mg/ml) para mantenerlos en el incubador al 5 % dióxido de carbono. El medio debe estar desde el día anterior a ser utilizado en el incubador a 37 °C y 5 % de dióxido de carbono.

Las punciones se programan normalmente cada 30 minutos aunque la búsqueda de los ovocitos no suele durar más de 15 minutos. En estos procesos se utiliza anestesia local, general o parcial para evitar el dolor producido por la punción.

Existen 3 estadios de maduración en los cúmulos que se extraen por punción folicular, a saber:

- Grado I (Maduración nuclear MII): El cúmulo y la corona del ovocito presentan un aspecto expandido. Es el estado en el cual el ovocito presenta una mayor maduración y solo los de este tipo son los que se utilizan en técnicas de reproducción asistida.

- Grado III (Maduración nuclear VG): El ovocito destaca por la gran compactación del cúmulo, el cual cuenta con pocas células, muy fijadas a la zona pelúcida (ZP).

- Grado II (Maduración nuclear MI): El ovocito presenta un aspecto intermedio entre los dos estadios anteriores.

Esta clasificación trata de describir el ovocito y su estado de maduración nuclear estando rodeado de células del cúmulo y la corona.

  • Morfología: para observar bien el ovocito habría que colocarlo en muy poca cantidad de medio para esparcir las células de granulosa. De forma que la ventaja de saber el estado madurativo no parta ningún beneficio frente a la manipulación que representa el poder conocerlo.

Es por ello que actualmente esta clasificación no tiene gran relevancia y no debe dársele mayor importancia, salvo para indicar características que se salgan especialmente de lo considerado como normalidad: cúmulos o coronas de aspecto apoptótico o postmaduro, presencia de sangre, etc.

Fecundación

Una vez en el laboratorio, los complejos cúmulo corona ovocito extraídos se lavan en medio HEPES para mantener el pH, recortando las células de la granulosa que los rodean y preparándolos para la fecundación. Los ovocitos deben permanecer al menos 4 horas en el incubador (medio simple rico en glucosa) hasta su inseminación, es decir, aproximadamente 40 horas tras la inducción de la ovulación que sería el momento de la ovulación espontánea. Este tiempo es necesario para tener una apropiada maduración del ovocito y para que se simulen las condiciones naturales que ocurren en el útero. Si la inseminación se realiza antes o después de este periodo de tiempo, la eficiencia de la inseminación disminuirá.

Al mismo tiempo, el semen se prepara para la fecundación, eliminando las células inactivas, el fluido seminal y se realiza su capacitación. Los parámetros adecuados de semen capacitado para realizar FIV son: 8-10 millones de espermatozoides por mililitro, más de 75 % de espermatozoides móviles progresivos y más de 1 % de formas normales. Si el semen proviene de un donante, probablemente habrá sido preparado antes de ser congelado y puesto en cuarentena, y cuando sea descongelado estará listo para usar. Concentraciones superiores de espermatozoides pueden producir fecundaciones anómalas (poliespermia) y una menor concentración de espermatozoides puede producir fallos de fecundación.

Existen distintos protocolos de FIV pero todos se basan en el mismo principio: el esperma y el ovocito se incuban juntos (en un ratio de aproximadamente 75.000:1) en un medio de cultivo simple con glucosa durante unas 18 horas. El ovocito se fertilizará durante los primeros 20 minutos de exposición. Para fecundar un ovocito no basta con un solo espermatozoide, siendo necesario como mínimo varias decenas para deshacer la zona pelúcida (capa celular protectora). En este sentido, el primer espermatozoide en llegar no suele ser el responsable de la fecundación.

Si la muestra seminal posee valores inferiores a los anteriores, se recurre a ICSI en lugar de FIV. ICSI también se conoce como microinyección. Consiste en inyectar directamente el espermatozoide en el ovocito. Es la técnica más eficiente cuando los espermatozoides están gravemente dañados, es decir, cuando hay un grave problema de infertilidad en el hombre.

Sin embargo, debido a la alta tasa de éxito - hay una mayor tasa de fertilización con esta técnica en comparación con FIV convencional - ICSI es la más usada mundialmente. Mientras que con ICSI 8/1000 ovocitos son fertilizados, con la FIV convencional sólo se fertilizan 4-6/1000. Por tanto, teóricamente FIV es la primera opción que se intenta debido a su similitud fisiológica pero generalmente se prefiere ICSI por su eficiencia.

Trascurrido 16-18 horas se comprueba la fecundación, que ya debería haber ocurrido. Hay autores que a la media hora lavan los ovocitos para evitar la exposición a ROS, que puede formarse por la presencia de espermatozoides muertos.

El cigoto humano de 15 a 20 horas tras la concepción permanece en el estadio de pronúcleos (PN). Se considera que la fecundación es correcta cuando el cigoto presenta dos PN y dos corpúsculos (CP). A veces es difícil interpretar los CP y se valoran como correctamente fecundado cualquier embrión con dos PN. Cualquier otra combinación se considera anormal y se descarta. La mayoría de las veces aparece primero el PN paterno en la posición central y el materno se acerca más tarde. Para poder valorar correctamente la fecundación, es necesario decumular previamente el cigoto. Es importante que en FIV no se decumule el ovocito antes de la fecundación, ya que conlleva alta probabilidad de polispermia.

El óvulo fecundado se pasa a un medio de cultivo simple (como HTF/HSA) o secuencial (G1 de Vitrolife) y se mantiene durante alrededor de 48h hasta que alcanza el estadio de 6-8 células.

 
Embrión de 8 células listo para ser transferido.

Hay estudios realizados que demuestran que la liofilización del esperma de ratón permite el desarrollo de embriones normales tras la inyección de ovocitos.

Cultivo de embriones

Una vez el óvulo ha sido fecundado y se ha obtenido un cigoto, este es cultivado para promover su división celular y crecimiento para dar lugar a un embrión. Este cultivo dura entre 2 y 5 días, y es muy importante que se lleve a cabo en las condiciones óptimas para el embrión, ya que de ello dependerá su calidad y la tasa de implantación del mismo cuando sea transferido a un útero. Para que el crecimiento del embrión se lleve a cabo en las mejores condiciones posibles se utilizan distintos tipos de medio de cultivo:

Medios simples: de composición sencilla y fáciles de preparar. La composición de estos medios se determina a partir de la composición teórica del líquido de la trompa (medios HTF o P1) o de la composición de medios de cultivo para el desarrollo de cigotos de ratón (medios KSOM, Earle, M16 y T6), y suelen suplementarse con suero materno o albúmina sérica humana (HSA). Son óptimos para el crecimiento inicial del embrión (hasta los 3 días de cultivo). A partir del día cuatro no garantizan el desarrollo óptimo debido al comienzo de la transcripción activa del embrión, para lo que se requieren sustancias que estos medios no contienen. Los embriones suelen ser cultivados durante 3 días antes de su implantación, periodo tras el cual alcanzarían un estadio de 6-8 células. Ello permite que el embriólogo pueda monitorizar su tasa de división celular y la activación de genes, para asegurarse de que el embrión sea viable y de que se implantará adecuadamente. Tan solo se adelantará el momento de la implantación, normalmente a los dos días de cultivo, cuando la pareja sometida a FIV cuente con pocos embriones disponibles para ser transferidos o cuando los embriones se desarrollen con lentitud.

Medios complejos: su composición es más compleja, incluye vitaminas, aminoácidos, metales, suero,... Son medios comerciales que han sido diseñados para el cultivo de células somáticas en cultivo, como el medio Ham F10, de modo que aunque mejoran el desarrollo embrionario hasta blastocisto (día 5) en comparación con los medios simples, no están optimizados para el cultivo de embriones. Tras cinco días de cultivo el embrión alcanza el estadio de blastocisto, en el que está compuesto por 12-16 células y posee una alta tasa de implantación. Suelen cultivarse hasta este estadio cuando previamente se han dado abortos o fallos de implantación en la paciente.

Medios secuenciales: tienen en cuenta el hecho de que el embrión atraviesa distintos ambientes desde que es fecundado en la trompa de Falopio hasta que alcanza el útero. Los medios secuenciales se componen de tres tipos de medios: un medio para la preparación de los gametos (medio simple), otro para el desarrollo hasta el día 3 (medio G1) y un tercero para alcanzar la fase de blastocisto (medio G2). Estos medios sí están optimizados para el desarrollo de los embriones hasta blastocisto pero son más sensibles a la temperatura, y por lo tanto más inestables.

Aparte de esto, también es muy importante controlar las condiciones de temperatura, luz y pH.
En algunos casos en reproducción asistida se opta por mantener el embrión en cultivo hasta día 5 o 6 en lugar de transferirlo en día 3. El cultivo largo presenta algunas ventajas como seleccionar mejor al embrión o aumentar la tasa de implantación. Aunque también existen algunos inconvenientes como el alto riesgo de bloqueo embrionario. Así, se observan una serie de cambios continuos en el embrión que se clasifican en estadios:

  • Mórula (M): embrión de más de 12 células sin compactar del todo. Presente en día 4.
  • Mórula compacta (MC): en día 4 o 5. Es un embrión con 16 células o más pero en el que ya no se distinguen las células entre sí, ni se diferencia el blastocele o células del trofoectodermo.
  • Blastocisto temprano: embrión en día 4 o 5 en el que se distinguen las células planas del trofoectodermo en la superficie del embrión y una cavidad menor del 50% del volumen del embrión.
  • Blastocisto cavitado: es el estadio típico de día 5. Se distingue claramente el trofoectodermo y un blastocele que ocupa al menos la mitad del interior del embrión.
El diámetro del embrión sigue siendo en torno a 140 micras. No siempre de distingue la masa celular interna. 
  • Blastocisto expandido: se aprecia en día 5 o 6. Se distingue el trofoectodermo, el blastocele y la masa celular interna. El diámetro es mayor de 150 micras y la zona pelúcida se afina.
  • Blastocisto iniciando eclosión (BHi): es un blastocisto expandido en el que se distingue una hernia por donde está comenzando la eclosión.
  • Blastocisto eclosionado (BH): es un blastocisto totalmente fuera de la zona pelúcida, con un diámetro normalmente mayor de 300 micras, más del doble que en el estadio anterior. Es el estadio más tardío que se puede mantener in vitro.

La morfología de la masa celular interna y del trofoectodermo se usa como criterio de calidad del embrión.
Para llevar a cabo el cultivo largo de embriones se usan medios secuenciales o el cocultivo sobre monocapa de células endometriales. Es el estadio más tardío del embrión que se puede mantener in vitro.

Laboratorio de FIV

No existe un consenso sobre cómo debe ser un laboratorio destinado a la fecundación in vitro. Sería apropiado que fuese una sala blanca con control absoluto de todos los parámetros y con el menor número posible de superficies horizontales, pero actualmente no es así debido a su alto coste. Aun así, es necesario controlar ciertos parámetros, pues aunque los embriones son fuertes y robustos, su tasa de implantación se ve influida por las condiciones ambientales. Los parámetros más habituales controlados en un laboratorio de FIV son:

-Temperatura: los incubadores deben estar a 37 °C, por lo que hay que mantenerlos siempre encendidos y evitar que las condiciones externas varíen, pues el incubador tenderá a equilibrarse con éstas; para ello será necesario mantener encendido el termostato del laboratorio (condiciones externas) 24 horas con una temperatura estable de unos 21-24 °C (consenso con el personal para ver cómo están más cómodos)
-pH: Es muy importante incubar los gametos y cultivar los embriones en medios de cultivo con un pH similar a su pH interno (pH=7, 2). Cuando la diferencia entre estos es muy diferente la tasa de desarrollo disminuye. La mayoría de los medios de cultivo son preparados usando bicarbonato como buffer de pH, controlándolo por equilibrio entre el CO2 atmosférico, el CO2 disuelto, el bicarbonato y los iones hidrógeno en solución. El principal propósito de mantener los niveles de CO2 en la incubadora es mantener el pH del medio. Algunos autores opinan que se puede medir el pH del medio como una medida indirecta de los niveles de CO2.

Se puede hacer con un Analizador de gases sanguíneos o un PHmetro calibrado justo antes de medir una alícuota mantenida dentro de la incubadora. La alícuota de medio utilizada para medir el pH debe ser descartada.

-Partículas: hay comunicación entre el quirófano y el laboratorio por lo que hay que evitar esta posible contaminación. Para ello, tenemos:
  • Esterilidad y asepsia.
  • Filtros para el aire acondicionado. Los mejores son los que tienen que ser reemplazados cada cierto tiempo, como los HEPA en las cabinas de flujo laminar, los que tienen una duración de 4 meses. De esta manera, aseguramos que estén siempre limpios y no esperamos a cambiarlos hasta que estén saturados de suciedad.
  • Presión positiva, es decir, la dirección del aire es de dentro hacia fuera. De esta forma, se arrastra hacia fuera todo lo que entra y se impide que entre lo de fuera.
    -VOCs, como hidrógeno, oxígeno, flúor, bromo o nitrógeno. Las fuentes de VOCs son aceites, disolventes, productos de limpieza y otros compuestos como benceno, formaldehído, tolueno... Hay que tener especial cuidado en no llevar desodorantes (solamente están permitidos los de roll-on) ni perfumes.

La localización del centro es muy importante. Los alrededores deben estar lo menos contaminados posible. Por ejemplo, una gasolinera cerca del centro es peligroso. Deben reducirse al mínimo los compuestos orgánicos volátiles (VOCs), ya que podrían tener efectos embriotóxicos (dañinos para los embriones). Algunos VOCs no son filtrables por métodos normales, y por tanto hay que emplear filtros de carbón activo con distintas concentraciones de permanganato potásico en la entrada de cualquier gas en el laboratorio. Es necesario recalcar que estos filtros tiene una vida limitada por su capacidad de absorción, por lo que hay que cambiarlos periódicamente.

Existen también otros parámetros que pueden ser controlados, aunque no son tan importantes como los anteriores:

-Luz: se trabaja con luz normal no muy intensa, y hay que evitar que incida directamente sobre la placa con el embrión. Para conseguir esto último, se disponen de lomas que cambian la dirección de la luz. Por otra parte, comentar que con embriones de ratones sí se trabaja con luces más tenues porque de lo contrario afectaría la división. No obstante, en humanos no está demostrado que luces de baja intensidad disminuyan la viabilidad del embrión, por lo que se trabaja con luces de intensidad normal y así se evitan problemas de visión derivados de trabajar en penumbra.
-Humedad relativa (HR): no influye directamente al trabajo, pero sí al crecimiento de hongos. Al ser muy caro su control, solo los laboratorios que realmente lo necesitan (HR>90%) tienen climatizadores para ello. Por confort, la HR debería estar alrededor del 50%.

En este tipo de laboratorios siempre se va con mascarilla. También es fundamental el uso de gorros quirúrgicos. Estos gorros deben cumolir todo el pelo, desde la frente hasta abajo, para que no se contaminen las muestras ni el ambiente.

En cuanto al diseño y la distribución, estos dos parámetros influyen bastante en las tasas de éxito del laboratorio. Los materiales empleados para el suelo, las paredes y el techo deben ser siempre nobles (acero inoxidable, linóleo, cerámica, etc.), y se debe evitar la presencia de superficies horizontales (para que no se acumule suciedad). Asimismo, debe procurarse tener una esclusa de entrada separada del resto de habitáculos: la sala principal (con la zona quirúrgica, incubadora y de micromanipulación distribuidas), el laboratorio de criopreservación, el laboratorio de preparación, el laboratorio de andrología y el laboratorio de DPI. El equipamiento de un laboratorio destinado a la reproducción, debe constar de una cabina de flujo laminar, un microscopio invertido con 400 aumentos y contraste de fase modular sobre una mesa antivibratoria y un incubador temporal.

La unidad de trabajo consiste en:

- Una cabina de flujo laminar con una superficie caliente y CO2 al 5%. - Microscopio invertido 400x con micromanipulación en una mesa anti-vibración. - Una incubadora temporal en la que se almacenan las muestras con las que estamos trabajando. Después de ser tratados, vuelven a la incubadora principal.

Del mismo modo, los recursos humanos son importantes para evitar tantos errores como sea posible. Tiene que haber personal especializado visualizando el trabajo de otros. Los que trabajan en un laboratorio de FIV incluyen embriólogos, técnicos de laboratorio y personal administrativo.

Selección

 
Criterios de calidad embrionaria según ASEBIR en días 2 y 3

Los laboratorios especializados en FIV han desarrollado métodos de puntuación para juzgar la calidad de los ovocitos y los embriones. Típicamente, los expertos examinan la simetría del embrión, la integridad estructural de sus células y el crecimiento general entre dos y cinco días tras la fecundación. Ahora los científicos están empezando a analizar no solo el embrión, sino también el medio en el que crece. Algunos centros están utilizando análisis químicos y fórmulas matemáticas para crear una "huella metabólica" de un embrión sano, que podría utilizarse como barómetro para estimar el potencial de supervivencia de un embrión. Otros están intentando analizar las proteínas secretadas por los embriones y a medir la cantidad de oxígeno consumido, que es una señal habitual de crecimiento.[2]

Normalmente, los embriones que han alcanzado el estadio de 6-8 células se transfieren 3 días después de la extracción. En ocasiones, sin embargo, los embriones se mantienen en cultivo por un periodo más largo (unos 6 días), y la transferencia se realiza en el estadio de blastocisto, sobre todo si se observan muchos embriones de 3 días de buena calidad. Pero nunca superando los 14 días tras la fecundación. Las transferencias en estadio de blastocisto muestran mejores tasas de embarazo.[3]

La Asociación para el Estudio de la Biología Reproductiva (ASEBIR) especificó en 2007 una clasificación con las que evaluar los embriones antes de su transferencia, basándose en los resultados obtenidos de estudios realizados en centros de reproducción nacionales y en la literatura científica publicada. Sobre la base de ellas, las cuatro categorías que se establecen son:

  • Categoría A: óptimos. Son los que tienen un desarrollo correcto y ninguna característica de mal pronóstico, por lo que serán siempre transferidos o criopreservados. En pacientes de buen pronóstico (mujeres de menos de 36 años y ninguna patología adversa o en receptoras de ovocitos) los embriones tipo A suelen tener un 40-60% de posibilidades de implantar.
  • Categoría B: Buenos. Son embriones de buena calidad con elevada capacidad de implantación. Lo habitual es que tengan entre un 20 y un 40% de probabilidad de implantación.
  • Categoría C: Subóptimos. Son los embriones que presentan una serie de características que si bien van asociados a una menor viabilidad no son completamente descartables y serán transferidos si no se dispone de otro con mejor morfología, por eso también son conocidos como embriones acompañantes. Suelen tener algo menos de la mitad de posibilidades de implantar (1-20%) aunque siempre dependerá del tipo y extensión de las anomalías morfológicas que presentan.
  • Categoría D: No viables. Tienen una capacidad de implantación del 1% o menos, incluso 0,1%. Incluyen tanto los embriones evolutivos in vitro, cuyas características están relacionadas con una falta de potencial implantatorio, como los que están bloqueados. No son transferidos prácticamente en ningún caso.

Evaluación de la calidad embrionaria

El objetivo de la fecundación in vitro es transferir el embrión con el mejor potencial de lograr un embarazo, y que deberá ser seleccionado de entre todos los disponibles en un ciclo FIV. Existen diferentes sistemas para la clasificación de embriones de acuerdo con la etapa de desarrollo en que se evalúan, así como de las diferentes asociaciones o individuos que las proponen. Sin embargo, la evaluación convencional ha mostrado ser subjetiva, no replicable y poco relacionada con pronóstico. Como consecuencia de lo anterior, algunos grupos trabajan activamente en desarrollar sistemas de selección y ranking de embriones, apoyados de sofisticados sistemas de cómputo, y con capacidad de aplicar Inteligencia Artificial, visión artificial, y aprendizaje profundo (Deep Machine Learning) durante el proceso.[4]

Un ejemplo de tecnologías computacionales utilizadas hoy en día en algunos laboratorios, es el sistema llamado ERICA (Embryo Ranking Intelligent Classification Assistant) [10] (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).[11]. Este sistema emplea filtros de visión artificial y Deep Learning para clasificar embriones en etapa de blastocisto con el propósito de asistir a los embriólogos en la selección de embriones[5][6]​. Los estudios hasta ahora publicados con estas tecnologías sugieren resultados prometedores.[7]

Por otro lado, la selección y clasificación convencional de embriones se fundamenta Criterios de Valoración Morfológicos de Oocitos, Embriones tempranos y Blastocitos Humanos recogidos en el consenso ASEBIR. Este consenso se ha establecido estudiando características morfológicas de los embriones y determinando su capacidad de implantación. De esta manera, los parámetros morfológicos que ayudan a determinar la calidad embrionaria son los siguientes: número de células, velocidad de división, fragmentación, tamaño y simetría de las blastómeras, multinucleación, aspecto del citoplasma y zona pelúcida. Estudiando todos estos parámetros podemos determinar la calidad del embrión.

  • Número de células: El número de células es uno de los parámetros más importantes. El número de células óptimo en día 2 es de cuatro células y en día 3 es de siete u ocho células. Generalmente, los embriones que se encuentran dentro de estos límites son clasificados como embriones tipo A. Los embriones que presentan entre seis y diez células pueden ser viables y son embriones tipo B. Los embriones con cinco células o más de 10 se consideran embriones tipo C. No obstante, embriones que presentan un elevado número de células en día 2 y día 3 pueden tener una elevada probabilidad de presentar alteraciones cromosómicas tales como aneuploidías o blastómeras multinucleadas. El potencial de implantación de estos embriones es muy bajo por lo que se consideran embriones tipo D. Por otro lado, embriones con un bajo número de células en día 2 y día 3 se consideran bloqueados y su capacidad de implantación es muy baja (tipo D). En la siguiente tabla se observa la calidad del embrión en función del número de células en día 2 y 3:
Grupo de calidad Número de Células en día 2 Número de Células en día 3
A 4 7 - 8
B 2 - 5 7 o más
B 4 9 o más
C 2 - 5 7 o más
C 2 - 4 6
C 6 8 o más
C 3 6 o más
D 7 o más Cualquier valor
D Cualquier número 5 o menos
  • Velocidad de división: La velocidad de división es otros de los parámetros más importantes. La velocidad de división normal es la que se observa en un embrión que dobla su número de células cada 24 horas y es un pronóstico de viabilidad. Una velocidad mayor está asociada a anomalías cromosómicas, por lo que la calidad del embrión es mínima. Por otro lado una velocidad menor está relacionada con el bloqueo embrionario. Un embrión se considera bloqueado cuando no incrementa su número de células después de un periodo de 24 h. Este tipo de embriones también presenta una tasa de implantación muy baja porque se considera embrión no viable. El bloqueo cromosómico podría estar originado por anomalías cromosómicas del embrión o por condiciones de laboratorio no apropiadas.
  • Fragmentación: El tercer parámetro en importancia es la fragmentación. La fragmentación consiste en la generación de porciones de citoplasma rodeadas por membrana sin núcleo. Las causas de aparición de fragmentos no se conocen, se estima que pueda ser una consecuencia de las condiciones del medio de cultivo o bien una propiedad inherente del desarrollo embrionario. El tamaño del fragmento, el número y la localización son elementos relativamente importantes. El tamaño del fragmento se estima como el volumen total del embrión ocupado por dichos fragmentos. Tamaños relativamente pequeños no están asociados con un deterioro de la capacidad de implantación, mientras que a medida que se incrementa el tamaño disminuye la calidad del embrión. Se considera de mal pronóstico si los fragmentos ocupan más de 1/3 del volumen del embrión. La pérdida de la calidad del embrión se basa en que estos fragmentos impiden la comunicación intercelular entre los blastómeros, la cual es vital para un correcto desarrollo. Podemos clasificar la fragmentación en varios tipos:
Grado de fragmentación Características
I Fragmentación menor del 5%.

Únicamente una blastómera afectada

II Fragmentos parcialmente distribuidos alrededor del embrión, cercanos al espacio perivitelino.

Fragmentación total o parcial de una sola blastómera

III Fragmentos pequeños, distribuidos alrededor del embrión.

Varias blastómeras de la periferia.

IV Fragmentos grandes, distribuidos alrededor del embrión.

Asociados a blastómeras irregulares.

V Fragmentos necróticos. Asociados a blastómeras con citoplasma contraídos

Los embriones con fragmentación de los tipos I, II o III con un porcentaje de fragmentación inferior a 10% son considerados de tipo A (óptimos); entre 11-25% se consideran embriones tipo B y entre 26-35% son embriones tipo C (subóptimos); cuando el porcentaje de fragmentación es mayor al 35% nos encontramos ante embriones tipo D (anormales). Si la fragmentación es de tipo IV o V, los embriones se consideran directamente como anormales, independientemente del porcentaje de fragmentación. El número de fragmentos también es un factor importante, generalmente la presencia de fragmentos aislados no daña la capacidad de implantación del embrión, mientras que la presencia de numerosos fragmentos puede tener un efecto perjudicial sobre la calidad del embrión. En embriones con mucha fragmentación, se puede hacer lo que se conoce como "assisted hatching and fragments retrieval". Esta técnica de eclosión asistida consiste en perforar un poco la zona pelúcida y aspirar los fragmentos por medio de una pipeta, mejorando así la comunicación entre las células. Solo se hace en aquellos embriones con alta fragmentación, ya que es difícil de realizar y puede resultar dañina para el embrión si no se hace correctamente.

  • Tamaño celular y simetría: El tamaño celular se considera normal cuando el tamaño de todas las blastómeras es similar, aunque generalmente existe una ligera asimetría en los embriones. La presencia de una asimetría elevada, con células que difieren entre sí un 20% del volumen total, puede considerarse de mal pronóstico, reduciéndose la calidad del embrión hasta embrión tipo C. Por otra parte, un número de células impar, aunque todas sean del mismo tamaño se considera asimétrico.
  • Multinucleación:La multinucleación, es decir, presencia de uno o más núcleos en el interior de una célula puede estar originada por un error en la división celular, fragmentación del núcleo o una migración incorrecta de los cromosomas durante la anafase. Los embriones pueden mostrar blastómeras multinucleadas tanto en ensayos in vitro como in vivo. La ausencia de multinucleación se correlaciona con una elevada tasa de implantación y viceversa. De esta manera, la presencia de blastómeras multinucleadas en día 2 se asocia con baja capacidad de implantación (embriones tipo D); la presencia de blastómeras multinucleadas en día 2 y día 3 se correlaciona con embriones subóptimos (tipo C); y por último, la aparición de multinucleación en día 3 no afecta tanto a la capacidad implantatoria. La existencia de blastómeras multinucleadas está relacionada con embriones mosaicos y aneuploides.
  • Aspecto del citoplasma: En el aspecto del citoplasma podemos evaluar distintos parámetros como la presencia de vesiculación, de vacuolas y de anillos acitoplasmáticos. Generalmente durante los primeros días de desarrollo el citoplasma presenta un aspecto claro, mientras que en el tercer día tiene lugar la activación del genoma embrionario, apareciendo vesículas que originan un aspecto granulado. Este cambio determina el correcto desarrollo del embrión pero presenta una gran relevancia para distinguir la capacidad implantatoria de un embrión. Por otra parte, la aparición de vacuolas y la contracción del citoplasma se correlacionan con la degeneración y lisis del embrión. Por lo que los embriones que presentan estas alteraciones en más de dos blastómeras se consideran anormales (tipo D). Generalmente se prolonga el cultivo de estos embriones hasta blastocito para observar su evolución.
  • Zona pelúcida: La zona pelúcida es una capa de 15 a 20 µm de espesor que rodea y protege al ovocito maduro. La presencia de anomalías estructurales o funcionales en las glicoproteínas que forman la zona pelúcida puede originar problemas como la disminución de la viabilidad embrionaria y el descenso de la capacidad de implantación. El grosor de la zona pelúcida es determinante tanto para la viabilidad del embrión, como en su capacidad de eclosionar. Así si la zona pelúcida es delgada, el embrión puede eclosionar fácilmente, aumentándose la capacidad de implantación; pero hay que tener en cuenta que si es muy fina puede no proteger adecuadamente al embrión. Por el contrario, si la zona pelúcida es muy gruesa o presenta tabiques se dificulta la eclosión y la implantación del embrión. En este último caso, se puede recurrir a eclosión asistida.

Transferencia de embriones

Los embriones se puntúan por el embriólogo según el número de células, la paridad del crecimiento, el grado de fragmentación, el estado del citoplasma... Normalmente, para mejorar las posibilidades de implantación y embarazo, se transfieren varios embriones simultáneamente. El número de embriones que se transfieren depende del número disponible, la edad de la mujer, consideraciones diagnósticas y limitaciones legales (en algunos países, el número máximo se limita a dos o a tres, en España se pueden transferir un máximo de 3 embriones). Los embriones que se consideran "mejores" se transfieren al útero de la mujer a través de una cánula de plástico muy fino, que se introduce a través de la vagina y el cérvix y se controla mediante su visualización por ultrasonidos o ecoguiada. La cánula puede ser flexible, lo cual resulta más cara pero es el más recomendable ya que reduce el daño al introducirse por la vagina hasta llegar al útero. O cánula rígida, más barata pero menos eficaz. Hay que tener cuidado con estimular el útero al realizar la transferencia. Si se punza el útero con la cánula puede dar lugar a contracciones del útero, perjudiciales para la implantación del embrión tras la transferencia. Por lo tanto no son recomendadas la utilización de la pinzas Pozzi o cualquier instrumento que punce o agreda el cuello del útero ya que provoca contracciones perjudiciales para el embarazo. Para disminuir el riesgo de contracciones se le administra a la mujer receptora de los embriones progesterona, que es una hormona que relaja el músculo liso y evita las contracciones.

 
Blastocisto listo para ser transferido.

Tasas de éxito

En EE. UU. la tasa de nacidos vivos vía FIV es alrededor del 27% por ciclo (con una tasa de embarazo del 33%), pero las posibilidades de éxito varían mucho dependiendo de la edad de la mujer (o más concretamente, de la edad de los ovocitos que se utilizan).[12] Cuando se utilizan los propios ovocitos de la mujer (y no de donante), para mujeres por debajo de los 35 años la tasa de embarazo es alrededor de 43% por ciclo (36,5% de nacidos vivos), mientras que para mujeres por encima de 40 la tasa cae drásticamente, hasta solo un 4% para mujeres por encima de 42 años.[13] Otros factores que determinan la tasa de éxito incluyen la calidad de los ovocitos y los espermatozoides, la salud del útero y la experiencia de la clínica. Normalmente se transfieren varios embriones simultáneamente, para mejorar la tasa de éxito, lo que tiene como contrapartida el riesgo de embarazo múltiple.

Una técnica reciente consiste en sumergir un embrión en un cultivo de nutrientes durante 5 días hasta que alcanza el estadio de blastocisto. Los médicos determinan entonces qué embriones son los que tienen más posibilidades de desarrollarse. Los de mejor calidad se transfieren al útero de la mujer. De esta manera es posible mejorar la tasa de embarazo sin aumentar el riesgo de embarazo múltiple. Esta es una técnica relativamente nueva y está en fase de experimentación. La Asociación Americana de Medicina Reproductiva (ASRM) opina que ya existe evidencia científica suficiente que demuestra que la transferencia de blastocistos es la mejor opción en pacientes de buen pronóstico. ASRM recomienda la transferencia de un solo embrión para minimizar la probabilidad de tener un embarazo múltiple.[8]

Las clínicas con programas de FIV generalmente publican sus tasas de embarazo. Sin embargo, es difícil hacer comparaciones entre clínicas, debido a que los resultados son la consecuencia de muchas variables. Además, los resultados también dependen mucho del tipo de pacientes seleccionados.

Hay muchas razones por las cuales puede no conseguirse un embarazo después de un tratamiento de FIV y transferencia de embriones, entre las cuales se incluyen:

  • El momento de la ovulación puede haberse interpretado mal, o tal vez no se pueda predecir, o puede que no ocurra.
  • Los intentos de obtener ovocitos que se desarrollen durante el ciclo controlado pueden no tener éxito.
  • Los ovocitos obtenidos pueden ser anormales o pueden haber sido dañados durante la extracción.
  • Tal vez no se pueda disponer de una muestra de semen adecuada.
  • La fecundación de los ovocitos para generar embriones puede no ocurrir.
  • La división celular de los ovocitos fecundados puede no tener lugar.
  • El embrión puede que no se desarrolle normalmente.
  • Puede que la implantación no tenga lugar.
  • Fallos con los equipos, infecciones o errores humanos u otros factores imprevistos e incontrolables, que pueden resultar en pérdida o daño de los ovocitos, de la muestra de semen o de los embriones[9]

De acuerdo con un estudio sueco del año 2005 publicado en la revista de Oxford "Human Reproduction",[10]​ 166 mujeres fueron controladas comenzando un mes antes de sus ciclos de FIV, y los resultados no mostraron correlación significativa entre los resultados de la FIV y el estrés psicológico. El estudio concluía con la recomendación a las clínicas de que si se informaba a los pacientes de FIV de los resultados de dicho estudio, podría ser posible reducir el estrés experimentado durante el protocolo de tratamiento. Aunque tal vez el estrés psicológico experimentado durante un ciclo puede no afectar al resultado de la FIV, es posible que la experiencia de la FIV pueda resultar en estrés que aumente las probabilidades de depresión. Solo las consecuencias económicas de la FIV (si se recurre a una clínica privada) pueden generar ansiedad y resultar abrumadoras. Sin embargo, para muchas parejas la alternativa es la infertilidad, y la experiencia de la infertilidad en sí misma también puede causar estrés y depresión.

Complicaciones

La mayor complicación de la FIV es el riesgo de embarazo múltiple.[14] Este está relacionado directamente con la práctica de transferir embriones múltiples para aumentar la tasa de embarazo. Los embarazos múltiples están relacionados con un incremento en el riesgo de aborto, complicaciones obstétricas, nacimiento prematuro y morbilidad neonatal con la posibilidad de daño a largo plazo. En muchos países existen límites estrictos al número máximo de embriones que pueden transferirse, para reducir el riesgo de embarazo múltiple (trillizos o más). También puede ocurrir una división espontánea del embrión en el útero (como en un embarazo natural), pero este es un caso raro, que genera gemelos idénticos. Un estudio clínico randomizado doble ciego siguió los embarazos tras FIV que generaron 73 bebés (33 niños y 40 niñas) y concluyó que el 8.7% de los bebés únicos y el 54.2% de los gemelos tenían un peso al nacer < 2500 gr.[11]​ En ciclos donde se transfieren dos embriones la probabilidad de tener un embarazo gemelar es del 6%. En ciclos donde se transfieren tres embriones la probabilidad de tener un embarazo gemelar es del 12% y de tener un embarazo triple es del 3%.

Otro riesgo de la estimulación ovárica es el desarrollo del síndrome de hiperestimulación ovárica, con un riesgo para la paciente inferior al 1%.

Si el problema de infertilidad subyacente está relacionado con anormalidades en la espermatogénesis, es posible que la descendencia masculina tenga mayor riesgo de presentar el mismo problema.

Defectos relacionados con la Epigenética

La epigenética epigenética se define como el estudio de los mecanismos que regulan la expresión de los genes sin una modificación en la secuencia del ADN. Las marcas epigenéticas definen la capacidad de desarrollo del cigoto y promueven la diferenciación hacia distintos tipos celulares.

Todas las técnicas de la fecundación in vitro tienen consecuencias en las marcas epigenéticas que pueden suponer problemas de infertilidad, riesgos en la supervivencia del feto o efectos fenotípicos en el embrión.</23>

Utilizando un modelo de ratón, compararon simultáneamente la concepción natural y gestación; blastocistos concebidos naturalmente que fueron transferidos a receptores pseudopreñados (ET); blastocistos concebidos in vivo después de la superovulación que se transfirieron a receptores pseudopreñados (SET) y procedimientos de FIV, que incluyen superovulación, FIV y cultivo de embriones a la etapa de blastocisto antes de la ET. Los hallazgos demuestran que incluso una mínima manipulación in vitro como la NSET puede afectar el desarrollo placentario. Es importante destacar que, a medida que aumenta el número de manipulaciones, la morfología y el fenotipo molecular de la placenta se vuelve más severo. </24>

La placenta [placenta] es conocida por su notable plasticidad en comparación con otros órganos; es capaz de responder a los cambios causados ​​por trastornos genéticos y factores de estrés ambiental a través de mecanismos epigenéticos, incluida la metilación del ADN. Los cambios epigenéticos inducidos por la FIV persisten en los tejidos como el cerebro y el hígado son los más afectados y derivan del ectodermo y el endodermo, respectivamente, lo que indica que las alteraciones ocurrieron en una etapa temprana del desarrollo, desde la diferenciación del trofectodermo.

El período prenatal es una ventana crítica del desarrollo. Los fenotipos observados en este estudio, a saber, el bajo peso al nacer y la placentación anormal están ciertamente implicados en la etiología de las enfermedades cardiovasculares y metabólicas, y se justifica una investigación adicional sobre los efectos a largo plazo para la salud de la terapia.</24>

Defectos en los bebés

El tema de la presencia de defectos asociados a la técnica de FIV permanece controvertido. La mayoría de los estudios muestran que no existe un incremento significativo tras una FIV, mientras que otros no apoyan este hecho.[12]

Algunos investigadores consideran que manipular gametos y embriones fuera del cuerpo podría estimular la aparición de cambios genéticos (mutaciones) que se pueden manifestar como defectos congénitos en el nacimiento.[13]​ Aunque no hay evidencia genética que apoye esta idea, algunos estudios epidemiológicos sugieren una posible conexión entre la reproducción asistida y síndromes genéticos poco frecuentes en recién nacidos, como el síndrome de Beckwith-Wiedemann, que se caracteriza por nacimiento prematuro, lengua más grande de lo normal y mayor susceptibilidad a tumores y defectos respiratorios y oratorios.[14]​ Este síndrome es raro: afecta solo a 1 de cada 12 000 recién nacidos en todo el mundo, pero algunos estudios sugieren que es más frecuente en niños nacidos con técnicas de reproducción asistida.[15][16]

Sin embargo, el riesgo absoluto de tener un bebé que presente el síndrome de Beckwith-Wiedemann es bajo, por lo que los expertos encuentran difícil aconsejar a una pareja con problemas de fertilidad no seguir adelante con las técnicas de reproducción asistida. Algunos investigadores sugieren que tal vez podrían reducirse los riesgos potenciales si se evitan ciertos procedimientos invasivos cuando no sean estrictamente necesarios, como las biopsias de embriones implantados, el cultivo de embriones en el laboratorio por periodos superiores al mínimo necesario y el uso de ICSI en ausencia de problemas de fertilidad masculina.

Criopreservación

Criopreservación de embriones

Cuando se generan embriones múltiples tras la FIV, los pacientes pueden elegir congelar los embriones que no se transfieren al útero de la mujer. Esos embriones se mantienen en nitrógeno líquido congelados hasta un máximo de 5 años. Según se publicó en 2006, en EE. UU. había cerca de 500 000 embriones congelados.[15] La ventaja es que los pacientes que no consiguen concebir tras el primer ciclo pueden reintentarlo utilizando los embriones congelados, sin tener que realizar de nuevo un ciclo de FIV completo: solo tendrían que realizar la transferencia de dichos embriones, sin pasar de nuevo por la estimulación, la extracción y la fecundación. O, en el caso de pacientes que consiguen un embarazo, pueden mantenerlos para un segundo embarazo posterior. Los embriones restantes procedentes de FIV pueden donarse a otras mujeres o parejas para reproducción o para investigar con ellos.

Existen diferentes técnicas para criopreservar (congelar) embriones, cada una con diferentes posibilidades de lograr la supervivencia. En la actualidad el método más efectivo es la vitrificación (supervivencia de hasta 98 %) , lo que a su vez ser refleja en una posibilidad de hasta el 50 % de embarazo con embriones congelados, según reportes en la literatura médica [17]. Esta técnica se caracteriza por una rápida velocidad de congelación (-23.000ºC/min), lo que impide la formación de cristales con efecto cuchilla que podrían dañar al embrión.

Si, a pesar de todo, siguen existiendo embriones criopreservados que, por el tiempo transcurrido o por otras razones, no vayan a utilizarse para su implantación, las dos alternativas posibles (que normalmente están reguladas por leyes estrictas) son la donación para la investigación y la destrucción. En el caso de donación de embriones para investigación, ésta se debe llevarse a cabo en centros acreditados y sobre la base de proyectos autorizados por las autoridades correspondientes. Normalmente, se establecen plazos postfecundación para la investigación en los embriones y, una vez terminada la investigación, no se permite llevar a cabo una transferencia embrionaria con ellos. La investigación con embriones procedentes de FIV ha permitido hasta el momento la realización de estudios en células madre, de gran importancia en la comprensión del desarrollo embrionario y en el avance de las terapias regenerativas de tejidos. En cuanto a la destrucción de los embriones congelados, se considera como última alternativa, a petición explícita de los progenitores, o bien cuando no los quieran para ellos y no hayan autorizado la donación a otras parejas ni la investigación en ellos. Tanto la utilización de embriones para fines de investigación como su destrucción generan extensos debates éticos entre partidarios y oponentes, que se traducen en leyes que limitan las posibilidades existentes, muy variables dependiendo de los países.

En España el período que obliga la ley a mantener los embriones congelados es de cinco años. Será en este momento cuando la clínica que posee los embriones congelados deberá contactar vía carta para solicitar las acciones a llevar a cabo con los embriones. Tras pasar 5 años, y sin haber conseguido respuesta por parte de los dueños de los embriones congelados, será la clínica responsable de los embriones pudiendo utilizarlos para las 3 causas mencionadas anteriormente.

Criopreservación de ovocitos

La criopreservación de ovocitos maduros sin fertilizar ha sido llevada a cabo con éxito, por ejemplo en mujeres que tienen alta probabilidad de perder sus reservas de ovocitos debido a que deben ser sometidas a un proceso de quimioterapia.[17]

En un estudio con donantes, no hubo diferencias significativas entre el uso de ovocitos frescos y ovocitos vitrificados (tipo de criopreservación). La tasa de fecundación fue, respectivamente, de 80,7 y 78,2%; la aparición de embriones de buena calidad eran de 54,1 y 49,8%, las de implantación 33,3 y 34,0% y los porcentajes de bebés nacidos por ciclo fueron 38,4 y 43,4%. Es decir, los estudios mostraron equivalencias en la implantación, producción del embarazo y continuación de la gestación entre ovocitos vitrificados y ovocitos frescos. En un segundo estudio en el que se utilizaban los ovocitos propios se analizaron los resultados de cinco ensayos clínicos, comparando la fecundación, la calidad de los embriones, la producción del embarazo y la continuación de la gestación a partir de 4282 ovocitos vitrificados y 3524 ovocitos frescos. Los datos no eran diferentes en los dos grupos y la tasa de supervivencia de los ovocitos vitrificados era de un 93%. En 2014 un metaanálisis incluyó 21 estudios prospectivos y concluyó que la eficiencia de los ovocitos era de un 7%, similar a la estimada de los ovocitos frescos. Además, tampoco se vieron diferencias entre ovocitos que habían estado congelados menos de 6 meses y aquellos que llevaban congelados más de 5 años. De hecho, el mayor almacenamiento de un óvulo que resultó en un bebé ha sido de 14 años.[18][19]

Criopreservación del tejido ovárico

La criopreservación del tejido ovárico va dirigida a pacientes que van a sufrir tratamientos quimioterápicos agresivos que pueden destruir sus tejidos reproductivos, provocando así su infertilidad. Así que, aunque a día de hoy estos tratamientos sean un gran avance en la supervivencia no lo son en la calidad de vida, por lo que era necesario el desarrollo de una técnica así. Técnica que aún está en estudio por su complejidad.[20]

Este tejido tiene un doble componente fisiológico, la parte endocrina y la reproductora. Por lo que su regulación legislativa es compleja. Todo lo referente a ello se encuentra regulado, de manera adecuada, por la Organización Nacional de Trasplantes. La obtención del material debe realizarse previo al tratamiento tóxico. El material obtenido debe tener un espesor fino para poder difundir la solución crioprotectora.[21]

Lo más preocupante es el riesgo de enfermedad residual[22]​ que pueda ser reinsertado en la paciente. Para ello contamos con diferentes técnicas de diagnóstico in vitro que nos permitan analizar el tejido con la finalidad de encontrar restos de dicha enfermedad residual. A la hora de realizar el trasplante de vuelta, es preocupante la pérdida folicular. Por ello, se está creando un tejido de granulación que favorezca la angiogénesis. Todo esto esta en fase de perfeccionamiento pero sin lugar a dudas sería un gran avance para la sociedad y para la medicina

Intervenciones asociadas

Existen algunas variaciones o mejoras de la FIV, tales como ICSI, IMSI, ZIFT, GIFT y PGD.

 
Inyección de un ovocito durante una ICSI.

ICSI

La inyección intracitoplasmática de espermatozoides (ICSI) es un desarrollo reciente asociada a la FIV que permite inyectar directamente un espermatozoide en el citoplasma del ovocito utilizando técnicas de micromanipulación. Se utiliza cuando los espermatozoides tienen dificultades para penetrar en el ovocito, y en ese caso se puede utilizar esperma de la pareja o de donante. La ICSI también se utiliza cuando el recuento de espermatozoides es muy bajo.

Inyección intra citoplasmática de espermatozoides morfológicamente seleccionados (IMSI)

La IMSI o Inyección intra citoplasmática de espermatozoides morfológicamente seleccionados (del inglés: Intracytoplasmic morphologically-selected sperm injection) es una técnica de fecundación in vitro (FIV). Consiste en realizar una selección morfológica de los espermatozoides antes de inyectarlos en los ovocitos.

Se selecciona un espermatozoide utilizando un microscopio invertido con una magnificación de más de 6000 veces su tamaño con el fin de observar con más precisión la composición de la cabeza de los espermatozoides, detectando posibles anomalías de las vacuolas o los daños de la cadena de ADN de los espermatozoides y escogiendo solo los que no presentan anomalías para proceder a la fertilización con los ovocitos.

Eclosión Asistida (Assisted Hatching)

Antes de la transferencia, los embriones están envueltos por una capa de glicoproteínas y, para lograr un embarazo, los embriones deben romper y salir de esta envoltura antes de implantarse. Está envuelta se llama zona pelúcida y la eclosión asistida (assisted hatching) consiste en realizar un orificio en esta zona para facilitar el proceso de eclosión del embrión y así aumentar la tasa de implantación.

La eclosión asistida(también llamada AHA) es una técnica que se lleva utilizando desde los años 80, cuando se vio que los embriones de PZD (disección parcial de la zona pelúcida) efectivamente parecían tener una tasa de implantación más alta que los embriones normales. Este método se puede realizar cualquier día de desarrollo, aunque normalmente se suele hacer en el tercero.

Aunque es un proceso que ocurre también de manera fisiológica, existen ciertas causas por las cuales un embrión es incapaz de realizar el proceso de eclosión (hatching) natural, entre las que destacan:

  • Gran porcentaje de fragmentación en el embrión.
  • Zona pelúcida muy dura o poco flexible.

En estas ocasiones es cuando se recurre a procesos de eclosión asistida (assisted hatching), que puede estar acompañada o no de la aspiración de fragmentos celulares, dependiendo de la causa anteriormente mencionada. No obstante, existen otros motivos por los cuales se puede llevar a cabo, como es el caso de realizar un diagnóstico preimplantacional. En este caso, se suele realizar como paso previo al mismo.

Existen diferentes formas de hacer Eclosión Asistida, ya sea por el método químico, mecánico o con láser. Este último es el que ha ganado más popularidad por sus buenos resultados. Método químico: consiste en introducir ácido de Tyroide, que es una solución salina tamponada con un pH de 2,5 (con un margen de error de 0,3), en una pipeta de AHA. Al embrión, por otra parte, se le tiene sujetado con una micropioeta de sujeción y en una solución de 20 microlitros de HEPES. Se acerca la pipeta con la solución de Tyrode y se libera en las cercanías del embrión. La zona pelúcida se va degradando, ya que al ser un pH tan bajo, se desnaturalizan las proteínas que la forman, dando lugar a un orificio en esa zona.Una vez formado, se aspira con la pipeta esta solución para que no afecte al interior del embrión, y alejamos al embrión de esta zona. La ventaja de este método es que es económico y los extremos son suaves. Los inconvenientes que tiene este método son: el embrión se expone a una solución ácida incrementando el riesgo de daño de este y, además, la apertura es permanente con lo que puede ser perjudicial por afectar al medio interno del embrión.

Método mecánico: este método se realiza en 20 microlitros de medio con HEPES y consiste en fijar con una pipeta de sujeción el embrión, por otra parte se toma una pipeta (PZD) con la que se atraviesa tangencialmente la zona pelúcida. Una vez atravesado el embrión, se suelta y se rasga la zona contra la pipeta de sujeción. En este caso como resultado final obtenemos un ojal que se mantiene cerrado y por el cual después el embrión le será fácil salir e implantar. El ojal puede tener unas dimensiones de 50 micras aproximadamente. Las ventajas que tiene este método son: que el embrión está más protegido por el efecto que hace el ojal, es más natural que los demás métodos y además es más barato. En cambio su inconveniente es: que es difícil de aprender, además de laborioso.

Método físico(láser): este método se realiza en un medio con HEPES en donde se encuentra el embrión. El láser de diodo infrarrojo (1,48 micras) se apunta y dispara, a través del objetivo, cerca de donde se encuentra el embrión. Se puede variar el tiempo de acción del láser (0,1 a 50 ms). El láser calienta localmente el agua, y al aumentar la temperatura hace que las proteínas que constituyen la zona pelúcida cercanas al láser se desnaturalicen y así se origine un orificio. La forma del orificio del láser es un ojal abierto siempre mayor al que se ve en el plano del microscopio. La ventaja de este método es que es muy rápido además de reproducible, en cambio sus desventajas son: es muy caro, se expone al embrión a un riesgo como es el propio láser, y la abertura es permanente además de que es más grande de lo que parece y esto como hemos dicho antes puede afectar al embrión.

Hay que decir que esta técnica solo ofrece ventajas en los siguientes casos: -mujeres mayores de 37 años. -Fallo de gestación tras FIV/ICSI.

y otras indicaciones propuestas pero aún no demostradas: -Zona pelúcida anormal. -Mala calidad embrionaria. -Baja respuesta ovárica.

Por último, es oportuno decir que también se ha intentado la eclosión total del embrión a través del método químico o con pronasa. Solo es posible realizarlo en estadio de blastocisto, ya que si se hiciera antes se disgregaría el embrión en sus blastómeras. Pero esta técnica apenas se utiliza en el laboratorio.

Transferencia intrafalopiana de cigotos

En la transferencia intrafalopiana de cigotos (ZIFT en inglés), los ovocitos se extraen de la mujer, fecundados in vitro, y los embriones se sitúan en las trompas de Falopio, en lugar de en el útero.

TGIF

En la TGIF (GIFT en inglés), los ovocitos se extraen de la mujer, y se sitúan en una de las trompas de Falopio, junto con los espermatozoides del varón. Por tanto, esta variación es en realidad una fecundación in vivo y no in vitro.

EGP (PGT)

El EGP Estudio Genético Preimplantación), puede realizarse en los embriones previamente a la transferencia. Un test similar pero más general es el haplotipado genético preimplantación o HGP (PGH en inglés). Sin embargo, la tasa de éxito de la DGP es baja.

Mini FIV

Originalmente desarrollado por los grupos de New Hope Fertility[23]​ y la Kato Ladies Clinic, [19] el Mini FIV tiene la particularidad de estimular el ovario de forma muy sutil con el empleo mínimo de medicamentos hormonales[24]​. El resto de etapas en las técnicas de Mini FIV son similares a las del FIV tradicional, aunque con cambios menores dirigidos a reducir el riesgo y las molestias para las pacientes[25]​. Esta técnica está recomendada para mujeres con buen pronóstico[26][27]​, pacientes que no pueden recibir una estimulación de óvulos completa o para mujeres que no desean recibir un tratamiento hormonal más agresivo[28]​. Actualmente, y de acuerdo con la Sociedad Americana de Reproducción Asistida (ASRM), el Mini-FIV se considera como el protocolo de elección para pacientes con baja reserva ovárica, y pobres respondedoras.[29][30]​ Los retos que implica trabajar con un menor número de folículos demanda que el Mini-FIV sea realizado por un equipo con amplia experiencia en esta técnica,[29][31]​ y en laboratorios con tecnología de punta.[32][33]

Historia

El primer embarazo conseguido mediante FIV con un ovocito humano fue descrito por el equipo de Monash en la revista The Lancet en 1973, aunque solo duró algunos días y hoy en día se denominaría un embarazo bioquímico. A continuación se publicó un embarazo ectópico en las trompas por Steptoe y Edwards en 1976 .[34]​ En 1978, Edwards y Steptoe lograron el primer nacimiento por FIV ,[35]​ la niña Louise Brown nació el 25 de julio de 1978 en el Royal Oldham Hospital de Láncashire, cerca de Mánchester (Reino Unido)[36]​ y de otro bebé desconocido, los primeros bebés FIV.[cita requerida] Robert G. Edwards recibió el Premio Nobel de Fisiología y Medicina 2010 por el desarrollo de la fecundación in vitro'.[37]

Después tuvo lugar el nacimiento de Candice Reed en Melbourne en 1980. La utilización del uso de ciclos estimulados con citrato de clomifeno y el uso de gonadotropina coriónica humana (hCG) para controlar el momento de la maduración de los ovocitos, permitiendo así controlar el momento de la extracción, convirtió a la FIV de una herramienta de investigación en un tratamiento clínico.

A continuación se produjeron 14 embarazos, seguidos de 9 nacimientos en 1981 con el equipo universitario de Monash. El equipo de Jones en Norfolk, Virginia, mejoró los ciclos de estimulación incorporando el uso de una hormona estimulante de los folículos (uHMG). Esto se dio a conocer con el nombre de hiperestimulación ovárica controlada (HOC). Otro paso adelante fue el uso de agonistas de la hormona que libera la gonadotropina (GnRH-A), disminuyendo así la necesidad de control al prevenir la ovulación prematura, y más recientemente antagonistas de la hormona que libera la gonadotropina (GnRH-Ant), con una función similar. El uso adicional de contraceptivos orales ha permitido la programación de los ciclos de FIV, lo que hace el tratamiento más fácil de realizar para los médicos y los pacientes.

En la Clínica 2200 se realizó la primera fecundación in vitro de España en abril de 1984, por los ginecólogos Pedro Barri y Angel Sopeña, y la doctora Marisa Lopez Tapia.[38]

El primer bebé por FIV en América Latina nació en Colombia en 1985, en el laboratorio del Dr. Elkin Lucena gracias a la colaboración científica con expertos madrileños. El mismo equipo también es responsable de los primeros embarazos por congelación de embriones en América Latina.[39]

La capacidad de congelar y posteriormente descongelar y transferir embriones también ha mejorado significativamente la efectividad de la FIV. Otro momento significativo fue el desarrollo de la inyección intracitoplasmática de espermatozoides (ICSI) por Gianpiero Palermo en Bruselas, en 1992. Esto ha permitido que hombres con una producción mínima de espermatozoides consigan embarazos, a veces conjuntamente con recuperación de esperma, utilizando una aguja testicular fina o una biopsia testicular abierta, de manera que incluso hombres con el síndrome de Klinefelter pueden a veces conseguir un embarazo. Por tanto, la FIV se ha convertido en la solución de la mayoría de los problemas de infertilidad, desde problemas en las trompas hasta factores masculinos, subfertilidad idiopática, endometriosis, edad materna avanzada y anovulación.

Véase también

Referencias

    1. de Lartigue, Jane (2011-8). «Corifollitropin alfa: a new option to treat female infertility». Drugs of Today (Barcelona, Spain: 1998) 47 (8): 583-590. ISSN 1699-3993. PMID 21850281. doi:10.1358/dot.2011.47.8.1635872. Consultado el 8 de enero de 2019. 
    2. Ballantyne C. (2008). «Better tests boost IVF success.». Nature Medicine 14 (1169).  [1]
    3. Papanikolaou EG, Camus M, Kolibianakis EM, Van Landuyt L, Van Steirteghem A, Devroey P (2006). «In Vitro Fertilization with Single Blastocyst-Stage versus Single Cleavage-Stage Embryos». N Engl J Med 354: 1139. PMID 16540614. doi:10.1056/NEJMoa053524. 
    4. Chavez-Badiola, Alejandro; Mendizabal-Ruiz, Gerardo; Ocegueda-Hernandez, Vladimir; Farias, Adolfo Flores-Saiffe; Drakeley, Andrew J. (1 de septiembre de 2019). «Deep learning for automatic determination of blastocyst embryo development stage». Fertility and Sterility (en inglés) 112 (3): e273. ISSN 0015-0282. doi:10.1016/j.fertnstert.2019.07.809. Consultado el 25 de marzo de 2020. 
    5. Chavez-Badiola, Alejandro; Farias, Adolfo Flores-Saiffe; Mendizabal-Ruiz, Gerardo; Drakeley, Andrew J.; Garcia-Sánchez, Rodolfo; Zhang, John J. (1 de septiembre de 2019). «Artificial vision and machine learning designed to predict PGT-A results». Fertility and Sterility (en inglés) 112 (3): e231. ISSN 0015-0282. doi:10.1016/j.fertnstert.2019.07.715. Consultado el 25 de marzo de 2020. 
    6. Chavez-Badiola, Alejandro; Farias, Adolfo Flores-Saiffe; Mendizabal-Ruiz, Gerardo; Garcia-Sanchez, Rodolfo; Drakeley, Andrew J. (1 de septiembre de 2019). «Development and preliminary validation of an automated static digital image analysis system utilizing machine learning for blastocyst selection». Fertility and Sterility (en inglés) 112 (3): e149-e150. ISSN 0015-0282. doi:10.1016/j.fertnstert.2019.07.511. Consultado el 25 de marzo de 2020. 
    7. Chavez-Badiola, Alejandro; Flores-Saiffe Farias, Adolfo; Mendizabal-Ruiz, Gerardo; Garcia-Sanchez, Rodolfo; Drakeley, Andrew J.; Garcia-Sandoval, Juan Paulo (10 de marzo de 2020). «Predicting pregnancy test results after embryo transfer by image feature extraction and analysis using machine learning». Scientific Reports (en inglés) 10 (1): 1-6. ISSN 2045-2322. doi:10.1038/s41598-020-61357-9. Consultado el 25 de marzo de 2020. 
    8. American Society for Reproductive Medicine Practice Committee (2013). Blastocyst culture and transfer in clinical- assisted reproduction: a committee opinion. Fertil Steril 99:667-72
    9. Abington Reproductive Medicine, . (2006)
    10. Anderheim L, Holter H, Bergh C, Möller A. (2005). «Does psychological stress affect the outcome of in vitro fertilization?». Hum Reprod. 20 (10). 2969-75.  [2]
    11. Olivennes F, Mannaerts B, Struijs M, Bonduelle M, Devroey P (2001). «Perinatal outcome of pregnancy after GnRH antagonist (ganirelix) treatment during ovarian stimulation for conventional IVF or ICSI: a preliminary report». Hum. Reprod. 16 (8): 1588-91. PMID 11473947. doi:10.1093/humrep/16.8.1588. 
    12. Kurinczuk JJ (2003). «Safety issues in assisted reproduction technology. From theory to reality--just what are the data telling us about ICSI offspring health and future fertility and should we be concerned?». Hum Reprod 18 (5): 925-31. PMID 12721163. doi:10.1093/humrep/deg217. 
    13. Nayr P. (2008). «As IVF becomes more common, some concerns remain.». Nature Medicine 14 (1171).  [3]
    14. Lucifero, Diana; Chaillet, J.Richard; Trasler, Jacquetta M. (2004), «Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology», Human Reproduction Update 10 (1): 3-18, PMID 15005460, doi:10.1093/humupd/dmh002 .
    15. Debaun, M.R.; Niemitz, E.L.; Feinberg, A.P. (2003), «Association of in Vitro Fertilization with Beckwith-Wiedemann Syndrome and Epigenetic Alterations of …», The American Journal of Human Genetics 72 (1): 156-160, doi:10.1086/346031 .
    16. Maher, E. R.; Brueton, L. A.; Bowdin, S. C.; Luharia, A.; Cooper, W.; Cole, T. R.; MacDonald, F.; Sampson, J. R.; Barratt, C. L.; Reik, W.; Hawkins, M. M. (2003), «Beckwith-Wiedemann syndrome and assisted reproduction technology (ART)», Journal of Medical Genetics 40 (1): 62-64, PMID 12525545, doi:10.1136/jmg.40.1.62 .
    17. Porcu E, Fabbri R, Damiano G, Fratto R, Giunchi S, Venturoli S (2004). «Oocyte cryopreservation in oncological patients». Eur J Obstet Gynecol Reprod Biol. 113 Suppl 1: S14-6. PMID 15041124. doi:10.1016/j.ejogrb.2003.11.004. 
    18. Catrin EA, Joyce C. Harper (2016). «Oocyte cryopreservation: where are we now?». Human Reprod Update 22: 440-9. doi:10.1093/humupd/dmw007. 
    19. Daniluk JC, Koert E (2016). «Childless women's beliefs and knowledge about oocyte freezing for social and medical reasons». Hum Reprod 31: 2313-20. doi:10.1093/humrep/dew189. 
    20. Lobo RA (2005). «Potential options for preservation of fertility in women.». N Engl J Med 353: 64-73. 
    21. Jeruss JS, Woodruff TK (2009). «Preservation of fertility in patients with cancer». N Engl J Med 360: 902-911. 
    22. Donnez J, Martinez-Madrid B, Jadoul P, Van Langendonckt A, Demylle D, Dolmans MM (2006). «Ovarian tissue cryopreservation and transplantation: a review.». Hum Reprod Update 12: 519-535. 
    23. Chávez-Badiola, Alejandro,; Allahbadia, Gautam,. Textbook of minimal stimulation IVF : milder, mildest or back to nature (First edition edición). ISBN 978-93-5025-014-3. OCLC 751713299. Consultado el 25 de marzo de 2020. 
    24. Badiola, Alejandro Chávez; Suarez, Nadia (2015). Allahbadia, Gautam N., ed. Minimal Stimulation and Natural Cycle In Vitro Fertilization (en inglés). Springer India. pp. 5-10. ISBN 978-81-322-1117-4. doi:10.1007/978-81-322-1118-1_2. Consultado el 25 de marzo de 2020. 
    25. Almind, G.; Faerch, E.; Lindenberg, F.; Lindenberg, S. (2018-06). «Mild stimulation approach for In Vitro Fertilization treatment: Retrospective data from one Danish Centre». Facts, Views & Vision in ObGyn 10 (2): 81-84. ISSN 2032-0418. PMC 6516186. PMID 31110646. Consultado el 25 de marzo de 2020. 
    26. Zhang, John J.; Merhi, Zaher; Yang, Mingxue; Bodri, Daniel; Chavez-Badiola, Alejandro; Repping, Sjoerd; van Wely, Madelon (2016-01). «Minimal stimulation IVF vs conventional IVF: a randomized controlled trial». American Journal of Obstetrics and Gynecology (en inglés) 214 (1): 96.e1-96.e8. doi:10.1016/j.ajog.2015.08.009. Consultado el 25 de marzo de 2020. 
    27. Özörnek, H.; Özay, A.; Öztel, Z.; Atasever, E.; Turan, E.; Ergin, E. (1 de septiembre de 2013). «Minimal stimulation is as effective as classical stimulation in a single embryo transfer program in Turkey». Fertility and Sterility (en inglés) 100 (3): S277. ISSN 0015-0282. doi:10.1016/j.fertnstert.2013.07.1149. Consultado el 25 de marzo de 2020. 
    28. Abe, Takashi; Yabuuchi, Akiko; Ezoe, Kenji; Skaletsky, Helen; Fukuda, Junichiro; Ueno, Satoshi; Fan, Yuting; Goldsmith, Sierra et al. (2020-02). «Success rates in minimal stimulation cycle IVF with clomiphene citrate only». Journal of Assisted Reproduction and Genetics (en inglés) 37 (2): 297-304. ISSN 1058-0468. PMC PMC7056817 |pmc= incorrecto (ayuda). PMID 31867688. doi:10.1007/s10815-019-01662-z. Consultado el 25 de marzo de 2020. 
    29. Jamaludin, Ridzuan; Ahmad, Mohd Faizal; Park, Dae-Keun; Zain, Murizah Mohd; Yoon, Tae-Ki; Lee, Woo-Sik; Koong, Mi Kyoung; Lee, Kyung-Ah (29 de noviembre de 2019). «The stimulation protocol in poor responder IVF; a minimal or high-dose stimulation? – A meta-analysis». Hormone Molecular Biology and Clinical Investigation 0 (0). ISSN 1868-1891. doi:10.1515/hmbci-2019-0018. Consultado el 25 de marzo de 2020. 
    30. «Comparison of pregnancy rates for poor responders using IVF with mild ovarian stimulation versus conventional IVF: a guideline». Fertility and Sterility (en inglés) 109 (6): 993-999. 2018-06. doi:10.1016/j.fertnstert.2018.03.019. Consultado el 25 de marzo de 2020. 
    31. Lopez Rioja, M.d.; Chavez Badiola, A.; Garcia Sanchez, R.; Zavala Gonzalez, P.; Recio, Y.; Sanchez Gonzalez, M. (2018-09). «The impact of meiotic spindle assessment in embryo development». Fertility and Sterility (en inglés) 110 (4): e346. doi:10.1016/j.fertnstert.2018.07.966. Consultado el 25 de marzo de 2020. 
    32. Chavez-Badiola, Alejandro; Flores-Saiffe Farias, Adolfo; Mendizabal-Ruiz, Gerardo; Garcia-Sanchez, Rodolfo; Drakeley, Andrew J.; Garcia-Sandoval, Juan Paulo (2020-12). «Predicting pregnancy test results after embryo transfer by image feature extraction and analysis using machine learning». Scientific Reports (en inglés) 10 (1): 4394. ISSN 2045-2322. PMC PMC7064494 |pmc= incorrecto (ayuda). PMID 32157183. doi:10.1038/s41598-020-61357-9. Consultado el 25 de marzo de 2020. 
    33. Zhang, John; Liu, Hui; Luo, Shiyu; Lu, Zhuo; Chávez-Badiola, Alejandro; Liu, Zitao; Yang, Mingxue; Merhi, Zaher et al. (2017-04). «Live birth derived from oocyte spindle transfer to prevent mitochondrial disease». Reproductive BioMedicine Online (en inglés) 34 (4): 361-368. doi:10.1016/j.rbmo.2017.01.013. Consultado el 25 de marzo de 2020. 
    34. Steptoe PC, Edwards RG. (1976). «Reimplantation of a human embryo with subsequent tubal pregnancy.». Lancet 1 (7965). 880-2.  [4]
    35. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978 Aug 12;2(8085):366.
    36. Fernández Crehuet, Joaquín y Gómez García, Enrique. 1994. “Fecundación in vitro y transferencia de embriones (FIVET)”. Anuario Filosófico. 163-177.
    37. [5], La página web oficial de los Premios Nobel.
    38. Un doctor madrileño asegura que está congelando embriones humanos desde hace cuatro meses, El Pais, 10 de enero de 1985.
    39. Lucena, E.; Olivares, R.; Obando, H.; Uribe, L.; Lombana, O.; Dávila, A.; Saa, A. M.; Gómez, M. (1 de septiembre de 1986). «Pregnancies following transfer of human frozen--thawed embryos in Colombia, South America». Human Reproduction (Oxford, England) 1 (6): 383-385. ISSN 0268-1161. PMID 3558785. Consultado el 29 de abril de 2016. 

    Patricio Ventura‐Juncá, Isabel Irarrázaval , Augusto J. Rolle , Juan I. Gutiérrez , Ricardo D. Moreno, Manuel J. Santos. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Ventura‐Juncá et al. Biol Res (2015) 48:68. DOI 10.1186/s40659-015-0059-y

    1. ric de Waal, Lisa A. Vrooman, Erin Fischer, Teri Ord et al. The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. Human Molecular Genetics, 2015, Vol.24, No24 ; 6975-6985. doi: 10.1093/hmg/ddv400

    Bibliografía adicional

    • George, Robert P.; Tollefsen, Christopher (2012). Embrión: una defensa de la vida humana. Ediciones Rialp. ISBN 9788432142345. 
    • Andorno, Roberto (1992). «Incidencia de la fecundación "in vitro" sobre la distinción entre personas y cosas». Persona y derecho: Revista de fundamentación de las Instituciones Jurídicas y de Derechos Humanos (26): 9-27. Consultado el 9 de diciembre de 2015. 
    • Romeo Casabona, Carlos María (2009). Código de leyes sobre Genética. Universidad de Deusto. ISBN 9788498307443. Consultado el 10 de diciembre de 2015. 
    • Pardo, Antonio (2010). Cuestiones básicas de bioética. Ediciones Rialp. ISBN 9788432137860. Consultado el 10 de diciembre de 2015. 
    • Gómez de la Torre Vargas, Maricruz (1993). La fecundación in vitro y la filiación. Editorial Jurídica de Chile. ISBN 9789561010062. Consultado el 10 de diciembre de 2015. 
    • Zárate Cuello, Amparo de Jesús (2014). Biomedicina y biotecnología ante la violencia prenatal. LID Editorial. ISBN 9788483569993. Consultado el 10 de diciembre de 2015. 

    Enlaces externos

    • En MedlinePlus hay más información sobre Fecundación in vitro
    •   Datos: Q200117
    •   Multimedia: In vitro fertilisation

    fecundación, vitro, este, artículo, sección, tiene, referencias, pero, necesita, más, para, complementar, verificabilidad, este, aviso, puesto, noviembre, 2015, fecundación, vitro, inglés, técnica, cual, fecundación, ovocitos, espermatozoides, realiza, fuera, . Este articulo o seccion tiene referencias pero necesita mas para complementar su verificabilidad Este aviso fue puesto el 1 de noviembre de 2015 La fecundacion in vitro FIV o IVF en ingles es una tecnica por la cual la fecundacion de los ovocitos por los espermatozoides se realiza fuera del cuerpo de la madre La FIV es el principal tratamiento para la esterilidad cuando otros metodos de reproduccion asistida no han tenido exito El proceso implica el control hormonal del proceso ovulatorio extrayendo uno o varios ovocitos de los ovarios maternos para permitir que sean fecundados por espermatozoides en un medio liquido El ovulo fecundado cigoto puede entonces ser transferido al utero de la mujer en vistas a que implante en el utero y continue su desarrollo hasta el parto Fertilizacion In Vitro Indice 1 In vitro 2 Indicaciones 3 Metodo 3 1 Estimulacion ovarica 3 2 Extraccion de ovocitos 3 3 Fecundacion 3 4 Cultivo de embriones 3 5 Laboratorio de FIV 3 6 Seleccion 3 7 Evaluacion de la calidad embrionaria 3 8 Transferencia de embriones 4 Tasas de exito 5 Complicaciones 6 Defectos relacionados con la Epigenetica 7 Defectos en los bebes 8 Criopreservacion 8 1 Criopreservacion de embriones 8 2 Criopreservacion de ovocitos 8 3 Criopreservacion del tejido ovarico 9 Intervenciones asociadas 9 1 ICSI 9 2 Inyeccion intra citoplasmatica de espermatozoides morfologicamente seleccionados IMSI 9 3 Eclosion Asistida Assisted Hatching 9 4 Transferencia intrafalopiana de cigotos 9 5 TGIF 9 6 EGP PGT 9 7 Mini FIV 10 Historia 11 Vease tambien 12 Referencias 13 Bibliografia adicional 14 Enlaces externosIn vitro EditarArticulo principal In vitro El termino in vitro es un termino en latin que significa en cristal Se utiliza porque en los primeros experimentos biologicos en los que se realizaban cultivos de tejidos fuera de los organismos vivos de los cuales procedian se realizaban en contenedores de cristal tales como tubos de ensayo probetas o placas de Petri En la actualidad el termino in vitro se refiere a cualquier procedimiento biologico que se realiza fuera del organismo en el que tendria lugar normalmente para distinguirlo de un experimento in vivo donde el tejido permanece dentro del organismo vivo en el que normalmente se encuentra Coloquialmente a los bebes concebidos a traves de FIV se les denominaba bebes probeta refiriendose a contenedores de cristal o plastico denominados probetas que se utilizan frecuentemente en los laboratorios de quimica y biologia Sin embargo normalmente la fecundacion in vitro se realiza en placas planas denominadas placas de Petri las placas de Petri utilizadas mas a menudo estan producidas en plastico sin embargo el nombre FIV sigue conservandose Indicaciones EditarInicialmente la FIV se desarrollo para superar situaciones de infertilidad debidos a problemas en las trompas de Falopio pero posteriormente se observo que la tecnica tenia exito tambien en otros casos de infertilidad La introduccion de la inyeccion intracitoplasmatica de espermatozoides ICSI soluciona en gran medida los problemas de infertilidad masculina Para que un tratamiento de FIV tenga exito es necesario disponer de ovocitos sanos espermatozoides que puedan fecundarlos y un utero que pueda mantener un embarazo Aunque en algunos paises los tratamientos de FIV estan cubiertos por los servicios sanitarios sociales normalmente se recurre a esta tecnica cuando otras opciones han fallado debido a que la FIV conlleva costos elevados La FIV puede utilizarse tambien en mujeres menopausicas utilizando ovocitos procedentes de una donante Asimismo es una tecnica que puede considerarse en pacientes que han sufrido una perdida total o parcial de fecundidad debido a un tratamiento agresivo frente a una patologia grave como el cancer Metodo EditarEstimulacion ovarica Editar Previamente a la fecundacion in vitro generalmente en el tercer dia de la menstruacion se estimula el desarrollo de foliculos multiples en los ovarios mediante tratamientos hormonales En la mayoria de las pacientes se emplean inyecciones de gonadotropinas generalmente analogos de la FSH pudiendo realizar algun analisis complementario de niveles hormonales como estradiol o progesterona y del crecimiento folicular mediante ultrasonografia ginecologica El tiempo de estimulacion necesario es variable normalmente se necesitan 8 12 dias de inyecciones La ovulacion espontanea durante el ciclo se previene por el uso de agonistas GnRH aGnRH o antagonistas GnRH agGnRH que bloquean el pico espontaneo de la hormona luteinizante LH Ambas generan en otras palabras lo que se conoce como un hipogonadismo hipogonadotrofo reversible Sin embargo los agonistas de la GnRH se diferencian de los antagonistas principalmente porque su efecto no es inmediato sino que desencadenan en primera instancia un pico de FSH y LH efecto flare up produciendose un bloqueo posterior en la liberacion de gonadotropinas por la saturacion de los receptores de GnRH de la cascada de activacion Sin embargo existen diferentes protocolos de estimulacion que varian en el dia de inicio medicamentos empleados y metodos para prevenir e inducir el pico de la hormona luteinizante LH En la actualidad se esta empleando tambien como estimulante de la ovulacion un analogo de la FSH generado por recombinacion la corifolitropina alfa Esta molecula contiene un fragmento de la gonadotropina corionica humana lo que le da un perfil farmacocinetico muy favorable disminuyendo las dosis de farmaco en comparacion con la FSH convencional 1 Basicamente si en el laboratorio el equipo se decanta por un tratamiento con aGnRH se pueden escoger entre un protocolo corto y uno largo Protocolo largo los agonistas de la GnRH se suministran a la paciente varios dias antes del nuevo ciclo y durante la administracion de las gonadotropinas exogenas Entre sus multiples ventajas destaca que con el se asegura la no liberacion prematura de LH lo que garantiza la invalidacion de toda ovulacion precoz A su vez este hecho permite al embriologo planificar sin margen de error la fecha de la captacion folicular Por otra parte se asegura que el desarrollo de los foliculos se sincronice Desgraciadamente con la aplicacion de este protocolo la probabilidad de que se produzca un sindrome de hiperestimulacion ovarica SHO se multiplica y se requiere un soporte de fase lutea administracion de progesterona asi como una mayor cantidad de gonadotropinas Protocolo corto los agonistas de la GnRH comienzan a suministrarse en los primeros dias del ciclo casi al mismo tiempo que las gonadotropinas exogenas La principal virtud de este procedimiento es que consigue mejores resultados en mujeres con baja respuesta aunque este hecho aun no ha sido completamente demostrado En cambio la aplicacion de este protocolo multiplica el riesgo de que se produzcan picos de LH induciendo entonces una ovulacion precoz y no posibilita un desarrollo sincronico de los foliculos En definitiva se establece control sobre el desarrollo folicular mucho menor Por otra parte cuando se emplean antagonistas de la GnRH solo se establece un protocolo en el cual se administra la sustancia bloqueante varios dias despues del inicio del ciclo al mismo tiempo que se suministran gonadotropinas recombinantes o purificadas de la orina Los protocolos de estimulacion ovarica se han convertido en complejos y costosos Por esto parece haber una tendencia a nivel mundial dirigida a reducir la cantidad y la dosis de los medicamentos empleados durante la estimulacion con el fin de reducir los riesgos y costos asociados a estos tratamientos 6 Ejemplo de estos esfuerzos son los tratamientos FIV con Ciclos Naturales ademas de los protocolos FIV con minima estimulacion desarrollados por los grupos de New Hope Fertility y la Kato Ladies Clinic dirigidos por los doctores John Zhang en NY 7 el Dr O Kato en Tokio 8 y el Dr Chavez Badiola en Mexico 9 Extraccion de ovocitos Editar Este articulo o seccion necesita referencias que aparezcan en una publicacion acreditada Este aviso fue puesto el 4 de abril de 2012 Cuando se considera que la maduracion de los foliculos es adecuada se administra a la paciente gonadotropina corionica humana b hCG o algun agonista de la GnRH La primera actua como un analogo de la hormona luteinizante LH mientras que la segunda induce un disparo de la propia hormona luteinizante LH En cualquiera de los casos el medicamento provocara la ovulacion alrededor de 36 horas despues de la inyeccion pero el procedimiento de extraccion tiene lugar justo antes de que esto ocurra La extraccion de los ovocitos se programa unas 36 horas despues de la induccion de la ovulacion y se realiza por via transvaginal utilizando una aguja guiada por ultrasonido que pincha la pared vaginal para alcanzar los ovarios Un medico aspira los foliculos ayudado por un ecografo y recoge el liquido folicular en unos tubos que seran introducidos a un termobloque hasta que pasen al laboratorio El liquido folicular es un fluido amarillento y seroso que contiene linfocitos y celulas de la granulosa aisladas o formando cumulos con o sin ovocitos A medida que se punciona el ovario el liquido folicular se vuelve de color rojo hematico debido a la hemorragia provocada por la puncion La sangre es toxica para el ovocito pues contiene muchos anticuerpos por lo que una vez que se termine la puncion habra que eliminarla Este paso se realiza en el laboratorio donde se procesa el liquido de la puncion con el objetivo de recuperar los ovocitos contenidos en el liquido de esta manera se obtendran los ovocitos se hara un lavado de los mismos y se clasificaran segun su morfologia Estos tres pasos se tienen que realizar en el menor tiempo posible para evitar el efecto de la temperatura a la que los ovocitos son muy sensibles y el dano producido por el liquido hematico Temperatura el ovocito es el elemento mas sensible a la temperatura de todo el laboratorio Tiene que estar a 37ºC en el incubador de forma que un solo grado de diferencia es suficiente para que se desnaturalice el ovocito De hecho si esta bajo de 34 C el huso meiotico despolimerizara y cuando se vuelva a forma puede crear anomalias cromosomicas de forma que el ovocito sera fecundable pero no dara lugar a un embrion normal Se deben aislar los complejos cumulo corona ovocitos que se llegan a observar a simple vista varios mm de diametro Asi una vez realizada la extraccion de ovocitos la muestra se mira al microscopio optico para seleccionar los cumulos ooforos Luego estos se limpian de las celulas de la granulosa para quedarnos solo con el ovocito Este proceso se conoce como denudacion Medios durante este proceso se emplean diferentes medios de cultivo con diferente composicion En los tubos 0 1 ml de medio tamponado HEPES con heparina para evitar la formacion de coagulos El medio HEPES que debe estar desde el dia anterior a ser utilizado en una estufa a 37 C acumulara temporalmente los cumulos mientras se realiza la puncion Ademas sera empleado para lavar y reducir el tamano de los cumulos antes de pasar al incubador Placas de cultivo con un medio simple rico en glucosa por ejemplo HTF HSA 10 mg ml para mantenerlos en el incubador al 5 dioxido de carbono El medio debe estar desde el dia anterior a ser utilizado en el incubador a 37 C y 5 de dioxido de carbono Las punciones se programan normalmente cada 30 minutos aunque la busqueda de los ovocitos no suele durar mas de 15 minutos En estos procesos se utiliza anestesia local general o parcial para evitar el dolor producido por la puncion Existen 3 estadios de maduracion en los cumulos que se extraen por puncion folicular a saber Grado I Maduracion nuclear MII El cumulo y la corona del ovocito presentan un aspecto expandido Es el estado en el cual el ovocito presenta una mayor maduracion y solo los de este tipo son los que se utilizan en tecnicas de reproduccion asistida Grado III Maduracion nuclear VG El ovocito destaca por la gran compactacion del cumulo el cual cuenta con pocas celulas muy fijadas a la zona pelucida ZP Grado II Maduracion nuclear MI El ovocito presenta un aspecto intermedio entre los dos estadios anteriores Esta clasificacion trata de describir el ovocito y su estado de maduracion nuclear estando rodeado de celulas del cumulo y la corona Morfologia para observar bien el ovocito habria que colocarlo en muy poca cantidad de medio para esparcir las celulas de granulosa De forma que la ventaja de saber el estado madurativo no parta ningun beneficio frente a la manipulacion que representa el poder conocerlo Es por ello que actualmente esta clasificacion no tiene gran relevancia y no debe darsele mayor importancia salvo para indicar caracteristicas que se salgan especialmente de lo considerado como normalidad cumulos o coronas de aspecto apoptotico o postmaduro presencia de sangre etc Fecundacion Editar Vease tambien Donacion de esperma Este articulo o seccion necesita referencias que aparezcan en una publicacion acreditada Este aviso fue puesto el 4 de abril de 2012 Una vez en el laboratorio los complejos cumulo corona ovocito extraidos se lavan en medio HEPES para mantener el pH recortando las celulas de la granulosa que los rodean y preparandolos para la fecundacion Los ovocitos deben permanecer al menos 4 horas en el incubador medio simple rico en glucosa hasta su inseminacion es decir aproximadamente 40 horas tras la induccion de la ovulacion que seria el momento de la ovulacion espontanea Este tiempo es necesario para tener una apropiada maduracion del ovocito y para que se simulen las condiciones naturales que ocurren en el utero Si la inseminacion se realiza antes o despues de este periodo de tiempo la eficiencia de la inseminacion disminuira Al mismo tiempo el semen se prepara para la fecundacion eliminando las celulas inactivas el fluido seminal y se realiza su capacitacion Los parametros adecuados de semen capacitado para realizar FIV son 8 10 millones de espermatozoides por mililitro mas de 75 de espermatozoides moviles progresivos y mas de 1 de formas normales Si el semen proviene de un donante probablemente habra sido preparado antes de ser congelado y puesto en cuarentena y cuando sea descongelado estara listo para usar Concentraciones superiores de espermatozoides pueden producir fecundaciones anomalas poliespermia y una menor concentracion de espermatozoides puede producir fallos de fecundacion Existen distintos protocolos de FIV pero todos se basan en el mismo principio el esperma y el ovocito se incuban juntos en un ratio de aproximadamente 75 000 1 en un medio de cultivo simple con glucosa durante unas 18 horas El ovocito se fertilizara durante los primeros 20 minutos de exposicion Para fecundar un ovocito no basta con un solo espermatozoide siendo necesario como minimo varias decenas para deshacer la zona pelucida capa celular protectora En este sentido el primer espermatozoide en llegar no suele ser el responsable de la fecundacion Si la muestra seminal posee valores inferiores a los anteriores se recurre a ICSI en lugar de FIV ICSI tambien se conoce como microinyeccion Consiste en inyectar directamente el espermatozoide en el ovocito Es la tecnica mas eficiente cuando los espermatozoides estan gravemente danados es decir cuando hay un grave problema de infertilidad en el hombre Sin embargo debido a la alta tasa de exito hay una mayor tasa de fertilizacion con esta tecnica en comparacion con FIV convencional ICSI es la mas usada mundialmente Mientras que con ICSI 8 1000 ovocitos son fertilizados con la FIV convencional solo se fertilizan 4 6 1000 Por tanto teoricamente FIV es la primera opcion que se intenta debido a su similitud fisiologica pero generalmente se prefiere ICSI por su eficiencia Trascurrido 16 18 horas se comprueba la fecundacion que ya deberia haber ocurrido Hay autores que a la media hora lavan los ovocitos para evitar la exposicion a ROS que puede formarse por la presencia de espermatozoides muertos El cigoto humano de 15 a 20 horas tras la concepcion permanece en el estadio de pronucleos PN Se considera que la fecundacion es correcta cuando el cigoto presenta dos PN y dos corpusculos CP A veces es dificil interpretar los CP y se valoran como correctamente fecundado cualquier embrion con dos PN Cualquier otra combinacion se considera anormal y se descarta La mayoria de las veces aparece primero el PN paterno en la posicion central y el materno se acerca mas tarde Para poder valorar correctamente la fecundacion es necesario decumular previamente el cigoto Es importante que en FIV no se decumule el ovocito antes de la fecundacion ya que conlleva alta probabilidad de polispermia El ovulo fecundado se pasa a un medio de cultivo simple como HTF HSA o secuencial G1 de Vitrolife y se mantiene durante alrededor de 48h hasta que alcanza el estadio de 6 8 celulas Embrion de 8 celulas listo para ser transferido Hay estudios realizados que demuestran que la liofilizacion del esperma de raton permite el desarrollo de embriones normales tras la inyeccion de ovocitos Cultivo de embriones Editar Vease tambien Calidad del embrion Una vez el ovulo ha sido fecundado y se ha obtenido un cigoto este es cultivado para promover su division celular y crecimiento para dar lugar a un embrion Este cultivo dura entre 2 y 5 dias y es muy importante que se lleve a cabo en las condiciones optimas para el embrion ya que de ello dependera su calidad y la tasa de implantacion del mismo cuando sea transferido a un utero Para que el crecimiento del embrion se lleve a cabo en las mejores condiciones posibles se utilizan distintos tipos de medio de cultivo Medios simples de composicion sencilla y faciles de preparar La composicion de estos medios se determina a partir de la composicion teorica del liquido de la trompa medios HTF o P1 o de la composicion de medios de cultivo para el desarrollo de cigotos de raton medios KSOM Earle M16 y T6 y suelen suplementarse con suero materno o albumina serica humana HSA Son optimos para el crecimiento inicial del embrion hasta los 3 dias de cultivo A partir del dia cuatro no garantizan el desarrollo optimo debido al comienzo de la transcripcion activa del embrion para lo que se requieren sustancias que estos medios no contienen Los embriones suelen ser cultivados durante 3 dias antes de su implantacion periodo tras el cual alcanzarian un estadio de 6 8 celulas Ello permite que el embriologo pueda monitorizar su tasa de division celular y la activacion de genes para asegurarse de que el embrion sea viable y de que se implantara adecuadamente Tan solo se adelantara el momento de la implantacion normalmente a los dos dias de cultivo cuando la pareja sometida a FIV cuente con pocos embriones disponibles para ser transferidos o cuando los embriones se desarrollen con lentitud Medios complejos su composicion es mas compleja incluye vitaminas aminoacidos metales suero Son medios comerciales que han sido disenados para el cultivo de celulas somaticas en cultivo como el medio Ham F10 de modo que aunque mejoran el desarrollo embrionario hasta blastocisto dia 5 en comparacion con los medios simples no estan optimizados para el cultivo de embriones Tras cinco dias de cultivo el embrion alcanza el estadio de blastocisto en el que esta compuesto por 12 16 celulas y posee una alta tasa de implantacion Suelen cultivarse hasta este estadio cuando previamente se han dado abortos o fallos de implantacion en la paciente Medios secuenciales tienen en cuenta el hecho de que el embrion atraviesa distintos ambientes desde que es fecundado en la trompa de Falopio hasta que alcanza el utero Los medios secuenciales se componen de tres tipos de medios un medio para la preparacion de los gametos medio simple otro para el desarrollo hasta el dia 3 medio G1 y un tercero para alcanzar la fase de blastocisto medio G2 Estos medios si estan optimizados para el desarrollo de los embriones hasta blastocisto pero son mas sensibles a la temperatura y por lo tanto mas inestables Aparte de esto tambien es muy importante controlar las condiciones de temperatura luz y pH En algunos casos en reproduccion asistida se opta por mantener el embrion en cultivo hasta dia 5 o 6 en lugar de transferirlo en dia 3 El cultivo largo presenta algunas ventajas como seleccionar mejor al embrion o aumentar la tasa de implantacion Aunque tambien existen algunos inconvenientes como el alto riesgo de bloqueo embrionario Asi se observan una serie de cambios continuos en el embrion que se clasifican en estadios Morula M embrion de mas de 12 celulas sin compactar del todo Presente en dia 4 Morula compacta MC en dia 4 o 5 Es un embrion con 16 celulas o mas pero en el que ya no se distinguen las celulas entre si ni se diferencia el blastocele o celulas del trofoectodermo Blastocisto temprano embrion en dia 4 o 5 en el que se distinguen las celulas planas del trofoectodermo en la superficie del embrion y una cavidad menor del 50 del volumen del embrion Blastocisto cavitado es el estadio tipico de dia 5 Se distingue claramente el trofoectodermo y un blastocele que ocupa al menos la mitad del interior del embrion El diametro del embrion sigue siendo en torno a 140 micras No siempre de distingue la masa celular interna Blastocisto expandido se aprecia en dia 5 o 6 Se distingue el trofoectodermo el blastocele y la masa celular interna El diametro es mayor de 150 micras y la zona pelucida se afina Blastocisto iniciando eclosion BHi es un blastocisto expandido en el que se distingue una hernia por donde esta comenzando la eclosion Blastocisto eclosionado BH es un blastocisto totalmente fuera de la zona pelucida con un diametro normalmente mayor de 300 micras mas del doble que en el estadio anterior Es el estadio mas tardio que se puede mantener in vitro La morfologia de la masa celular interna y del trofoectodermo se usa como criterio de calidad del embrion Para llevar a cabo el cultivo largo de embriones se usan medios secuenciales o el cocultivo sobre monocapa de celulas endometriales Es el estadio mas tardio del embrion que se puede mantener in vitro Laboratorio de FIV Editar Este articulo o seccion necesita referencias que aparezcan en una publicacion acreditada Este aviso fue puesto el 4 de abril de 2012 No existe un consenso sobre como debe ser un laboratorio destinado a la fecundacion in vitro Seria apropiado que fuese una sala blanca con control absoluto de todos los parametros y con el menor numero posible de superficies horizontales pero actualmente no es asi debido a su alto coste Aun asi es necesario controlar ciertos parametros pues aunque los embriones son fuertes y robustos su tasa de implantacion se ve influida por las condiciones ambientales Los parametros mas habituales controlados en un laboratorio de FIV son Temperatura los incubadores deben estar a 37 C por lo que hay que mantenerlos siempre encendidos y evitar que las condiciones externas varien pues el incubador tendera a equilibrarse con estas para ello sera necesario mantener encendido el termostato del laboratorio condiciones externas 24 horas con una temperatura estable de unos 21 24 C consenso con el personal para ver como estan mas comodos pH Es muy importante incubar los gametos y cultivar los embriones en medios de cultivo con un pH similar a su pH interno pH 7 2 Cuando la diferencia entre estos es muy diferente la tasa de desarrollo disminuye La mayoria de los medios de cultivo son preparados usando bicarbonato como buffer de pH controlandolo por equilibrio entre el CO2 atmosferico el CO2 disuelto el bicarbonato y los iones hidrogeno en solucion El principal proposito de mantener los niveles de CO2 en la incubadora es mantener el pH del medio Algunos autores opinan que se puede medir el pH del medio como una medida indirecta de los niveles de CO2 Se puede hacer con un Analizador de gases sanguineos o un PHmetro calibrado justo antes de medir una alicuota mantenida dentro de la incubadora La alicuota de medio utilizada para medir el pH debe ser descartada Particulas hay comunicacion entre el quirofano y el laboratorio por lo que hay que evitar esta posible contaminacion Para ello tenemos Esterilidad y asepsia Filtros para el aire acondicionado Los mejores son los que tienen que ser reemplazados cada cierto tiempo como los HEPA en las cabinas de flujo laminar los que tienen una duracion de 4 meses De esta manera aseguramos que esten siempre limpios y no esperamos a cambiarlos hasta que esten saturados de suciedad Presion positiva es decir la direccion del aire es de dentro hacia fuera De esta forma se arrastra hacia fuera todo lo que entra y se impide que entre lo de fuera VOCs como hidrogeno oxigeno fluor bromo o nitrogeno Las fuentes de VOCs son aceites disolventes productos de limpieza y otros compuestos como benceno formaldehido tolueno Hay que tener especial cuidado en no llevar desodorantes solamente estan permitidos los de roll on ni perfumes La localizacion del centro es muy importante Los alrededores deben estar lo menos contaminados posible Por ejemplo una gasolinera cerca del centro es peligroso Deben reducirse al minimo los compuestos organicos volatiles VOCs ya que podrian tener efectos embriotoxicos daninos para los embriones Algunos VOCs no son filtrables por metodos normales y por tanto hay que emplear filtros de carbon activo con distintas concentraciones de permanganato potasico en la entrada de cualquier gas en el laboratorio Es necesario recalcar que estos filtros tiene una vida limitada por su capacidad de absorcion por lo que hay que cambiarlos periodicamente Existen tambien otros parametros que pueden ser controlados aunque no son tan importantes como los anteriores Luz se trabaja con luz normal no muy intensa y hay que evitar que incida directamente sobre la placa con el embrion Para conseguir esto ultimo se disponen de lomas que cambian la direccion de la luz Por otra parte comentar que con embriones de ratones si se trabaja con luces mas tenues porque de lo contrario afectaria la division No obstante en humanos no esta demostrado que luces de baja intensidad disminuyan la viabilidad del embrion por lo que se trabaja con luces de intensidad normal y asi se evitan problemas de vision derivados de trabajar en penumbra Humedad relativa HR no influye directamente al trabajo pero si al crecimiento de hongos Al ser muy caro su control solo los laboratorios que realmente lo necesitan HR gt 90 tienen climatizadores para ello Por confort la HR deberia estar alrededor del 50 En este tipo de laboratorios siempre se va con mascarilla Tambien es fundamental el uso de gorros quirurgicos Estos gorros deben cumolir todo el pelo desde la frente hasta abajo para que no se contaminen las muestras ni el ambiente En cuanto al diseno y la distribucion estos dos parametros influyen bastante en las tasas de exito del laboratorio Los materiales empleados para el suelo las paredes y el techo deben ser siempre nobles acero inoxidable linoleo ceramica etc y se debe evitar la presencia de superficies horizontales para que no se acumule suciedad Asimismo debe procurarse tener una esclusa de entrada separada del resto de habitaculos la sala principal con la zona quirurgica incubadora y de micromanipulacion distribuidas el laboratorio de criopreservacion el laboratorio de preparacion el laboratorio de andrologia y el laboratorio de DPI El equipamiento de un laboratorio destinado a la reproduccion debe constar de una cabina de flujo laminar un microscopio invertido con 400 aumentos y contraste de fase modular sobre una mesa antivibratoria y un incubador temporal La unidad de trabajo consiste en Una cabina de flujo laminar con una superficie caliente y CO2 al 5 Microscopio invertido 400x con micromanipulacion en una mesa anti vibracion Una incubadora temporal en la que se almacenan las muestras con las que estamos trabajando Despues de ser tratados vuelven a la incubadora principal Del mismo modo los recursos humanos son importantes para evitar tantos errores como sea posible Tiene que haber personal especializado visualizando el trabajo de otros Los que trabajan en un laboratorio de FIV incluyen embriologos tecnicos de laboratorio y personal administrativo Seleccion Editar Este articulo o seccion tiene una redaccion que mantiene un punto de vista regional Por favor editalo para globalizarlo Mientras tanto no elimines este aviso Criterios de calidad embrionaria segun ASEBIR en dias 2 y 3 Los laboratorios especializados en FIV han desarrollado metodos de puntuacion para juzgar la calidad de los ovocitos y los embriones Tipicamente los expertos examinan la simetria del embrion la integridad estructural de sus celulas y el crecimiento general entre dos y cinco dias tras la fecundacion Ahora los cientificos estan empezando a analizar no solo el embrion sino tambien el medio en el que crece Algunos centros estan utilizando analisis quimicos y formulas matematicas para crear una huella metabolica de un embrion sano que podria utilizarse como barometro para estimar el potencial de supervivencia de un embrion Otros estan intentando analizar las proteinas secretadas por los embriones y a medir la cantidad de oxigeno consumido que es una senal habitual de crecimiento 2 Normalmente los embriones que han alcanzado el estadio de 6 8 celulas se transfieren 3 dias despues de la extraccion En ocasiones sin embargo los embriones se mantienen en cultivo por un periodo mas largo unos 6 dias y la transferencia se realiza en el estadio de blastocisto sobre todo si se observan muchos embriones de 3 dias de buena calidad Pero nunca superando los 14 dias tras la fecundacion Las transferencias en estadio de blastocisto muestran mejores tasas de embarazo 3 La Asociacion para el Estudio de la Biologia Reproductiva ASEBIR especifico en 2007 una clasificacion con las que evaluar los embriones antes de su transferencia basandose en los resultados obtenidos de estudios realizados en centros de reproduccion nacionales y en la literatura cientifica publicada Sobre la base de ellas las cuatro categorias que se establecen son Categoria A optimos Son los que tienen un desarrollo correcto y ninguna caracteristica de mal pronostico por lo que seran siempre transferidos o criopreservados En pacientes de buen pronostico mujeres de menos de 36 anos y ninguna patologia adversa o en receptoras de ovocitos los embriones tipo A suelen tener un 40 60 de posibilidades de implantar Categoria B Buenos Son embriones de buena calidad con elevada capacidad de implantacion Lo habitual es que tengan entre un 20 y un 40 de probabilidad de implantacion Categoria C Suboptimos Son los embriones que presentan una serie de caracteristicas que si bien van asociados a una menor viabilidad no son completamente descartables y seran transferidos si no se dispone de otro con mejor morfologia por eso tambien son conocidos como embriones acompanantes Suelen tener algo menos de la mitad de posibilidades de implantar 1 20 aunque siempre dependera del tipo y extension de las anomalias morfologicas que presentan Categoria D No viables Tienen una capacidad de implantacion del 1 o menos incluso 0 1 Incluyen tanto los embriones evolutivos in vitro cuyas caracteristicas estan relacionadas con una falta de potencial implantatorio como los que estan bloqueados No son transferidos practicamente en ningun caso Evaluacion de la calidad embrionaria Editar Este articulo o seccion necesita referencias que aparezcan en una publicacion acreditada Este aviso fue puesto el 4 de abril de 2012 El objetivo de la fecundacion in vitro es transferir el embrion con el mejor potencial de lograr un embarazo y que debera ser seleccionado de entre todos los disponibles en un ciclo FIV Existen diferentes sistemas para la clasificacion de embriones de acuerdo con la etapa de desarrollo en que se evaluan asi como de las diferentes asociaciones o individuos que las proponen Sin embargo la evaluacion convencional ha mostrado ser subjetiva no replicable y poco relacionada con pronostico Como consecuencia de lo anterior algunos grupos trabajan activamente en desarrollar sistemas de seleccion y ranking de embriones apoyados de sofisticados sistemas de computo y con capacidad de aplicar Inteligencia Artificial vision artificial y aprendizaje profundo Deep Machine Learning durante el proceso 4 Un ejemplo de tecnologias computacionales utilizadas hoy en dia en algunos laboratorios es el sistema llamado ERICA Embryo Ranking Intelligent Classification Assistant 10 enlace roto disponible en Internet Archive vease el historial la primera version y la ultima 11 Este sistema emplea filtros de vision artificial y Deep Learning para clasificar embriones en etapa de blastocisto con el proposito de asistir a los embriologos en la seleccion de embriones 5 6 Los estudios hasta ahora publicados con estas tecnologias sugieren resultados prometedores 7 Por otro lado la seleccion y clasificacion convencional de embriones se fundamenta Criterios de Valoracion Morfologicos de Oocitos Embriones tempranos y Blastocitos Humanos recogidos en el consenso ASEBIR Este consenso se ha establecido estudiando caracteristicas morfologicas de los embriones y determinando su capacidad de implantacion De esta manera los parametros morfologicos que ayudan a determinar la calidad embrionaria son los siguientes numero de celulas velocidad de division fragmentacion tamano y simetria de las blastomeras multinucleacion aspecto del citoplasma y zona pelucida Estudiando todos estos parametros podemos determinar la calidad del embrion Numero de celulas El numero de celulas es uno de los parametros mas importantes El numero de celulas optimo en dia 2 es de cuatro celulas y en dia 3 es de siete u ocho celulas Generalmente los embriones que se encuentran dentro de estos limites son clasificados como embriones tipo A Los embriones que presentan entre seis y diez celulas pueden ser viables y son embriones tipo B Los embriones con cinco celulas o mas de 10 se consideran embriones tipo C No obstante embriones que presentan un elevado numero de celulas en dia 2 y dia 3 pueden tener una elevada probabilidad de presentar alteraciones cromosomicas tales como aneuploidias o blastomeras multinucleadas El potencial de implantacion de estos embriones es muy bajo por lo que se consideran embriones tipo D Por otro lado embriones con un bajo numero de celulas en dia 2 y dia 3 se consideran bloqueados y su capacidad de implantacion es muy baja tipo D En la siguiente tabla se observa la calidad del embrion en funcion del numero de celulas en dia 2 y 3 Grupo de calidad Numero de Celulas en dia 2 Numero de Celulas en dia 3A 4 7 8B 2 5 7 o masB 4 9 o masC 2 5 7 o masC 2 4 6C 6 8 o masC 3 6 o masD 7 o mas Cualquier valorD Cualquier numero 5 o menosVelocidad de division La velocidad de division es otros de los parametros mas importantes La velocidad de division normal es la que se observa en un embrion que dobla su numero de celulas cada 24 horas y es un pronostico de viabilidad Una velocidad mayor esta asociada a anomalias cromosomicas por lo que la calidad del embrion es minima Por otro lado una velocidad menor esta relacionada con el bloqueo embrionario Un embrion se considera bloqueado cuando no incrementa su numero de celulas despues de un periodo de 24 h Este tipo de embriones tambien presenta una tasa de implantacion muy baja porque se considera embrion no viable El bloqueo cromosomico podria estar originado por anomalias cromosomicas del embrion o por condiciones de laboratorio no apropiadas Fragmentacion El tercer parametro en importancia es la fragmentacion La fragmentacion consiste en la generacion de porciones de citoplasma rodeadas por membrana sin nucleo Las causas de aparicion de fragmentos no se conocen se estima que pueda ser una consecuencia de las condiciones del medio de cultivo o bien una propiedad inherente del desarrollo embrionario El tamano del fragmento el numero y la localizacion son elementos relativamente importantes El tamano del fragmento se estima como el volumen total del embrion ocupado por dichos fragmentos Tamanos relativamente pequenos no estan asociados con un deterioro de la capacidad de implantacion mientras que a medida que se incrementa el tamano disminuye la calidad del embrion Se considera de mal pronostico si los fragmentos ocupan mas de 1 3 del volumen del embrion La perdida de la calidad del embrion se basa en que estos fragmentos impiden la comunicacion intercelular entre los blastomeros la cual es vital para un correcto desarrollo Podemos clasificar la fragmentacion en varios tipos Grado de fragmentacion CaracteristicasI Fragmentacion menor del 5 Unicamente una blastomera afectadaII Fragmentos parcialmente distribuidos alrededor del embrion cercanos al espacio perivitelino Fragmentacion total o parcial de una sola blastomeraIII Fragmentos pequenos distribuidos alrededor del embrion Varias blastomeras de la periferia IV Fragmentos grandes distribuidos alrededor del embrion Asociados a blastomeras irregulares V Fragmentos necroticos Asociados a blastomeras con citoplasma contraidosLos embriones con fragmentacion de los tipos I II o III con un porcentaje de fragmentacion inferior a 10 son considerados de tipo A optimos entre 11 25 se consideran embriones tipo B y entre 26 35 son embriones tipo C suboptimos cuando el porcentaje de fragmentacion es mayor al 35 nos encontramos ante embriones tipo D anormales Si la fragmentacion es de tipo IV o V los embriones se consideran directamente como anormales independientemente del porcentaje de fragmentacion El numero de fragmentos tambien es un factor importante generalmente la presencia de fragmentos aislados no dana la capacidad de implantacion del embrion mientras que la presencia de numerosos fragmentos puede tener un efecto perjudicial sobre la calidad del embrion En embriones con mucha fragmentacion se puede hacer lo que se conoce como assisted hatching and fragments retrieval Esta tecnica de eclosion asistida consiste en perforar un poco la zona pelucida y aspirar los fragmentos por medio de una pipeta mejorando asi la comunicacion entre las celulas Solo se hace en aquellos embriones con alta fragmentacion ya que es dificil de realizar y puede resultar danina para el embrion si no se hace correctamente Tamano celular y simetria El tamano celular se considera normal cuando el tamano de todas las blastomeras es similar aunque generalmente existe una ligera asimetria en los embriones La presencia de una asimetria elevada con celulas que difieren entre si un 20 del volumen total puede considerarse de mal pronostico reduciendose la calidad del embrion hasta embrion tipo C Por otra parte un numero de celulas impar aunque todas sean del mismo tamano se considera asimetrico Multinucleacion La multinucleacion es decir presencia de uno o mas nucleos en el interior de una celula puede estar originada por un error en la division celular fragmentacion del nucleo o una migracion incorrecta de los cromosomas durante la anafase Los embriones pueden mostrar blastomeras multinucleadas tanto en ensayos in vitro como in vivo La ausencia de multinucleacion se correlaciona con una elevada tasa de implantacion y viceversa De esta manera la presencia de blastomeras multinucleadas en dia 2 se asocia con baja capacidad de implantacion embriones tipo D la presencia de blastomeras multinucleadas en dia 2 y dia 3 se correlaciona con embriones suboptimos tipo C y por ultimo la aparicion de multinucleacion en dia 3 no afecta tanto a la capacidad implantatoria La existencia de blastomeras multinucleadas esta relacionada con embriones mosaicos y aneuploides Aspecto del citoplasma En el aspecto del citoplasma podemos evaluar distintos parametros como la presencia de vesiculacion de vacuolas y de anillos acitoplasmaticos Generalmente durante los primeros dias de desarrollo el citoplasma presenta un aspecto claro mientras que en el tercer dia tiene lugar la activacion del genoma embrionario apareciendo vesiculas que originan un aspecto granulado Este cambio determina el correcto desarrollo del embrion pero presenta una gran relevancia para distinguir la capacidad implantatoria de un embrion Por otra parte la aparicion de vacuolas y la contraccion del citoplasma se correlacionan con la degeneracion y lisis del embrion Por lo que los embriones que presentan estas alteraciones en mas de dos blastomeras se consideran anormales tipo D Generalmente se prolonga el cultivo de estos embriones hasta blastocito para observar su evolucion Zona pelucida La zona pelucida es una capa de 15 a 20 µm de espesor que rodea y protege al ovocito maduro La presencia de anomalias estructurales o funcionales en las glicoproteinas que forman la zona pelucida puede originar problemas como la disminucion de la viabilidad embrionaria y el descenso de la capacidad de implantacion El grosor de la zona pelucida es determinante tanto para la viabilidad del embrion como en su capacidad de eclosionar Asi si la zona pelucida es delgada el embrion puede eclosionar facilmente aumentandose la capacidad de implantacion pero hay que tener en cuenta que si es muy fina puede no proteger adecuadamente al embrion Por el contrario si la zona pelucida es muy gruesa o presenta tabiques se dificulta la eclosion y la implantacion del embrion En este ultimo caso se puede recurrir a eclosion asistida Transferencia de embriones Editar Articulo principal Transferencia de embriones Los embriones se puntuan por el embriologo segun el numero de celulas la paridad del crecimiento el grado de fragmentacion el estado del citoplasma Normalmente para mejorar las posibilidades de implantacion y embarazo se transfieren varios embriones simultaneamente El numero de embriones que se transfieren depende del numero disponible la edad de la mujer consideraciones diagnosticas y limitaciones legales en algunos paises el numero maximo se limita a dos o a tres en Espana se pueden transferir un maximo de 3 embriones Los embriones que se consideran mejores se transfieren al utero de la mujer a traves de una canula de plastico muy fino que se introduce a traves de la vagina y el cervix y se controla mediante su visualizacion por ultrasonidos o ecoguiada La canula puede ser flexible lo cual resulta mas cara pero es el mas recomendable ya que reduce el dano al introducirse por la vagina hasta llegar al utero O canula rigida mas barata pero menos eficaz Hay que tener cuidado con estimular el utero al realizar la transferencia Si se punza el utero con la canula puede dar lugar a contracciones del utero perjudiciales para la implantacion del embrion tras la transferencia Por lo tanto no son recomendadas la utilizacion de la pinzas Pozzi o cualquier instrumento que punce o agreda el cuello del utero ya que provoca contracciones perjudiciales para el embarazo Para disminuir el riesgo de contracciones se le administra a la mujer receptora de los embriones progesterona que es una hormona que relaja el musculo liso y evita las contracciones Blastocisto listo para ser transferido Tasas de exito EditarEn EE UU la tasa de nacidos vivos via FIV es alrededor del 27 por ciclo con una tasa de embarazo del 33 pero las posibilidades de exito varian mucho dependiendo de la edad de la mujer o mas concretamente de la edad de los ovocitos que se utilizan 12 Cuando se utilizan los propios ovocitos de la mujer y no de donante para mujeres por debajo de los 35 anos la tasa de embarazo es alrededor de 43 por ciclo 36 5 de nacidos vivos mientras que para mujeres por encima de 40 la tasa cae drasticamente hasta solo un 4 para mujeres por encima de 42 anos 13 Otros factores que determinan la tasa de exito incluyen la calidad de los ovocitos y los espermatozoides la salud del utero y la experiencia de la clinica Normalmente se transfieren varios embriones simultaneamente para mejorar la tasa de exito lo que tiene como contrapartida el riesgo de embarazo multiple Una tecnica reciente consiste en sumergir un embrion en un cultivo de nutrientes durante 5 dias hasta que alcanza el estadio de blastocisto Los medicos determinan entonces que embriones son los que tienen mas posibilidades de desarrollarse Los de mejor calidad se transfieren al utero de la mujer De esta manera es posible mejorar la tasa de embarazo sin aumentar el riesgo de embarazo multiple Esta es una tecnica relativamente nueva y esta en fase de experimentacion La Asociacion Americana de Medicina Reproductiva ASRM opina que ya existe evidencia cientifica suficiente que demuestra que la transferencia de blastocistos es la mejor opcion en pacientes de buen pronostico ASRM recomienda la transferencia de un solo embrion para minimizar la probabilidad de tener un embarazo multiple 8 Las clinicas con programas de FIV generalmente publican sus tasas de embarazo Sin embargo es dificil hacer comparaciones entre clinicas debido a que los resultados son la consecuencia de muchas variables Ademas los resultados tambien dependen mucho del tipo de pacientes seleccionados Hay muchas razones por las cuales puede no conseguirse un embarazo despues de un tratamiento de FIV y transferencia de embriones entre las cuales se incluyen El momento de la ovulacion puede haberse interpretado mal o tal vez no se pueda predecir o puede que no ocurra Los intentos de obtener ovocitos que se desarrollen durante el ciclo controlado pueden no tener exito Los ovocitos obtenidos pueden ser anormales o pueden haber sido danados durante la extraccion Tal vez no se pueda disponer de una muestra de semen adecuada La fecundacion de los ovocitos para generar embriones puede no ocurrir La division celular de los ovocitos fecundados puede no tener lugar El embrion puede que no se desarrolle normalmente Puede que la implantacion no tenga lugar Fallos con los equipos infecciones o errores humanos u otros factores imprevistos e incontrolables que pueden resultar en perdida o dano de los ovocitos de la muestra de semen o de los embriones 9 De acuerdo con un estudio sueco del ano 2005 publicado en la revista de Oxford Human Reproduction 10 166 mujeres fueron controladas comenzando un mes antes de sus ciclos de FIV y los resultados no mostraron correlacion significativa entre los resultados de la FIV y el estres psicologico El estudio concluia con la recomendacion a las clinicas de que si se informaba a los pacientes de FIV de los resultados de dicho estudio podria ser posible reducir el estres experimentado durante el protocolo de tratamiento Aunque tal vez el estres psicologico experimentado durante un ciclo puede no afectar al resultado de la FIV es posible que la experiencia de la FIV pueda resultar en estres que aumente las probabilidades de depresion Solo las consecuencias economicas de la FIV si se recurre a una clinica privada pueden generar ansiedad y resultar abrumadoras Sin embargo para muchas parejas la alternativa es la infertilidad y la experiencia de la infertilidad en si misma tambien puede causar estres y depresion Complicaciones EditarLa mayor complicacion de la FIV es el riesgo de embarazo multiple 14 Este esta relacionado directamente con la practica de transferir embriones multiples para aumentar la tasa de embarazo Los embarazos multiples estan relacionados con un incremento en el riesgo de aborto complicaciones obstetricas nacimiento prematuro y morbilidad neonatal con la posibilidad de dano a largo plazo En muchos paises existen limites estrictos al numero maximo de embriones que pueden transferirse para reducir el riesgo de embarazo multiple trillizos o mas Tambien puede ocurrir una division espontanea del embrion en el utero como en un embarazo natural pero este es un caso raro que genera gemelos identicos Un estudio clinico randomizado doble ciego siguio los embarazos tras FIV que generaron 73 bebes 33 ninos y 40 ninas y concluyo que el 8 7 de los bebes unicos y el 54 2 de los gemelos tenian un peso al nacer lt 2500 gr 11 En ciclos donde se transfieren dos embriones la probabilidad de tener un embarazo gemelar es del 6 En ciclos donde se transfieren tres embriones la probabilidad de tener un embarazo gemelar es del 12 y de tener un embarazo triple es del 3 Otro riesgo de la estimulacion ovarica es el desarrollo del sindrome de hiperestimulacion ovarica con un riesgo para la paciente inferior al 1 Si el problema de infertilidad subyacente esta relacionado con anormalidades en la espermatogenesis es posible que la descendencia masculina tenga mayor riesgo de presentar el mismo problema Defectos relacionados con la Epigenetica EditarLa epigenetica epigenetica se define como el estudio de los mecanismos que regulan la expresion de los genes sin una modificacion en la secuencia del ADN Las marcas epigeneticas definen la capacidad de desarrollo del cigoto y promueven la diferenciacion hacia distintos tipos celulares Todas las tecnicas de la fecundacion in vitro tienen consecuencias en las marcas epigeneticas que pueden suponer problemas de infertilidad riesgos en la supervivencia del feto o efectos fenotipicos en el embrion lt 23 gt Utilizando un modelo de raton compararon simultaneamente la concepcion natural y gestacion blastocistos concebidos naturalmente que fueron transferidos a receptores pseudoprenados ET blastocistos concebidos in vivo despues de la superovulacion que se transfirieron a receptores pseudoprenados SET y procedimientos de FIV que incluyen superovulacion FIV y cultivo de embriones a la etapa de blastocisto antes de la ET Los hallazgos demuestran que incluso una minima manipulacion in vitro como la NSET puede afectar el desarrollo placentario Es importante destacar que a medida que aumenta el numero de manipulaciones la morfologia y el fenotipo molecular de la placenta se vuelve mas severo lt 24 gt La placenta placenta es conocida por su notable plasticidad en comparacion con otros organos es capaz de responder a los cambios causados por trastornos geneticos y factores de estres ambiental a traves de mecanismos epigeneticos incluida la metilacion del ADN Los cambios epigeneticos inducidos por la FIV persisten en los tejidos como el cerebro y el higado son los mas afectados y derivan del ectodermo y el endodermo respectivamente lo que indica que las alteraciones ocurrieron en una etapa temprana del desarrollo desde la diferenciacion del trofectodermo El periodo prenatal es una ventana critica del desarrollo Los fenotipos observados en este estudio a saber el bajo peso al nacer y la placentacion anormal estan ciertamente implicados en la etiologia de las enfermedades cardiovasculares y metabolicas y se justifica una investigacion adicional sobre los efectos a largo plazo para la salud de la terapia lt 24 gt Defectos en los bebes EditarEl tema de la presencia de defectos asociados a la tecnica de FIV permanece controvertido La mayoria de los estudios muestran que no existe un incremento significativo tras una FIV mientras que otros no apoyan este hecho 12 Algunos investigadores consideran que manipular gametos y embriones fuera del cuerpo podria estimular la aparicion de cambios geneticos mutaciones que se pueden manifestar como defectos congenitos en el nacimiento 13 Aunque no hay evidencia genetica que apoye esta idea algunos estudios epidemiologicos sugieren una posible conexion entre la reproduccion asistida y sindromes geneticos poco frecuentes en recien nacidos como el sindrome de Beckwith Wiedemann que se caracteriza por nacimiento prematuro lengua mas grande de lo normal y mayor susceptibilidad a tumores y defectos respiratorios y oratorios 14 Este sindrome es raro afecta solo a 1 de cada 12 000 recien nacidos en todo el mundo pero algunos estudios sugieren que es mas frecuente en ninos nacidos con tecnicas de reproduccion asistida 15 16 Sin embargo el riesgo absoluto de tener un bebe que presente el sindrome de Beckwith Wiedemann es bajo por lo que los expertos encuentran dificil aconsejar a una pareja con problemas de fertilidad no seguir adelante con las tecnicas de reproduccion asistida Algunos investigadores sugieren que tal vez podrian reducirse los riesgos potenciales si se evitan ciertos procedimientos invasivos cuando no sean estrictamente necesarios como las biopsias de embriones implantados el cultivo de embriones en el laboratorio por periodos superiores al minimo necesario y el uso de ICSI en ausencia de problemas de fertilidad masculina Criopreservacion EditarArticulo principal Criopreservacion Criopreservacion de embriones Editar Cuando se generan embriones multiples tras la FIV los pacientes pueden elegir congelar los embriones que no se transfieren al utero de la mujer Esos embriones se mantienen en nitrogeno liquido congelados hasta un maximo de 5 anos Segun se publico en 2006 en EE UU habia cerca de 500 000 embriones congelados 15 La ventaja es que los pacientes que no consiguen concebir tras el primer ciclo pueden reintentarlo utilizando los embriones congelados sin tener que realizar de nuevo un ciclo de FIV completo solo tendrian que realizar la transferencia de dichos embriones sin pasar de nuevo por la estimulacion la extraccion y la fecundacion O en el caso de pacientes que consiguen un embarazo pueden mantenerlos para un segundo embarazo posterior Los embriones restantes procedentes de FIV pueden donarse a otras mujeres o parejas para reproduccion o para investigar con ellos Existen diferentes tecnicas para criopreservar congelar embriones cada una con diferentes posibilidades de lograr la supervivencia En la actualidad el metodo mas efectivo es la vitrificacion supervivencia de hasta 98 16 lo que a su vez ser refleja en una posibilidad de hasta el 50 de embarazo con embriones congelados segun reportes en la literatura medica 17 Esta tecnica se caracteriza por una rapida velocidad de congelacion 23 000ºC min lo que impide la formacion de cristales con efecto cuchilla que podrian danar al embrion Si a pesar de todo siguen existiendo embriones criopreservados que por el tiempo transcurrido o por otras razones no vayan a utilizarse para su implantacion las dos alternativas posibles que normalmente estan reguladas por leyes estrictas son la donacion para la investigacion y la destruccion En el caso de donacion de embriones para investigacion esta se debe llevarse a cabo en centros acreditados y sobre la base de proyectos autorizados por las autoridades correspondientes Normalmente se establecen plazos postfecundacion para la investigacion en los embriones y una vez terminada la investigacion no se permite llevar a cabo una transferencia embrionaria con ellos La investigacion con embriones procedentes de FIV ha permitido hasta el momento la realizacion de estudios en celulas madre de gran importancia en la comprension del desarrollo embrionario y en el avance de las terapias regenerativas de tejidos En cuanto a la destruccion de los embriones congelados se considera como ultima alternativa a peticion explicita de los progenitores o bien cuando no los quieran para ellos y no hayan autorizado la donacion a otras parejas ni la investigacion en ellos Tanto la utilizacion de embriones para fines de investigacion como su destruccion generan extensos debates eticos entre partidarios y oponentes que se traducen en leyes que limitan las posibilidades existentes muy variables dependiendo de los paises En Espana el periodo que obliga la ley a mantener los embriones congelados es de cinco anos Sera en este momento cuando la clinica que posee los embriones congelados debera contactar via carta para solicitar las acciones a llevar a cabo con los embriones Tras pasar 5 anos y sin haber conseguido respuesta por parte de los duenos de los embriones congelados sera la clinica responsable de los embriones pudiendo utilizarlos para las 3 causas mencionadas anteriormente Criopreservacion de ovocitos Editar La criopreservacion de ovocitos maduros sin fertilizar ha sido llevada a cabo con exito por ejemplo en mujeres que tienen alta probabilidad de perder sus reservas de ovocitos debido a que deben ser sometidas a un proceso de quimioterapia 17 En un estudio con donantes no hubo diferencias significativas entre el uso de ovocitos frescos y ovocitos vitrificados tipo de criopreservacion La tasa de fecundacion fue respectivamente de 80 7 y 78 2 la aparicion de embriones de buena calidad eran de 54 1 y 49 8 las de implantacion 33 3 y 34 0 y los porcentajes de bebes nacidos por ciclo fueron 38 4 y 43 4 Es decir los estudios mostraron equivalencias en la implantacion produccion del embarazo y continuacion de la gestacion entre ovocitos vitrificados y ovocitos frescos En un segundo estudio en el que se utilizaban los ovocitos propios se analizaron los resultados de cinco ensayos clinicos comparando la fecundacion la calidad de los embriones la produccion del embarazo y la continuacion de la gestacion a partir de 4282 ovocitos vitrificados y 3524 ovocitos frescos Los datos no eran diferentes en los dos grupos y la tasa de supervivencia de los ovocitos vitrificados era de un 93 En 2014 un metaanalisis incluyo 21 estudios prospectivos y concluyo que la eficiencia de los ovocitos era de un 7 similar a la estimada de los ovocitos frescos Ademas tampoco se vieron diferencias entre ovocitos que habian estado congelados menos de 6 meses y aquellos que llevaban congelados mas de 5 anos De hecho el mayor almacenamiento de un ovulo que resulto en un bebe ha sido de 14 anos 18 19 Criopreservacion del tejido ovarico Editar La criopreservacion del tejido ovarico va dirigida a pacientes que van a sufrir tratamientos quimioterapicos agresivos que pueden destruir sus tejidos reproductivos provocando asi su infertilidad Asi que aunque a dia de hoy estos tratamientos sean un gran avance en la supervivencia no lo son en la calidad de vida por lo que era necesario el desarrollo de una tecnica asi Tecnica que aun esta en estudio por su complejidad 20 Este tejido tiene un doble componente fisiologico la parte endocrina y la reproductora Por lo que su regulacion legislativa es compleja Todo lo referente a ello se encuentra regulado de manera adecuada por la Organizacion Nacional de Trasplantes La obtencion del material debe realizarse previo al tratamiento toxico El material obtenido debe tener un espesor fino para poder difundir la solucion crioprotectora 21 Lo mas preocupante es el riesgo de enfermedad residual 22 que pueda ser reinsertado en la paciente Para ello contamos con diferentes tecnicas de diagnostico in vitro que nos permitan analizar el tejido con la finalidad de encontrar restos de dicha enfermedad residual A la hora de realizar el trasplante de vuelta es preocupante la perdida folicular Por ello se esta creando un tejido de granulacion que favorezca la angiogenesis Todo esto esta en fase de perfeccionamiento pero sin lugar a dudas seria un gran avance para la sociedad y para la medicinaIntervenciones asociadas EditarExisten algunas variaciones o mejoras de la FIV tales como ICSI IMSI ZIFT GIFT y PGD Inyeccion de un ovocito durante una ICSI ICSI Editar Articulo principal Inyeccion intracitoplasmatica de espermatozoides La inyeccion intracitoplasmatica de espermatozoides ICSI es un desarrollo reciente asociada a la FIV que permite inyectar directamente un espermatozoide en el citoplasma del ovocito utilizando tecnicas de micromanipulacion Se utiliza cuando los espermatozoides tienen dificultades para penetrar en el ovocito y en ese caso se puede utilizar esperma de la pareja o de donante La ICSI tambien se utiliza cuando el recuento de espermatozoides es muy bajo Inyeccion intra citoplasmatica de espermatozoides morfologicamente seleccionados IMSI Editar Articulo principal Inyeccion intra citoplasmatica de espermatozoides morfologicamente seleccionados La IMSI o Inyeccion intra citoplasmatica de espermatozoides morfologicamente seleccionados del ingles Intracytoplasmic morphologically selected sperm injection es una tecnica de fecundacion in vitro FIV Consiste en realizar una seleccion morfologica de los espermatozoides antes de inyectarlos en los ovocitos Se selecciona un espermatozoide utilizando un microscopio invertido con una magnificacion de mas de 6000 veces su tamano con el fin de observar con mas precision la composicion de la cabeza de los espermatozoides detectando posibles anomalias de las vacuolas o los danos de la cadena de ADN de los espermatozoides y escogiendo solo los que no presentan anomalias para proceder a la fertilizacion con los ovocitos Eclosion Asistida Assisted Hatching Editar Este articulo o seccion necesita referencias que aparezcan en una publicacion acreditada Este aviso fue puesto el 4 de abril de 2012 Antes de la transferencia los embriones estan envueltos por una capa de glicoproteinas y para lograr un embarazo los embriones deben romper y salir de esta envoltura antes de implantarse Esta envuelta se llama zona pelucida y la eclosion asistida assisted hatching consiste en realizar un orificio en esta zona para facilitar el proceso de eclosion del embrion y asi aumentar la tasa de implantacion La eclosion asistida tambien llamada AHA es una tecnica que se lleva utilizando desde los anos 80 cuando se vio que los embriones de PZD diseccion parcial de la zona pelucida efectivamente parecian tener una tasa de implantacion mas alta que los embriones normales Este metodo se puede realizar cualquier dia de desarrollo aunque normalmente se suele hacer en el tercero Aunque es un proceso que ocurre tambien de manera fisiologica existen ciertas causas por las cuales un embrion es incapaz de realizar el proceso de eclosion hatching natural entre las que destacan Gran porcentaje de fragmentacion en el embrion Zona pelucida muy dura o poco flexible En estas ocasiones es cuando se recurre a procesos de eclosion asistida assisted hatching que puede estar acompanada o no de la aspiracion de fragmentos celulares dependiendo de la causa anteriormente mencionada No obstante existen otros motivos por los cuales se puede llevar a cabo como es el caso de realizar un diagnostico preimplantacional En este caso se suele realizar como paso previo al mismo Existen diferentes formas de hacer Eclosion Asistida ya sea por el metodo quimico mecanico o con laser Este ultimo es el que ha ganado mas popularidad por sus buenos resultados Metodo quimico consiste en introducir acido de Tyroide que es una solucion salina tamponada con un pH de 2 5 con un margen de error de 0 3 en una pipeta de AHA Al embrion por otra parte se le tiene sujetado con una micropioeta de sujecion y en una solucion de 20 microlitros de HEPES Se acerca la pipeta con la solucion de Tyrode y se libera en las cercanias del embrion La zona pelucida se va degradando ya que al ser un pH tan bajo se desnaturalizan las proteinas que la forman dando lugar a un orificio en esa zona Una vez formado se aspira con la pipeta esta solucion para que no afecte al interior del embrion y alejamos al embrion de esta zona La ventaja de este metodo es que es economico y los extremos son suaves Los inconvenientes que tiene este metodo son el embrion se expone a una solucion acida incrementando el riesgo de dano de este y ademas la apertura es permanente con lo que puede ser perjudicial por afectar al medio interno del embrion Metodo mecanico este metodo se realiza en 20 microlitros de medio con HEPES y consiste en fijar con una pipeta de sujecion el embrion por otra parte se toma una pipeta PZD con la que se atraviesa tangencialmente la zona pelucida Una vez atravesado el embrion se suelta y se rasga la zona contra la pipeta de sujecion En este caso como resultado final obtenemos un ojal que se mantiene cerrado y por el cual despues el embrion le sera facil salir e implantar El ojal puede tener unas dimensiones de 50 micras aproximadamente Las ventajas que tiene este metodo son que el embrion esta mas protegido por el efecto que hace el ojal es mas natural que los demas metodos y ademas es mas barato En cambio su inconveniente es que es dificil de aprender ademas de laborioso Metodo fisico laser este metodo se realiza en un medio con HEPES en donde se encuentra el embrion El laser de diodo infrarrojo 1 48 micras se apunta y dispara a traves del objetivo cerca de donde se encuentra el embrion Se puede variar el tiempo de accion del laser 0 1 a 50 ms El laser calienta localmente el agua y al aumentar la temperatura hace que las proteinas que constituyen la zona pelucida cercanas al laser se desnaturalicen y asi se origine un orificio La forma del orificio del laser es un ojal abierto siempre mayor al que se ve en el plano del microscopio La ventaja de este metodo es que es muy rapido ademas de reproducible en cambio sus desventajas son es muy caro se expone al embrion a un riesgo como es el propio laser y la abertura es permanente ademas de que es mas grande de lo que parece y esto como hemos dicho antes puede afectar al embrion Hay que decir que esta tecnica solo ofrece ventajas en los siguientes casos mujeres mayores de 37 anos Fallo de gestacion tras FIV ICSI y otras indicaciones propuestas pero aun no demostradas Zona pelucida anormal Mala calidad embrionaria Baja respuesta ovarica Por ultimo es oportuno decir que tambien se ha intentado la eclosion total del embrion a traves del metodo quimico o con pronasa Solo es posible realizarlo en estadio de blastocisto ya que si se hiciera antes se disgregaria el embrion en sus blastomeras Pero esta tecnica apenas se utiliza en el laboratorio Transferencia intrafalopiana de cigotos Editar Articulo principal Transferencia intrafalopiana de cigotos En la transferencia intrafalopiana de cigotos ZIFT en ingles los ovocitos se extraen de la mujer fecundados in vitro y los embriones se situan en las trompas de Falopio en lugar de en el utero TGIF Editar Articulo principal Transferencia de gametos intrafalopiana En la TGIF GIFT en ingles los ovocitos se extraen de la mujer y se situan en una de las trompas de Falopio junto con los espermatozoides del varon Por tanto esta variacion es en realidad una fecundacion in vivo y no in vitro EGP PGT Editar Articulo principal Diagnostico genetico preimplantacional El EGP Estudio Genetico Preimplantacion puede realizarse en los embriones previamente a la transferencia Un test similar pero mas general es el haplotipado genetico preimplantacion o HGP PGH en ingles Sin embargo la tasa de exito de la DGP es baja Mini FIV Editar Originalmente desarrollado por los grupos de New Hope Fertility 23 y la Kato Ladies Clinic 18 19 20 el Mini FIV tiene la particularidad de estimular el ovario de forma muy sutil con el empleo minimo de medicamentos hormonales 24 El resto de etapas en las tecnicas de Mini FIV son similares a las del FIV tradicional aunque con cambios menores dirigidos a reducir el riesgo y las molestias para las pacientes 25 Esta tecnica esta recomendada para mujeres con buen pronostico 26 27 pacientes que no pueden recibir una estimulacion de ovulos completa o para mujeres que no desean recibir un tratamiento hormonal mas agresivo 28 Actualmente y de acuerdo con la Sociedad Americana de Reproduccion Asistida ASRM el Mini FIV se considera como el protocolo de eleccion para pacientes con baja reserva ovarica y pobres respondedoras 29 30 Los retos que implica trabajar con un menor numero de foliculos demanda que el Mini FIV sea realizado por un equipo con amplia experiencia en esta tecnica 29 31 y en laboratorios con tecnologia de punta 32 33 Historia EditarEl primer embarazo conseguido mediante FIV con un ovocito humano fue descrito por el equipo de Monash en la revista The Lancet en 1973 aunque solo duro algunos dias y hoy en dia se denominaria un embarazo bioquimico A continuacion se publico un embarazo ectopico en las trompas por Steptoe y Edwards en 1976 34 En 1978 Edwards y Steptoe lograron el primer nacimiento por FIV 35 la nina Louise Brown nacio el 25 de julio de 1978 en el Royal Oldham Hospital de Lancashire cerca de Manchester Reino Unido 36 y de otro bebe desconocido los primeros bebes FIV cita requerida Robert G Edwards recibio el Premio Nobel de Fisiologia y Medicina 2010 por el desarrollo de la fecundacionin vitro 37 Despues tuvo lugar el nacimiento de Candice Reed en Melbourne en 1980 La utilizacion del uso de ciclos estimulados con citrato de clomifeno y el uso de gonadotropina corionica humana hCG para controlar el momento de la maduracion de los ovocitos permitiendo asi controlar el momento de la extraccion convirtio a la FIV de una herramienta de investigacion en un tratamiento clinico A continuacion se produjeron 14 embarazos seguidos de 9 nacimientos en 1981 con el equipo universitario de Monash El equipo de Jones en Norfolk Virginia mejoro los ciclos de estimulacion incorporando el uso de una hormona estimulante de los foliculos uHMG Esto se dio a conocer con el nombre de hiperestimulacion ovarica controlada HOC Otro paso adelante fue el uso de agonistas de la hormona que libera la gonadotropina GnRH A disminuyendo asi la necesidad de control al prevenir la ovulacion prematura y mas recientemente antagonistas de la hormona que libera la gonadotropina GnRH Ant con una funcion similar El uso adicional de contraceptivos orales ha permitido la programacion de los ciclos de FIV lo que hace el tratamiento mas facil de realizar para los medicos y los pacientes En la Clinica 2200 se realizo la primera fecundacion in vitro de Espana en abril de 1984 por los ginecologos Pedro Barri y Angel Sopena y la doctora Marisa Lopez Tapia 38 El primer bebe por FIV en America Latina nacio en Colombia en 1985 en el laboratorio del Dr Elkin Lucena gracias a la colaboracion cientifica con expertos madrilenos El mismo equipo tambien es responsable de los primeros embarazos por congelacion de embriones en America Latina 39 La capacidad de congelar y posteriormente descongelar y transferir embriones tambien ha mejorado significativamente la efectividad de la FIV Otro momento significativo fue el desarrollo de la inyeccion intracitoplasmatica de espermatozoides ICSI por Gianpiero Palermo en Bruselas en 1992 Esto ha permitido que hombres con una produccion minima de espermatozoides consigan embarazos a veces conjuntamente con recuperacion de esperma utilizando una aguja testicular fina o una biopsia testicular abierta de manera que incluso hombres con el sindrome de Klinefelter pueden a veces conseguir un embarazo Por tanto la FIV se ha convertido en la solucion de la mayoria de los problemas de infertilidad desde problemas en las trompas hasta factores masculinos subfertilidad idiopatica endometriosis edad materna avanzada y anovulacion Vease tambien EditarJacques Testart 1939 biologo frances Louise Brown 1978 primera bebe probeta Reproduccion asistida Donacion de espermaReferencias Editar de Lartigue Jane 2011 8 Corifollitropin alfa a new option to treat female infertility Drugs of Today Barcelona Spain 1998 47 8 583 590 ISSN 1699 3993 PMID 21850281 doi 10 1358 dot 2011 47 8 1635872 Consultado el 8 de enero de 2019 Ballantyne C 2008 Better tests boost IVF success Nature Medicine 14 1169 1 Papanikolaou EG Camus M Kolibianakis EM Van Landuyt L Van Steirteghem A Devroey P 2006 In Vitro Fertilization with Single Blastocyst Stage versus Single Cleavage Stage Embryos N Engl J Med 354 1139 PMID 16540614 doi 10 1056 NEJMoa053524 Chavez Badiola Alejandro Mendizabal Ruiz Gerardo Ocegueda Hernandez Vladimir Farias Adolfo Flores Saiffe Drakeley Andrew J 1 de septiembre de 2019 Deep learning for automatic determination of blastocyst embryo development stage Fertility and Sterility en ingles 112 3 e273 ISSN 0015 0282 doi 10 1016 j fertnstert 2019 07 809 Consultado el 25 de marzo de 2020 Chavez Badiola Alejandro Farias Adolfo Flores Saiffe Mendizabal Ruiz Gerardo Drakeley Andrew J Garcia Sanchez Rodolfo Zhang John J 1 de septiembre de 2019 Artificial vision and machine learning designed to predict PGT A results Fertility and Sterility en ingles 112 3 e231 ISSN 0015 0282 doi 10 1016 j fertnstert 2019 07 715 Consultado el 25 de marzo de 2020 Chavez Badiola Alejandro Farias Adolfo Flores Saiffe Mendizabal Ruiz Gerardo Garcia Sanchez Rodolfo Drakeley Andrew J 1 de septiembre de 2019 Development and preliminary validation of an automated static digital image analysis system utilizing machine learning for blastocyst selection Fertility and Sterility en ingles 112 3 e149 e150 ISSN 0015 0282 doi 10 1016 j fertnstert 2019 07 511 Consultado el 25 de marzo de 2020 Chavez Badiola Alejandro Flores Saiffe Farias Adolfo Mendizabal Ruiz Gerardo Garcia Sanchez Rodolfo Drakeley Andrew J Garcia Sandoval Juan Paulo 10 de marzo de 2020 Predicting pregnancy test results after embryo transfer by image feature extraction and analysis using machine learning Scientific Reports en ingles 10 1 1 6 ISSN 2045 2322 doi 10 1038 s41598 020 61357 9 Consultado el 25 de marzo de 2020 American Society for Reproductive Medicine Practice Committee 2013 Blastocyst culture and transfer in clinical assisted reproduction a committee opinion Fertil Steril 99 667 72 Abington Reproductive Medicine In Vitro Fertilization IVF Why Pregnancy May Not Occur 2006 Anderheim L Holter H Bergh C Moller A 2005 Does psychological stress affect the outcome of in vitro fertilization Hum Reprod 20 10 2969 75 2 Olivennes F Mannaerts B Struijs M Bonduelle M Devroey P 2001 Perinatal outcome of pregnancy after GnRH antagonist ganirelix treatment during ovarian stimulation for conventional IVF or ICSI a preliminary report Hum Reprod 16 8 1588 91 PMID 11473947 doi 10 1093 humrep 16 8 1588 Kurinczuk JJ 2003 Safety issues in assisted reproduction technology From theory to reality just what are the data telling us about ICSI offspring health and future fertility and should we be concerned Hum Reprod 18 5 925 31 PMID 12721163 doi 10 1093 humrep deg217 Nayr P 2008 As IVF becomes more common some concerns remain Nature Medicine 14 1171 3 Lucifero Diana Chaillet J Richard Trasler Jacquetta M 2004 Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology Human Reproduction Update 10 1 3 18 PMID 15005460 doi 10 1093 humupd dmh002 Debaun M R Niemitz E L Feinberg A P 2003 Association of in Vitro Fertilization with Beckwith Wiedemann Syndrome and Epigenetic Alterations of The American Journal of Human Genetics 72 1 156 160 doi 10 1086 346031 Maher E R Brueton L A Bowdin S C Luharia A Cooper W Cole T R MacDonald F Sampson J R Barratt C L Reik W Hawkins M M 2003 Beckwith Wiedemann syndrome and assisted reproduction technology ART Journal of Medical Genetics 40 1 62 64 PMID 12525545 doi 10 1136 jmg 40 1 62 Porcu E Fabbri R Damiano G Fratto R Giunchi S Venturoli S 2004 Oocyte cryopreservation in oncological patients Eur J Obstet Gynecol Reprod Biol 113 Suppl 1 S14 6 PMID 15041124 doi 10 1016 j ejogrb 2003 11 004 Catrin EA Joyce C Harper 2016 Oocyte cryopreservation where are we now Human Reprod Update 22 440 9 doi 10 1093 humupd dmw007 Daniluk JC Koert E 2016 Childless women s beliefs and knowledge about oocyte freezing for social and medical reasons Hum Reprod 31 2313 20 doi 10 1093 humrep dew189 Lobo RA 2005 Potential options for preservation of fertility in women N Engl J Med 353 64 73 Jeruss JS Woodruff TK 2009 Preservation of fertility in patients with cancer N Engl J Med 360 902 911 Donnez J Martinez Madrid B Jadoul P Van Langendonckt A Demylle D Dolmans MM 2006 Ovarian tissue cryopreservation and transplantation a review Hum Reprod Update 12 519 535 Chavez Badiola Alejandro Allahbadia Gautam Textbook of minimal stimulation IVF milder mildest or back to nature First edition edicion ISBN 978 93 5025 014 3 OCLC 751713299 Consultado el 25 de marzo de 2020 Badiola Alejandro Chavez Suarez Nadia 2015 Allahbadia Gautam N ed Minimal Stimulation and Natural Cycle In Vitro Fertilization en ingles Springer India pp 5 10 ISBN 978 81 322 1117 4 doi 10 1007 978 81 322 1118 1 2 Consultado el 25 de marzo de 2020 Almind G Faerch E Lindenberg F Lindenberg S 2018 06 Mild stimulation approach for In Vitro Fertilization treatment Retrospective data from one Danish Centre Facts Views amp Vision in ObGyn 10 2 81 84 ISSN 2032 0418 PMC 6516186 PMID 31110646 Consultado el 25 de marzo de 2020 Zhang John J Merhi Zaher Yang Mingxue Bodri Daniel Chavez Badiola Alejandro Repping Sjoerd van Wely Madelon 2016 01 Minimal stimulation IVF vs conventional IVF a randomized controlled trial American Journal of Obstetrics and Gynecology en ingles 214 1 96 e1 96 e8 doi 10 1016 j ajog 2015 08 009 Consultado el 25 de marzo de 2020 Ozornek H Ozay A Oztel Z Atasever E Turan E Ergin E 1 de septiembre de 2013 Minimal stimulation is as effective as classical stimulation in a single embryo transfer program in Turkey Fertility and Sterility en ingles 100 3 S277 ISSN 0015 0282 doi 10 1016 j fertnstert 2013 07 1149 Consultado el 25 de marzo de 2020 Abe Takashi Yabuuchi Akiko Ezoe Kenji Skaletsky Helen Fukuda Junichiro Ueno Satoshi Fan Yuting Goldsmith Sierra et al 2020 02 Success rates in minimal stimulation cycle IVF with clomiphene citrate only Journal of Assisted Reproduction and Genetics en ingles 37 2 297 304 ISSN 1058 0468 PMC PMC7056817 pmc incorrecto ayuda PMID 31867688 doi 10 1007 s10815 019 01662 z Consultado el 25 de marzo de 2020 Se sugiere usar numero autores ayuda a b Jamaludin Ridzuan Ahmad Mohd Faizal Park Dae Keun Zain Murizah Mohd Yoon Tae Ki Lee Woo Sik Koong Mi Kyoung Lee Kyung Ah 29 de noviembre de 2019 The stimulation protocol in poor responder IVF a minimal or high dose stimulation A meta analysis Hormone Molecular Biology and Clinical Investigation 0 0 ISSN 1868 1891 doi 10 1515 hmbci 2019 0018 Consultado el 25 de marzo de 2020 Comparison of pregnancy rates for poor responders using IVF with mild ovarian stimulation versus conventional IVF a guideline Fertility and Sterility en ingles 109 6 993 999 2018 06 doi 10 1016 j fertnstert 2018 03 019 Consultado el 25 de marzo de 2020 Lopez Rioja M d Chavez Badiola A Garcia Sanchez R Zavala Gonzalez P Recio Y Sanchez Gonzalez M 2018 09 The impact of meiotic spindle assessment in embryo development Fertility and Sterility en ingles 110 4 e346 doi 10 1016 j fertnstert 2018 07 966 Consultado el 25 de marzo de 2020 Chavez Badiola Alejandro Flores Saiffe Farias Adolfo Mendizabal Ruiz Gerardo Garcia Sanchez Rodolfo Drakeley Andrew J Garcia Sandoval Juan Paulo 2020 12 Predicting pregnancy test results after embryo transfer by image feature extraction and analysis using machine learning Scientific Reports en ingles 10 1 4394 ISSN 2045 2322 PMC PMC7064494 pmc incorrecto ayuda PMID 32157183 doi 10 1038 s41598 020 61357 9 Consultado el 25 de marzo de 2020 Zhang John Liu Hui Luo Shiyu Lu Zhuo Chavez Badiola Alejandro Liu Zitao Yang Mingxue Merhi Zaher et al 2017 04 Live birth derived from oocyte spindle transfer to prevent mitochondrial disease Reproductive BioMedicine Online en ingles 34 4 361 368 doi 10 1016 j rbmo 2017 01 013 Consultado el 25 de marzo de 2020 Se sugiere usar numero autores ayuda Steptoe PC Edwards RG 1976 Reimplantation of a human embryo with subsequent tubal pregnancy Lancet 1 7965 880 2 4 Steptoe PC Edwards RG Birth after the reimplantation of a human embryo Lancet 1978 Aug 12 2 8085 366 Fernandez Crehuet Joaquin y Gomez Garcia Enrique 1994 Fecundacion in vitro y transferencia de embriones FIVET Anuario Filosofico 163 177 5 La pagina web oficial de los Premios Nobel Un doctor madrileno asegura que esta congelando embriones humanos desde hace cuatro meses El Pais 10 de enero de 1985 Lucena E Olivares R Obando H Uribe L Lombana O Davila A Saa A M Gomez M 1 de septiembre de 1986 Pregnancies following transfer of human frozen thawed embryos in Colombia South America Human Reproduction Oxford England 1 6 383 385 ISSN 0268 1161 PMID 3558785 Consultado el 29 de abril de 2016 Patricio Ventura Junca Isabel Irarrazaval Augusto J Rolle Juan I Gutierrez Ricardo D Moreno Manuel J Santos In vitro fertilization IVF in mammals epigenetic and developmental alterations Scientific and bioethical implications for IVF in humans Ventura Junca et al Biol Res 2015 48 68 DOI 10 1186 s40659 015 0059 yric de Waal Lisa A Vrooman Erin Fischer Teri Ord et al The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model Human Molecular Genetics 2015 Vol 24 No24 6975 6985 doi 10 1093 hmg ddv400Bibliografia adicional EditarGeorge Robert P Tollefsen Christopher 2012 Embrion una defensa de la vida humana Ediciones Rialp ISBN 9788432142345 Andorno Roberto 1992 Incidencia de la fecundacion in vitro sobre la distincion entre personas y cosas Persona y derecho Revista de fundamentacion de las Instituciones Juridicas y de Derechos Humanos 26 9 27 Consultado el 9 de diciembre de 2015 Romeo Casabona Carlos Maria 2009 Codigo de leyes sobre Genetica Universidad de Deusto ISBN 9788498307443 Consultado el 10 de diciembre de 2015 Pardo Antonio 2010 Cuestiones basicas de bioetica Ediciones Rialp ISBN 9788432137860 Consultado el 10 de diciembre de 2015 Gomez de la Torre Vargas Maricruz 1993 La fecundacion in vitro y la filiacion Editorial Juridica de Chile ISBN 9789561010062 Consultado el 10 de diciembre de 2015 Zarate Cuello Amparo de Jesus 2014 Biomedicina y biotecnologia ante la violencia prenatal LID Editorial ISBN 9788483569993 Consultado el 10 de diciembre de 2015 Enlaces externos EditarEn MedlinePlus hay mas informacion sobre Fecundacion in vitro Datos Q200117 Multimedia In vitro fertilisationObtenido de https es wikipedia org w index php title Fecundacion in vitro amp oldid 134410496, wikipedia, wiki, leyendo, leer, libro, biblioteca,

    español

    , española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos