fbpx
Wikipedia

Órbita heliosíncrona

Una órbita heliosíncrona, sincrónica al sol[1]​ o SSO (acrónimo del inglés Sun-Synchronous Orbit) es una órbita geocéntrica que combina altitud e inclinación para lograr que un objeto en esa órbita pase sobre una determinada latitud terrestre a un mismo tiempo solar local.[2]​ La oblicuidad de la eclíptica (o ángulo de iluminación) superficial será cercanamente el mismo cada vez. Esta consistente iluminación es una útil característica para satélites que toman imágenes de la superficie de la Tierra en longitudes de onda visibles y/o infrarrojas (e.g. meteorología, espionaje, sensores remotos).[3]​ Por ejemplo, un satélite en este tipo de órbita puede cruzar el ecuador doce veces por día a aproximadamente a las 15.00 hora local. Esto se consigue haciendo que el plano orbital de la órbita esté en precesión (rotando) aproximadamente un grado cada día, hacia el este, para estar ajustado con la revolución de la Tierra alrededor del sol.

Representación de la orientación de una órbita heliosíncrona (en verde) a lo largo del año. Como referencia se muestra al mismo tiempo la orientación de una órbita no sincrónica (en magenta).

La uniformidad del ángulo solar se consigue por ajuste natural de la precesión de la órbita a un círculo completo por año. Debido a la rotación terrestre, será ligeramente esferoidal, pues el ecuador es ligeramente más largo que el polar para ser una esfera perfecta, y ese material extra cerca del ecuador causa defectos lo que obliga a inclinar las órbitas en precesión: el plano de la órbita no está fijo con relación a estrellas distantes, sino que rota levemente sobre el eje terráqueo. La velocidad de la precesión depende tanto de la inclinación de la órbita como de la altitud del satélite; balanceando ambos efectos, es posible desarrollar relaciones de rangos de precesión. Las más típicas órbitas heliosíncronas son de cerca de 600–800 km en altitud, con periodos de 96–100 min de rango, e inclinaciones de cerca de 98° (es decir, ligeramente retrógrado en comparación con la dirección de la rotación terrestre: 0° representa una órbita ecuatorial, y 90° una órbita polar).

Son posibles otras variantes en este tipo de órbita; así un satélite podría tener una órbita heliosíncrona altamente excéntrica, en tal caso el "tiempo solar fijado de pasaje" solo se mantiene para un punto elegido de la órbita (típicamente el perigeo). El periodo orbital elegido depende de la tasa de revisita deseada; el satélite cruza el ecuador a la misma hora solar en cada pasaje, pero usualmente a diferentes longitudes debido a la rotación terrestre debajo de él. Por ejemplo, en un periodo orbital de 96 min, que se dividiese en un día solar terráqueo (de 15 veces), significa que el satélite cruzará por 15 diferentes longitudes en consecutivas órbitas, al mismo tiempo solar local, para cada localidad, y comenzará otra vez en la misma primera longitud cada 15º pasaje, una vez por día.

Casos especiales de una órbita sincrónica solar son las órbitas mediodía/medianoche, donde el tiempo solar local de pasaje por longitudes ecuatoriales alrededor del mediodía o de la medianoche; y, la órbita amanecer/atardecer, donde el tiempo solar local de pasaje por longitudes ecuatoriales es alrededor del amanecer y del atardecer, por lo que cumple su ciclo entre el día y la noche. Estos modos de orbitado son útiles para satélites activos radáricos, como para los paneles solares satelitales que pueden siempre estar mirando el sol, sin tener sombra de la Tierra. También es útil para algunos satélites con instrumentos pasivos que necesitan limitar la influencia solar en sus mediciones, hasta el extremo de posibilitar que esos instrumentos apunten hacia el lado oscuro de la Tierra. La órbita amanecer/oscurecer ha sido usada para observaciones solares de satélites científicos tales como Yohkoh, TRACE, Hinode, que mantienen cercanamente una vista continua del Sol.

A medida que la altitud satelital aumenta, requerirá más inclinación, por lo que la utilidad de este tipo de orbitado disminuye doblemente: primero debido a (para un satélite de observación de la Tierra) las fotografías satelitales se toman cada vez más alejadas, segundo debido al incremento de la inclinación que significa que el satélite no podría orbitar a mayores latitudes. Un satélite sincronizado con el sol se diseña para volar sobre territorio continental de EE. UU., por ejemplo, y necesitaría una inclinación de 132° o menos, lo que significa una altitud de ~4600 km o menos.

Este tipo de órbitas heliosíncronas son también posibles alrededor de otros planetas, como Marte.

Detalles técnicos

Una órbita heliosíncrona es una órbita retrógrada (o sea, una nave en tal órbita se movería opuesta al giro rotacional de la Tierra). Debido a esto, la tasa de precesión es positiva (en la misma dirección del giro terrestre) y una buena aproximación a la tasa de precesión es:

 

donde

  es la tasa de precesión (rad/s)
  es el radio ecuatorial terrestre (6.378 137 Mm)
  es el radio orbital satelital
  es su frecuencia angular (  radianes divididos por su periodo)
  su inclinación
  es el segundo factor de forma dinámica  .

La última cantidad se relaciona con la elíptica como sigue:

 

donde

  es la elíptica terrestre
  es la tasa de rotación terrestre (7.292115×10−5 rad/s)
  es el producto de la constante gravitacional universal y la masa de la Tierra (3.986004418×1014 m³/s2)

Véase también

Referencias

  1. Shcherbakova, N. N.; Beletskij, V. V.; Sazonov, V. V. «Stabilization of heliosynchronous orbits of an Earth's artificial satellite by solar pressure.». Koheskie Issledovaniia, Tom 37 (4): 417-427. 
  2. (en inglés). Rutgers.edu. Archivado desde el original el 22 de agosto de 2019. Consultado el 17 de noviembre de 2018. 
  3. Lakshmi, Venkat (2007). Our Changing Planet: The View from Space (1ra. edición). Cambridge University Press. p. 339. ISBN 978-0521828703. 
Bibliografía adicional
  • Ronald J. Boain, , Space Flight Mechanics Conference, Feb. 2004.
  • Sandwell, David T., The Gravity Field of the Earth - Part 1 (2002) (p. 8)
  • , from U.S. Centennial of Flight Commission
  • NASA Q&A


  •   Datos: Q174241

Órbita, heliosíncrona, este, artículo, sección, tiene, referencias, pero, necesita, más, para, complementar, verificabilidad, este, aviso, puesto, noviembre, 2018, este, artículo, trata, sobre, tipo, órbitas, alrededor, tierra, para, órbitas, alrededor, véase,. Este articulo o seccion tiene referencias pero necesita mas para complementar su verificabilidad Este aviso fue puesto el 17 de noviembre de 2018 Este articulo trata sobre un tipo de orbitas alrededor de la Tierra Para las orbitas alrededor del Sol vease orbita solar Una orbita heliosincrona sincronica al sol 1 o SSO acronimo del ingles Sun Synchronous Orbit es una orbita geocentrica que combina altitud e inclinacion para lograr que un objeto en esa orbita pase sobre una determinada latitud terrestre a un mismo tiempo solar local 2 La oblicuidad de la ecliptica o angulo de iluminacion superficial sera cercanamente el mismo cada vez Esta consistente iluminacion es una util caracteristica para satelites que toman imagenes de la superficie de la Tierra en longitudes de onda visibles y o infrarrojas e g meteorologia espionaje sensores remotos 3 Por ejemplo un satelite en este tipo de orbita puede cruzar el ecuador doce veces por dia a aproximadamente a las 15 00 hora local Esto se consigue haciendo que el plano orbital de la orbita este en precesion rotando aproximadamente un grado cada dia hacia el este para estar ajustado con la revolucion de la Tierra alrededor del sol Representacion de la orientacion de una orbita heliosincrona en verde a lo largo del ano Como referencia se muestra al mismo tiempo la orientacion de una orbita no sincronica en magenta La uniformidad del angulo solar se consigue por ajuste natural de la precesion de la orbita a un circulo completo por ano Debido a la rotacion terrestre sera ligeramente esferoidal pues el ecuador es ligeramente mas largo que el polar para ser una esfera perfecta y ese material extra cerca del ecuador causa defectos lo que obliga a inclinar las orbitas en precesion el plano de la orbita no esta fijo con relacion a estrellas distantes sino que rota levemente sobre el eje terraqueo La velocidad de la precesion depende tanto de la inclinacion de la orbita como de la altitud del satelite balanceando ambos efectos es posible desarrollar relaciones de rangos de precesion Las mas tipicas orbitas heliosincronas son de cerca de 600 800 km en altitud con periodos de 96 100 min de rango e inclinaciones de cerca de 98 es decir ligeramente retrogrado en comparacion con la direccion de la rotacion terrestre 0 representa una orbita ecuatorial y 90 una orbita polar Son posibles otras variantes en este tipo de orbita asi un satelite podria tener una orbita heliosincrona altamente excentrica en tal caso el tiempo solar fijado de pasaje solo se mantiene para un punto elegido de la orbita tipicamente el perigeo El periodo orbital elegido depende de la tasa de revisita deseada el satelite cruza el ecuador a la misma hora solar en cada pasaje pero usualmente a diferentes longitudes debido a la rotacion terrestre debajo de el Por ejemplo en un periodo orbital de 96 min que se dividiese en un dia solar terraqueo de 15 veces significa que el satelite cruzara por 15 diferentes longitudes en consecutivas orbitas al mismo tiempo solar local para cada localidad y comenzara otra vez en la misma primera longitud cada 15º pasaje una vez por dia Casos especiales de una orbita sincronica solar son las orbitas mediodia medianoche donde el tiempo solar local de pasaje por longitudes ecuatoriales alrededor del mediodia o de la medianoche y la orbita amanecer atardecer donde el tiempo solar local de pasaje por longitudes ecuatoriales es alrededor del amanecer y del atardecer por lo que cumple su ciclo entre el dia y la noche Estos modos de orbitado son utiles para satelites activos radaricos como para los paneles solares satelitales que pueden siempre estar mirando el sol sin tener sombra de la Tierra Tambien es util para algunos satelites con instrumentos pasivos que necesitan limitar la influencia solar en sus mediciones hasta el extremo de posibilitar que esos instrumentos apunten hacia el lado oscuro de la Tierra La orbita amanecer oscurecer ha sido usada para observaciones solares de satelites cientificos tales como Yohkoh TRACE Hinode que mantienen cercanamente una vista continua del Sol A medida que la altitud satelital aumenta requerira mas inclinacion por lo que la utilidad de este tipo de orbitado disminuye doblemente primero debido a para un satelite de observacion de la Tierra las fotografias satelitales se toman cada vez mas alejadas segundo debido al incremento de la inclinacion que significa que el satelite no podria orbitar a mayores latitudes Un satelite sincronizado con el sol se disena para volar sobre territorio continental de EE UU por ejemplo y necesitaria una inclinacion de 132 o menos lo que significa una altitud de 4600 km o menos Este tipo de orbitas heliosincronas son tambien posibles alrededor de otros planetas como Marte Detalles tecnicos EditarUna orbita heliosincrona es una orbita retrograda o sea una nave en tal orbita se moveria opuesta al giro rotacional de la Tierra Debido a esto la tasa de precesion es positiva en la misma direccion del giro terrestre y una buena aproximacion a la tasa de precesion es w p 3 a 2 2 r 2 J 2 w cos i displaystyle omega p frac 3a 2 2r 2 J 2 omega cos i donde w p displaystyle omega p es la tasa de precesion rad s a displaystyle a es el radio ecuatorial terrestre 6 378 137 Mm r displaystyle r es el radio orbital satelital w displaystyle omega es su frecuencia angular 2 p displaystyle 2 pi radianes divididos por su periodo i displaystyle i su inclinacion J 2 displaystyle J 2 es el segundo factor de forma dinamica 5 C 20 1 08262668 10 3 displaystyle sqrt 5 C 20 1 08262668 times 10 3 La ultima cantidad se relaciona con la eliptica como sigue J 2 2 e E 3 a 3 w E 2 3 G M E displaystyle J 2 frac 2 varepsilon E 3 frac a 3 omega E 2 3GM E donde e E displaystyle varepsilon E es la eliptica terrestre w E displaystyle omega E es la tasa de rotacion terrestre 7 292115 10 5 rad s G M E displaystyle GM E es el producto de la constante gravitacional universal y la masa de la Tierra 3 986004418 1014 m s2 Vease tambien EditarAnalema orbita geosincrona orbita geoestacionaria orbita polar Sistema Mundial GeodesicoReferencias Editar Shcherbakova N N Beletskij V V Sazonov V V Stabilization of heliosynchronous orbits of an Earth s artificial satellite by solar pressure Koheskie Issledovaniia Tom 37 4 417 427 Types of Orbits en ingles Rutgers edu Archivado desde el original el 22 de agosto de 2019 Consultado el 17 de noviembre de 2018 Lakshmi Venkat 2007 Our Changing Planet The View from Space 1ra edicion Cambridge University Press p 339 ISBN 978 0521828703 Bibliografia adicionalRonald J Boain The A B Cs of Sun Synchronous Orbit Design Space Flight Mechanics Conference Feb 2004 Sandwell David T The Gravity Field of the Earth Part 1 2002 p 8 Sun Synchronous Orbit dictionary entry from U S Centennial of Flight Commission NASA Q amp A Datos Q174241 Obtenido de https es wikipedia org w index php title orbita heliosincrona amp oldid 142940511, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos