fbpx
Wikipedia

Fase (materia)

En las ciencias físicas, una fase es una región del espacio (un sistema termodinámico), a lo largo de la cual todas las propiedades físicas de un material son esencialmente uniformes.[1][2][3]​Los ejemplos de propiedades físicas incluyen densidad, índice de refracción, magnetización y composición química. Una descripción simple es que una fase es una región de material que es químicamente uniforme, físicamente distinta y (a menudo) mecánicamente separable. En un sistema que consiste en hielo y agua en una jarra de vidrio, los cubitos de hielo son una fase, el agua es una segunda fase y el aire húmedo es una tercera fase sobre el hielo y el agua. El vaso de la jarra es otra fase separada.

Una pequeña porción de hielo de argón que se derrite rápidamente muestra la transición de sólido a líquido.

El término fase se usa a veces como un sinónimo para estado de la materia, pero puede haber varias fases inmiscibles del mismo estado de la materia. Además, el término fase se usa a veces para referirse a un conjunto de estados de equilibrio demarcados en términos de variables de estado como presión y temperatura por un límite de fase en un diagrama de fase. Debido a que los límites de fase se relacionan con cambios en la organización de la materia, como un cambio de líquido a sólido o un cambio más sutil de una estructura cristalina a otra, este último uso es similar al uso de "fase" como sinónimo de estado de importar. Sin embargo, los usos del estado de la materia y del diagrama de fase no son proporcionales a la definición formal dada anteriormente y el significado que se pretende debe determinarse en parte a partir del contexto en el que se usa el término.

Tipos de fases

Las distintas fases se pueden describir como diferentes estados de la materia como gas, líquido, sólido, plasma o condensado de Bose-Einstein. Mesofases útiles entre sólido y líquido forman otros estados de la materia.

Fases distintas también pueden existir dentro de un estado dado de la materia. Como se muestra en el diagrama para aleaciones de hierro, existen varias fases para los estados sólido y líquido. Las fases también pueden diferenciarse en función de la solubilidad como polar (hidrófila) o no polar (hidrófoba). Una mezcla de agua (un líquido polar) y aceite (un líquido no polar) se separará espontáneamente en dos fases. El agua tiene una solubilidad muy baja (es insoluble) en el aceite, y el aceite tiene una baja solubilidad en el agua. La solubilidad es la cantidad máxima de un soluto que puede disolverse en un solvente antes de que el soluto deje de disolverse y permanezca en una fase separada. Una mezcla se puede separar en más de dos fases líquidas y el concepto de separación de fase se extiende a los sólidos, es decir, los sólidos pueden formar soluciones sólidas o cristalizar en distintas fases cristalinas. Los pares de metales que son mutuamente solubles pueden formar aleaciones, mientras que los pares de metales que son mutuamente insolubles no pueden formar aleaciones..

Se han observado hasta ocho fases líquidas inmiscibles.[nota 1]​ Las fases líquidas mutuamente inmiscibles se forman a partir de agua (fase acuosa), disolventes orgánicos hidrófobos, perfluorocarbonos (fase fluorada), siliconas, varios metales diferentes y también a partir de fósforo fundido. No todos los disolventes orgánicos son completamente miscibles, por ejemplo una mezcla de etilenglicol y tolueno se puede separar en dos fases orgánicas distintas.[nota 2]

Las fases no necesitan separarse macroscópicamente de forma espontánea. Las emulsiones y los coloides son ejemplos de combinaciones de pares de fase inmiscibles que no se separan físicamente.

 
Diagrama de la fase hierro-carbono, que muestra las condiciones necesarias para formar diferentes fases.

Equilibrio de fase

Si se deja en equilibrio, muchas composiciones formarán una sola fase uniforme, pero dependiendo de la temperatura y la presión, incluso una sola sustancia se puede separar en dos o más fases distintas. Dentro de cada fase, las propiedades son uniformes pero entre las dos fases las propiedades difieren.

El agua en un recipiente cerrado con un espacio de aire encima forma un sistema de dos fases. La mayor parte del agua está en la fase líquida, donde se mantiene por la atracción mutua de las moléculas de agua. Incluso en el equilibrio, las moléculas están constantemente en movimiento y, de vez en cuando, una molécula en la fase líquida gana suficiente energía cinética para separarse de la fase líquida y entrar en la fase gaseosa. Del mismo modo, de vez en cuando una molécula de vapor choca con la superficie del líquido y se condensa en el líquido. En el equilibrio, los procesos de evaporación y condensación se equilibran exactamente y no hay cambio neto en el volumen de ninguna de las fases.

A temperatura y presión ambiente, la jarra de agua alcanza el equilibrio cuando el aire sobre el agua tiene una humedad de alrededor del 3%. Este porcentaje aumenta a medida que la temperatura sube. A 100°C y la presión atmosférica, el equilibrio no se alcanza hasta que el aire es 100% agua. Si el líquido se calienta un poco más de 100°C, la transición de líquido a gas se producirá no solo en la superficie, sino en todo el volumen del líquido: el agua hierve.

Número de fases

 
Un diagrama de fase típico para un material de un solo componente, que presenta fases sólidas, líquidas y gaseosas. La línea verde continua muestra la forma habitual de la línea de fase líquido-sólido. La línea verde punteada muestra el comportamiento anómalo del agua cuando aumenta la presión. El punto triple y el punto crítico se muestran como puntos rojos.

Para una composición dada, solo ciertas fases son posibles a una temperatura y presión dadas. El número y el tipo de fases que se formarán son difíciles de predecir y generalmente se determinan mediante experimentos. Los resultados de tales experimentos se pueden trazar en diagramas de fase.

El diagrama de fase que se muestra aquí es para un sistema de un solo componente. En este sistema simple, las fases posibles solo dependen de la presión y la temperatura. Las marcas muestran puntos donde dos o más fases pueden coexistir en equilibrio. A temperaturas y presiones alejadas de las marcas, solo habrá una fase en equilibrio.

En el diagrama, la línea azul que marca el límite entre el líquido y el gas no continúa indefinidamente, sino que termina en un punto llamado punto crítico. A medida que la temperatura y la presión se acercan al punto crítico, las propiedades del líquido y el gas se vuelven progresivamente más similares. En el punto crítico, el líquido y el gas se vuelven indistinguibles. Por encima del punto crítico, ya no hay fases separadas de líquido y gas: solo hay una fase de fluido genérico que se conoce como fluido supercrítico. En el agua, el punto crítico ocurre a alrededor de 647 K (374 °C o 705 °F) y 22.064 MPa.

Una característica inusual del diagrama de fase del agua es que la línea de fase sólida-líquida (ilustrada por la línea verde punteada) tiene una pendiente negativa. Para la mayoría de las sustancias, la pendiente es positiva, como lo ejemplifica la línea verde oscuro. Esta característica inusual del agua está relacionada con el hielo que tiene una densidad más baja que el agua líquida. El aumento de la presión hace que el agua entre en la fase de mayor densidad, lo que causa la fusión.

Otra característica interesante, aunque no inusual, del diagrama de fase es el punto donde la línea de fase sólido-líquido se encuentra con la línea de fase líquido-gas. La intersección se conoce como el punto triple. En el punto triple, las tres fases pueden coexistir.

Experimentalmente, las líneas de fase son relativamente fáciles de mapear debido a la interdependencia de la temperatura y la presión que se desarrolla cuando se forman múltiples fases. (Ver la regla de las fases de Gibbs) Considere un aparato de prueba que consiste en un cilindro cerrado y bien aislado equipado con un pistón. Al cargar la cantidad correcta de agua y aplicar calor, el sistema se puede llevar a cualquier punto de la región de gas del diagrama de fase. Si el pistón se baja lentamente, el sistema trazará una curva de aumento de la temperatura y la presión dentro de la región de gas del diagrama de fase. En el punto donde el gas comienza a condensarse a líquido, la dirección de la curva de temperatura y presión cambiará bruscamente para trazar a lo largo de la línea de fase hasta que toda el agua se haya condensado.

Fenómenos interfaciales

Entre dos fases en equilibrio hay una región estrecha donde las propiedades no son las de ninguna de las fases. Aunque esta región puede ser muy delgada, puede tener efectos significativos y fácilmente observables, como hacer que un líquido exhiba tensión superficial. En las mezclas, algunos componentes pueden moverse preferentemente hacia la interfase. En términos de modelado, descripción o comprensión del comportamiento de un sistema en particular, puede ser eficaz tratar la región interfacial como una fase separada.

Fases cristalinas

Un mismo material puede tener varios estados sólidos distintos capaces de formar fases separadas. El agua es un ejemplo bien conocido de tales materiales. Por ejemplo, el hielo generalmente se encuentra en la forma hexagonal del hielo Ih, pero también puede existir como el hielo cúbico Ic, el hielo romboédrico II y muchas otras formas. El polimorfismo es la capacidad de un sólido para existir en más de una forma de cristal. Para los elementos químicos puros, el polimorfismo se conoce como alotropía. Por ejemplo, el diamante, el grafito y los fullerenos son diferentes alótropos del carbono.

Transiciones de fase

Cuando una sustancia experimenta una transición de fase (cambia de un estado de la materia a otro) generalmente toma o libera energía. Por ejemplo, cuando el agua se evapora, el aumento de la energía cinética a medida que las moléculas que se evaporan escapan de las fuerzas atractivas del líquido se refleja en una disminución de la temperatura. La energía requerida para inducir la transición de fase se toma de la energía térmica interna del agua, que enfría el líquido a una temperatura más baja; Por lo tanto la evaporación es útil para el enfriamiento. Ver entalpía de vaporización. El proceso inverso, la condensación, libera calor. La energía térmica, o entalpía, asociada con una transición de sólido a líquido es la entalpía de fusión y la asociada con una transición de sólido a gas es la entalpía de sublimación.

Fases fuera de equilibrio

Si bien las fases de la materia se definen tradicionalmente para los sistemas en equilibrio térmico, el trabajo en sistemas cuánticos localizados en muchos cuerpos (MBL) ha proporcionado un marco para definir las fases fuera del equilibrio. Las fases de MBL nunca alcanzan el equilibrio térmico, y pueden permitir nuevas formas de orden no permitidas en equilibrio a través de un fenómeno conocido como orden cuántico protegido por localización. Las transiciones entre las diferentes fases de MBL y entre las fases de MBL y de termalización son transiciones de fase dinámicas novedosas cuyas propiedades son áreas activas de investigación.

Véase también

Referencias

  1. Modell, Michael; Robert C. Reid (1974). Thermodynamics and Its Applications. Englewood Cliffs, NJ: Prentice-Hall. ISBN 978-0-13-914861-3. 
  2. Fermi, Enrico, 1901-1954. (1956). Thermodynamics. Dover Publications. p. 86. ISBN 978-0-486-13485-7. OCLC 829180533. 
  3. Adkins, C. J. (Clement John) (1983). «3». Equilibrium thermodynamics (3rd ed edición). Cambridge University Press. ISBN 0-521-25445-0. OCLC 9132054. 

Notas

  1. Uno de estos sistemas es, desde la parte superior: aceite mineral, aceite de silicona, agua, anilina, perfluoro (dimetilciclohexano), fósforo blanco, galio y mercurio. El sistema permanece indefinidamente separado a 45 °C, donde el galio y el fósforo están en estado fundido. Desde Reichardt, C. (2006). Solvents and Solvent Effects in Organic Chemistry. Wiley-VCH. pp. 9-10. ISBN 978-3-527-60567-5. 
  2. Este fenómeno se puede utilizar para ayudar con el reciclaje del catalizador en Vinilación Heck. Ver Bhanage, B.M. (1998). «Comparison of activity and selectivity of various metal-TPPTS complex catalysts in ethylene glycol — toluene biphasic Heck vinylation reactions of iodobenzene». Tetrahedron Letters 39 (51): 9509-9512. doi:10.1016/S0040-4039(98)02225-4. 

Enlaces externos

  • Los físicos franceses encuentran una solución que reversibly solidifica con un aumento en temperatura @– α-cyclodextrin, agua, y 4-methylpyridine
  •   Datos: Q104837
  •   Multimedia: Category:Phase (matter)

fase, materia, ciencias, físicas, fase, región, espacio, sistema, termodinámico, largo, cual, todas, propiedades, físicas, material, esencialmente, uniformes, ejemplos, propiedades, físicas, incluyen, densidad, índice, refracción, magnetización, composición, q. En las ciencias fisicas una fase es una region del espacio un sistema termodinamico a lo largo de la cual todas las propiedades fisicas de un material son esencialmente uniformes 1 2 3 Los ejemplos de propiedades fisicas incluyen densidad indice de refraccion magnetizacion y composicion quimica Una descripcion simple es que una fase es una region de material que es quimicamente uniforme fisicamente distinta y a menudo mecanicamente separable En un sistema que consiste en hielo y agua en una jarra de vidrio los cubitos de hielo son una fase el agua es una segunda fase y el aire humedo es una tercera fase sobre el hielo y el agua El vaso de la jarra es otra fase separada Una pequena porcion de hielo de argon que se derrite rapidamente muestra la transicion de solido a liquido El termino fase se usa a veces como un sinonimo para estado de la materia pero puede haber varias fases inmiscibles del mismo estado de la materia Ademas el termino fase se usa a veces para referirse a un conjunto de estados de equilibrio demarcados en terminos de variables de estado como presion y temperatura por un limite de fase en un diagrama de fase Debido a que los limites de fase se relacionan con cambios en la organizacion de la materia como un cambio de liquido a solido o un cambio mas sutil de una estructura cristalina a otra este ultimo uso es similar al uso de fase como sinonimo de estado de importar Sin embargo los usos del estado de la materia y del diagrama de fase no son proporcionales a la definicion formal dada anteriormente y el significado que se pretende debe determinarse en parte a partir del contexto en el que se usa el termino Indice 1 Tipos de fases 2 Equilibrio de fase 3 Numero de fases 4 Fenomenos interfaciales 5 Fases cristalinas 6 Transiciones de fase 7 Fases fuera de equilibrio 8 Vease tambien 9 Referencias 10 Notas 11 Enlaces externosTipos de fases EditarLas distintas fases se pueden describir como diferentes estados de la materia como gas liquido solido plasma o condensado de Bose Einstein Mesofases utiles entre solido y liquido forman otros estados de la materia Fases distintas tambien pueden existir dentro de un estado dado de la materia Como se muestra en el diagrama para aleaciones de hierro existen varias fases para los estados solido y liquido Las fases tambien pueden diferenciarse en funcion de la solubilidad como polar hidrofila o no polar hidrofoba Una mezcla de agua un liquido polar y aceite un liquido no polar se separara espontaneamente en dos fases El agua tiene una solubilidad muy baja es insoluble en el aceite y el aceite tiene una baja solubilidad en el agua La solubilidad es la cantidad maxima de un soluto que puede disolverse en un solvente antes de que el soluto deje de disolverse y permanezca en una fase separada Una mezcla se puede separar en mas de dos fases liquidas y el concepto de separacion de fase se extiende a los solidos es decir los solidos pueden formar soluciones solidas o cristalizar en distintas fases cristalinas Los pares de metales que son mutuamente solubles pueden formar aleaciones mientras que los pares de metales que son mutuamente insolubles no pueden formar aleaciones Se han observado hasta ocho fases liquidas inmiscibles nota 1 Las fases liquidas mutuamente inmiscibles se forman a partir de agua fase acuosa disolventes organicos hidrofobos perfluorocarbonos fase fluorada siliconas varios metales diferentes y tambien a partir de fosforo fundido No todos los disolventes organicos son completamente miscibles por ejemplo una mezcla de etilenglicol y tolueno se puede separar en dos fases organicas distintas nota 2 Las fases no necesitan separarse macroscopicamente de forma espontanea Las emulsiones y los coloides son ejemplos de combinaciones de pares de fase inmiscibles que no se separan fisicamente Diagrama de la fase hierro carbono que muestra las condiciones necesarias para formar diferentes fases Equilibrio de fase EditarSi se deja en equilibrio muchas composiciones formaran una sola fase uniforme pero dependiendo de la temperatura y la presion incluso una sola sustancia se puede separar en dos o mas fases distintas Dentro de cada fase las propiedades son uniformes pero entre las dos fases las propiedades difieren El agua en un recipiente cerrado con un espacio de aire encima forma un sistema de dos fases La mayor parte del agua esta en la fase liquida donde se mantiene por la atraccion mutua de las moleculas de agua Incluso en el equilibrio las moleculas estan constantemente en movimiento y de vez en cuando una molecula en la fase liquida gana suficiente energia cinetica para separarse de la fase liquida y entrar en la fase gaseosa Del mismo modo de vez en cuando una molecula de vapor choca con la superficie del liquido y se condensa en el liquido En el equilibrio los procesos de evaporacion y condensacion se equilibran exactamente y no hay cambio neto en el volumen de ninguna de las fases A temperatura y presion ambiente la jarra de agua alcanza el equilibrio cuando el aire sobre el agua tiene una humedad de alrededor del 3 Este porcentaje aumenta a medida que la temperatura sube A 100 C y la presion atmosferica el equilibrio no se alcanza hasta que el aire es 100 agua Si el liquido se calienta un poco mas de 100 C la transicion de liquido a gas se producira no solo en la superficie sino en todo el volumen del liquido el agua hierve Numero de fases Editar Un diagrama de fase tipico para un material de un solo componente que presenta fases solidas liquidas y gaseosas La linea verde continua muestra la forma habitual de la linea de fase liquido solido La linea verde punteada muestra el comportamiento anomalo del agua cuando aumenta la presion El punto triple y el punto critico se muestran como puntos rojos Articulo principal Liquido multifasico Para una composicion dada solo ciertas fases son posibles a una temperatura y presion dadas El numero y el tipo de fases que se formaran son dificiles de predecir y generalmente se determinan mediante experimentos Los resultados de tales experimentos se pueden trazar en diagramas de fase El diagrama de fase que se muestra aqui es para un sistema de un solo componente En este sistema simple las fases posibles solo dependen de la presion y la temperatura Las marcas muestran puntos donde dos o mas fases pueden coexistir en equilibrio A temperaturas y presiones alejadas de las marcas solo habra una fase en equilibrio En el diagrama la linea azul que marca el limite entre el liquido y el gas no continua indefinidamente sino que termina en un punto llamado punto critico A medida que la temperatura y la presion se acercan al punto critico las propiedades del liquido y el gas se vuelven progresivamente mas similares En el punto critico el liquido y el gas se vuelven indistinguibles Por encima del punto critico ya no hay fases separadas de liquido y gas solo hay una fase de fluido generico que se conoce como fluido supercritico En el agua el punto critico ocurre a alrededor de 647 K 374 C o 705 F y 22 064 MPa Una caracteristica inusual del diagrama de fase del agua es que la linea de fase solida liquida ilustrada por la linea verde punteada tiene una pendiente negativa Para la mayoria de las sustancias la pendiente es positiva como lo ejemplifica la linea verde oscuro Esta caracteristica inusual del agua esta relacionada con el hielo que tiene una densidad mas baja que el agua liquida El aumento de la presion hace que el agua entre en la fase de mayor densidad lo que causa la fusion Otra caracteristica interesante aunque no inusual del diagrama de fase es el punto donde la linea de fase solido liquido se encuentra con la linea de fase liquido gas La interseccion se conoce como el punto triple En el punto triple las tres fases pueden coexistir Experimentalmente las lineas de fase son relativamente faciles de mapear debido a la interdependencia de la temperatura y la presion que se desarrolla cuando se forman multiples fases Ver la regla de las fases de Gibbs Considere un aparato de prueba que consiste en un cilindro cerrado y bien aislado equipado con un piston Al cargar la cantidad correcta de agua y aplicar calor el sistema se puede llevar a cualquier punto de la region de gas del diagrama de fase Si el piston se baja lentamente el sistema trazara una curva de aumento de la temperatura y la presion dentro de la region de gas del diagrama de fase En el punto donde el gas comienza a condensarse a liquido la direccion de la curva de temperatura y presion cambiara bruscamente para trazar a lo largo de la linea de fase hasta que toda el agua se haya condensado Fenomenos interfaciales EditarArticulo principal Ciencia de superficies Entre dos fases en equilibrio hay una region estrecha donde las propiedades no son las de ninguna de las fases Aunque esta region puede ser muy delgada puede tener efectos significativos y facilmente observables como hacer que un liquido exhiba tension superficial En las mezclas algunos componentes pueden moverse preferentemente hacia la interfase En terminos de modelado descripcion o comprension del comportamiento de un sistema en particular puede ser eficaz tratar la region interfacial como una fase separada Fases cristalinas EditarUn mismo material puede tener varios estados solidos distintos capaces de formar fases separadas El agua es un ejemplo bien conocido de tales materiales Por ejemplo el hielo generalmente se encuentra en la forma hexagonal del hielo Ih pero tambien puede existir como el hielo cubico Ic el hielo romboedrico II y muchas otras formas El polimorfismo es la capacidad de un solido para existir en mas de una forma de cristal Para los elementos quimicos puros el polimorfismo se conoce como alotropia Por ejemplo el diamante el grafito y los fullerenos son diferentes alotropos del carbono Transiciones de fase EditarArticulo principal Transicion de fase Cuando una sustancia experimenta una transicion de fase cambia de un estado de la materia a otro generalmente toma o libera energia Por ejemplo cuando el agua se evapora el aumento de la energia cinetica a medida que las moleculas que se evaporan escapan de las fuerzas atractivas del liquido se refleja en una disminucion de la temperatura La energia requerida para inducir la transicion de fase se toma de la energia termica interna del agua que enfria el liquido a una temperatura mas baja Por lo tanto la evaporacion es util para el enfriamiento Ver entalpia de vaporizacion El proceso inverso la condensacion libera calor La energia termica o entalpia asociada con una transicion de solido a liquido es la entalpia de fusion y la asociada con una transicion de solido a gas es la entalpia de sublimacion Fases fuera de equilibrio EditarSi bien las fases de la materia se definen tradicionalmente para los sistemas en equilibrio termico el trabajo en sistemas cuanticos localizados en muchos cuerpos MBL ha proporcionado un marco para definir las fases fuera del equilibrio Las fases de MBL nunca alcanzan el equilibrio termico y pueden permitir nuevas formas de orden no permitidas en equilibrio a traves de un fenomeno conocido como orden cuantico protegido por localizacion Las transiciones entre las diferentes fases de MBL y entre las fases de MBL y de termalizacion son transiciones de fase dinamicas novedosas cuyas propiedades son areas activas de investigacion Vease tambien EditarInterfase Limite de faseReferencias Editar Modell Michael Robert C Reid 1974 Thermodynamics and Its Applications Englewood Cliffs NJ Prentice Hall ISBN 978 0 13 914861 3 Fermi Enrico 1901 1954 1956 Thermodynamics Dover Publications p 86 ISBN 978 0 486 13485 7 OCLC 829180533 Adkins C J Clement John 1983 3 Equilibrium thermodynamics 3rd ed edicion Cambridge University Press ISBN 0 521 25445 0 OCLC 9132054 Notas Editar Uno de estos sistemas es desde la parte superior aceite mineral aceite de silicona agua anilina perfluoro dimetilciclohexano fosforo blanco galio y mercurio El sistema permanece indefinidamente separado a 45 C donde el galio y el fosforo estan en estado fundido Desde Reichardt C 2006 Solvents and Solvent Effects in Organic Chemistry Wiley VCH pp 9 10 ISBN 978 3 527 60567 5 Este fenomeno se puede utilizar para ayudar con el reciclaje del catalizador en Vinilacion Heck Ver Bhanage B M 1998 Comparison of activity and selectivity of various metal TPPTS complex catalysts in ethylene glycol toluene biphasic Heck vinylation reactions of iodobenzene Tetrahedron Letters 39 51 9509 9512 doi 10 1016 S0040 4039 98 02225 4 Enlaces externos EditarLos fisicos franceses encuentran una solucion que reversibly solidifica con un aumento en temperatura a cyclodextrin agua y 4 methylpyridine Datos Q104837 Multimedia Category Phase matter Obtenido de https es wikipedia org w index php title Fase materia amp oldid 138081953, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos