fbpx
Wikipedia

MMIC

Los circuitos MMI o MMIC (Monolithic Microwave Integrated Circuits) son un tipo de circuitos integrados que operan en frecuencias de microondas, es decir, entre 300 MHz y 300 GHz. La técnica de fabricación de los circuitos MMIC se basa en la utilización de líneas de transmisión planares, y se realiza con compuestos de semiconductores compuestos, tales como el arseniuro de galio (GaAS), nitruro de galio (GaN) y el silicio-germanio (SiGe).

Las entradas y salidas de los dispositivos MMIC están, generalmente, internamente adaptadas con una impedancia característica de 50 ohmios. Esto facilita el uso de dichos dispositivos, así como su uso en forma de cascada, ya que no requieren red de adaptación externa. Adicionalmente, la mayoría de los equipamientos de pruebas de microondas se diseñan para operar en unas condiciones de 50 ohmios.

Los MMIC son dimensionalmente pequeños (desde 1 mm² a 10 mm²) y pueden ser producidos a gran escala, lo que ha facilitado su proliferación en dispositivos de alta frecuencia, como pueden ser los teléfonos móviles.

Historia

Entre 1930 y 1960 la tecnología de microondas consistía en la utilización de guías de ondas para la creación de circuitos, lo que conllevaba que el proceso de fabricación fuese largo y costoso. La revolución aparece sobre 1960 con la aparición de la tecnología planar y la producción de materiales dieléctricos más baratos y con menos pérdidas, dando lugar a la tecnología MIC (Microwaves Integrated Circuits).

Esta tecnología evoluciona a los MIC monolíticos (MMIC) cuando en 1975 Ray Pengelly y James Turner publican su estudio “Monolithic Broadband GaAs FET Amplifiers”, convirtiéndose así en los padres e inventores de los MMIC. Cuando trabajaban en Plessey diseñaron un amplificador de una sola etapa con una ganancia de 5 dB en la banda X que usaba puertas de escritura óptica de 1 micrón. Usaban sistemas de optimización por ordenador para diseñar su elemento, haciendo uniones de estructuras. El proceso de “backside” todavía no había sido inventado, así que los FET tenían toma de tierra externa.

Los primeros MMIC se fabricaron de Arseniuro de Galio (GaAs), el cual tiene dos ventajas fundamentales frente al Silicio (Si), que es el material tradicional para la fabricación de circuitos integrados: la velocidad del dispositivo y el sustrato semi-aislante. Este tipo de circuito usa una solución cristalina para el dieléctrico y la capa activa. El GaAs es útil gracias a su capacidad para trabajar en altas frecuencias y a que su alta resistividad evita interferencias entre dispositivos. Esto permite la integración de dispositivos activos (radiofrecuencia), líneas de transmisión y elementos pasivos en un único sustrato.

En los años 80, la Agencia de Proyectos Avanzados de Investigación de Defensa (DARPA) empezó a realizar un gran esfuerzo para obtener un mayor desarrollo de los circuitos integrados de microondas para sustituir los tubos, cavidades y dispositivos discretos usados en sistemas de telecomunicación y radar. Bajo contratación de DARPA, Northrop Grumman Corporation (antiguamente TRW) consiguió producir con éxito MMICs de GaAs usando Transistores de Alta Movilidad Electrónica (HEMT) y Transistores Bipolares de Unión Heterogénea (HBT).

En los primeros MMICs, todos los circuitos estaban hechos con GaAs MESFET, diodos IMPATT (Impact Ionization Avalanche Transit Time) y diodos varactores, pero con la maduración de la tecnología GaAs se incrementa el uso de Hits, HEMTs y PHEMTs en aplicaciones nicho. En la siguiente tabla se tiene los circuitos usados comúnmente en cada dispositivo, además de los fallos originados en la mayoría dispositivos activos de los MMIC.

 

La importancia del Arseniuro de Galio semi-aislante se basa en que los dispositivos hechos del mismo mediante implantación directa de iones están semi-aislados, por eso está adaptado a la fabricación de circuitos integrados. Además, el sustrato semi-aislante produce reducidas capacitancias parásitas, siendo así dispositivos más rápidos y que permiten la implementación de MMIC.

Sin embargo, la velocidad de las tecnologías de Silicio ha ido incrementándose al mismo tiempo que el tamaño de los transistores ha ido disminuyendo, es por este motivo que es posible construir MMIC con este material. Es muy importante este hecho, ya que la principal ventaja de la tecnología de Silicio es el coste, y los MMIC de Silicio abaratan costes frente a sus homónimos de Arseniuro de Galio. Otro de los factores que abaratan costes si se emplea Silicio en la fabricación en lugar de Arseniuro de Galio, es que los diámetros de la oblea son ligeramente mayores (de 8 a 12 pulgadas, frente a las 4 o 6 que se emplean para Arseniuro de Galio). Todos estos factores colaboran en abaratar los precios en la fabricación de los circuitos integrados.

Hasta el momento se han mentado el Silicio y el Arseniuro de Galio en la fabricación de MMIC, pero no solo se emplean estos materiales. También se utiliza, por ejemplo, el Fosfato de Indio, que mejora la ganancia, la frecuencia de corte y produce ruidos más bajos. Pero es, debido a su alto coste y la fragilidad de los materiales, ya que las obleas hechas de este material tienen que ser más pequeñas, que no sea muy extendido su uso. Otro de los materiales que puede usarse para este tipo de circuitos integrados es el Germanio de Silicio (SiGe) que ofrece más altas velocidades que los dispositivos de silicio convencionales, pero ventajas de coste similares. Por otra parte el GaAs posee propiedades que eliminan la diafonía, por lo que se integra en dispositivos de radio, líneas de transmisión…

En comparación con otras tecnologías de microondas, los MMIC de GaAs ofrece las siguientes ventajas:

  • Reducción de tamaño.
  • Reducción de costes para volúmenes de producción medio-altos
  • Mejora de las características de los sistemas por la inclusión de algunas funciones como lógicas, RF,.. en un único circuito
  • Mejora de la reproducibilidad, debido al procesamiento e integración uniforme para todas las partes del circuito.
  • Mejora del diseño sin necesidad de realizar numerosas iteraciones, debido a la reproducibilidad y al diseño asistido por ordenador.
  • Mayor rango de frecuencias, reduciendo efectos parasitarios en los dispositivos.

Fabricación

Desde hace unas cuantas décadas, los circuitos de microondas de estado sólido eran fabricados exclusivamente sobre la base de componentes discretos que incluían dispositivos de circuitos activos de semiconductor como transistores y diodos. Incluso hoy, el mercado es compartido entre los antiguos diseños y los nuevos. Mientras que los componentes discretos son hechos sobre la base de tecnologías bipolares de silicio, los circuitos MMIC son hechos principalmente de arseniuro de galio (GaAs).

Los circuitos MMIC ofrecen mejoras de ancho de banda sobre los circuitos hechos sobre la base de componentes integrados. La razón de esto es que se evitan pérdidas eléctricas y capacidades parásitas al poderse colocar las redes de acoplamiento más próximamente a los transistores. Este efecto produce un gran avance en la fiabilidad de las aplicaciones que requieren un gran número de elementos. En estas aplicaciones cada módulo del sistema de arrays puede necesitar cerca de tres chips que incorporen amplificadores de potencia, amplificadores de bajo ruido y desplazadores de fase. Los beneficios de la integración de aplicaciones de microondas hasta ahora han sido exclusivamente para los dispositivos de arseniuro de galio. Una razón de que el arseniuro de galio haya sido elegido para este tipo de aplicaciones es que este material tiene una alta movilidad de electrones que incrementa el rendimiento de los dispositivos a altas frecuencias. Mientras que los transistores bipolares pueden ser utilizados a frecuencias de microondas, los circuitos integrados que tienen una movilidad de electrones más baja son generalmente inferiores en frecuencias de microondas. La movilidad de los electrones no es el único parámetro a favor del arseniuro de galio. La gran capacidad de aislamiento del arseniuro de galio también debe ser tomada en cuenta. Ordinariamente el material de silicio es varios órdenes de magnitud más conductivo que el arseniuro de galio limitando esta característica la ganancia máxima que puede estar disponible a altas frecuencias por dispositivos de silicio. Este aislamiento inhibe corrientes parásitas entre electrodos de transistores en el mismo chip que de otra forma afectarían su rendimiento como un circuito de microondas integrado.

Históricamente, y a pesar de los avances en arseniuro de galio descritos más arriba, la utilización de este materias a gran escala ha sido lento debidos a los problemas de fabricación. Estos problemas han incluido la indisponibilidad de material de substrato de arseniuro de galio de gran calidad. Métodos de fabricación no orientados hacia las obleas de rápida respuesta que en silicio han tendido hacia la evolución de una tecnología de fabricación competitiva, y los problemas básicos con un compuesto de semiconductor frente a uno simple. Estos se reflejan en la dificultad del procedimiento de control y ceden en mantenimiento que afecta al coste por unidad. Además de esto la fragilidad física y química del material que hace más compleja la fabricación incluso desde sus inicios. Las obleas de arseniuro de galio se destacan por su fragilidad que desemboca en que solo la mitad de las obleas sobreviven desde las primeras pruebas de radiofrecuencia. Mientras que la industria de silicio se orienta hacia las obleas de 200 mm, el arseniuro de galio están disponibles desde los 75 mm de diámetro con un coste muy superior al silicio. Hoy en día la producción de arseniuro de galio es una pequeña parte del mercado para dispositivos de silicio. Por lo tanto la penalización en costes asociada con el mayor rendimiento del arseniuro de galio es un punto en contra.

Un subconjunto de la tecnología CMOS es llamada SOI (Silicon On Insulator). Durante la última década, las implementaciones de SOI se han convertido en las preferidas para fabricar circuitos integrados de señal de alta radiación. Un subconjunto de SIO es el SOS (Silicon On Sapphire). Esta tecnología conduce al endurecimiento de los requisitos para mejorar el aislamiento electrónico de los componentes en el substrato. En particular, la distribución del exceso de electrones creada por el bombardeo de radiación es confinada a fin de evitar que cause sobrecargas o errores “débiles”. La misma técnica ofrece una gran mejora en frecuencia. Aun así el problema con la tecnología SOS es que posee una interfaz electrónica imperfecta entre el aislante sobre la que el silicio se deposita y el mismo silicio. Esto resulta en un efecto de “canal de lagunas”. Mientras que las imperfecciones relacionadas con este efecto no dificultan la radiación por sí solas, tienden a deteriorar el dispositivo con respecto a su rendimiento habitual y pueden afectar gravemente las especificaciones normales del circuito. Este efecto puede ser particularmente desastroso en frecuencias de microondas ya que limita la ganancia máxima disponible. Aparte de estas limitaciones el grosor mínimo del dispositivo que puede ser aislado es una contrapartida. Sin embargo hoy en día hay alternativas al silicio sobre zafiro.

En los últimos años una nueva tecnología de materiales de silicio SOI se ha desarrollado. Se llama “Separación por Implantación en Oxígeno” (SIMOX). Para hacer una oblea en esta tecnología se implanta una gran cantidad de oxígeno sobre la superficie de la oblea. Templando esta superficie convierte esta superficie en una película de cristal aislante. La ventaja de esta técnica sobre el SOS es la disminución del grosor de la capa activa confinando los efectos de la radiación de ionización. Los efectos del efecto de lagunas también es minimizado. Sin embargo, aunque los dispositivos activos están desacoplados del substrato literalmente, permanecen acoplados en cuanto a efectos de capacitancia y por tanto unos con respecto a otros en frecuencias de microondas a causa de las propiedades conductivas del substrato. En otras palabras, a pesar de la capa de aislamiento, inclusive los dispositivos SIMOX no son idóneos para su utilización en circuitos de microondas debido a que el silicio bajo la capa de aislamiento tiene propiedades conductivas a frecuencias de microondas.

A fin de aumentar el rendimiento y disminuir la limitación de costes de las tecnologías actuales, esta técnica permite mejorar la fabricación de circuitos monolíticos en silicio que son capaces de operar en frecuencias de microondas se utilizará un sustrato de silicio de alta resistividad, que se obtiene con una técnica de zona flotante que implanta una capa de aislamiento cerca de su superficie superior, preferiblemente SIMOX. Se forja un plano conductivo en el fondo del sustrato y se forja un circuito en la capa activa de silicio que permanece sobre la capa SIMOX de aislamiento.

Las tecnologías que incrementan el rendimiento en altas frecuencias del MICROX comprenden:

  • Una superficie inferior de rectificación de contacto.
  • Replicación de circuitos usando litografía.
  • Bajo coste microstrip.
  • Capa de nitrato en el fondo de la oblea durante el procesamiento CMOS.

Este método de fabricación se llama MICROX. Esta técnica conlleva unos costes más de fabricación sobre silicio de circuitos integrados que son operativos a frecuencias de gigahercios. Como toda tecnología basada en silicio, MICROX saca partido de la amplia infraestructura de fabricación que conllevan los dispositivos modernos. Para aplicaciones que necesitan de un gran número de dispositivos como los sistemas de comunicaciones modernos, la implementación de dispositivos MICROX puede hacer disponible grandes cantidades de circuitos integrados para aplicaciones de microondas.

Quizás la ventaja más importante de GaAs es que sus electrones son acelerados a velocidades más altas, por lo que atraviesan el canal de transistor en menos tiempo. Esta mejora de la movilidad de electrones es la propiedad fundamental que permite trabajar a frecuencias más altas y velocidades de conmutación más rápidas. Mientras que la principal razón de hacer transistores de GaAs es la mayor velocidad en el funcionamiento, que se consigue con una frecuencia máxima de operación más alta o velocidades de conmutación más altas, las propiedades físicas y químicas de GaAs hacen que su empleo en la fabricación de transistores sea difícil. Los inconvenientes del GaAs son una conductividad térmica inferior y un coeficiente de expansión térmica más alto que el silicio y el germanio. Sin embargo, como las nuevas aplicaciones de mercado exigieron el funcionamiento más alto que podría ser alcanzado solamente con la máxima dinámica de los electrones de GaAs, estos obstáculos han sido vencidos. Los mercados que llevaron a los avances en el crecimiento del material y las técnicas de fabricación de semiconductores de GaAs son la industria de defensa y espaciales. Estas requirieron sistemas con circuitos de frecuencia más alta para radares, comunicaciones seguras, y sensores. La madurez de GaAs condujo a la aparición de nuevos mercados, como redes locales inalámbricas (WLANs), sistemas de comunicación personales (PCSs), el satélite de difusión directa (DBS) la transmisión y la recepción por el consumidor, sistemas de posicionamiento global (GPS) y la comunicación global celular. Estos mercados comerciales requirieron la introducción de tecnología basada en GaAs para encontrar utilidades a los sistemas que no eran alcanzables con el silicio y el germanio. Una desventaja del GaAs es el coste y la disponibilidad respecto al silicio. Existen muchas reticencias en lo relativo al uso del GaAs como pueden ser: -El entendimiento de los mecanismos a la hora de implementar sistemas de silicio es más sencillo -El coste del GaAs es mucho más elevado que el del silicio -El uso del silicio en sistemas de baja frecuencia, y en sistemas de integración a gran escala ha desarrollado técnicas muy fuertes para producción industrial. Sin embargo cuando el coste de fabricación es comparado al funcionamiento, el valor añadido al sistema al usar tecnología GaAs en la mayoría de los casos justifica los pagos producidos por el aumento del coste de fabricación. Al tiempo que WLAN, PCS, DBS, el GPS, y mercados celulares crecen, el coste para fabricar GaAs disminuirá, y la duda de usar GaAs más que el silicio dependerá de la capacidad de GaAs de satisfacer las necesidades técnicas del mercado.

Los diodos PIN (p-type-insulator-n-type) de GaAs no estaba disponible para los diseñadores de MMIC. Esta se debía a su rápida velocidad de transferencia, su alto voltaje de corte y a una resistencia variable perjudicial.

Esta indisponibilidad de las regiones tipo-p del GaAs cambiaron con el GaAs HTB MMIC. Con el buen rendimiento de los HBTs, la implantación de iones tipo-p y el crecimiento MBE se están incorporando ahora a las fábricas de producción de GaAs. Mediante el uso de la capa base p+, la región colectora n-, y la capa de contacto óhmica del colector n+ del HBT, como se muestra en la figura, los MMIC con diodos PIN se pueden fabricar fácilmente en la línea de fabricación de GaAs HBT.

 

Tecnología de Fabricación SIGe

 . Es una tecnología innovadora que ofrece menos ruido que otras alternativas de silicio y rendimiento comparables a los dispositivos más caros GaAs. Con esta nueva tecnología se aumentará enormemente la sensibilidad del sistema, y los usuarios de 3G, GPS, televisión móvil o dispositivos portátiles no solo encontrarán funciones como la recepción de datos de alta velocidad, navegación o los servicios de televisión descritos en el manual, sino que además podrán usar esas características, incluso en condiciones difíciles, por ejemplo, en el interior de un edificio o espacios cerrados.

¿Cuáles son las principales ventajas y desventajas de la tecnología MMIC?

Posiblemente la principal ventaja de los circuitos integrados de microondas monolíticas (MMIC) para soluciones discretas sea que con esta tecnología se consigue una figura de ruido menor.Otra gran ventaja es la combinación de funciones multicircuitales sin necesidad interconexión cableada, lo que permite la producción de líneas microstrip compactas.

En la tecnología MMIC, tanto los componentes activos como los pasivos son creados en el propio sustrato, con lo que reduce en gran medida el tamaño del circuito y los problemas que tenía la tecnología MIC o híbrida.

Sin embargo, estas soluciones discretas tienen también sus propias desventajas, especialmente en las aplicaciones portátiles modernas con circuitería compactada y períodos de implantación en el mercado muy cortos. Otra desventaja es que una vez creado el circuito es muy poco ajustable, la mayoría de sus características de funcionamiento no son modificables, por lo que el proceso de diseño ha de ser muy exhaustivo y requiere modelos precisos de física y química para elementos activos y pasivos. Dicho proceso requiere de programas software que permitan sintetizar, analizar y perfilar circuitos lineales y no lineales.

Es por eso que muchos fabricantes poseen “bibliotecas” con modelos existentes, que permiten al diseñador de MMIC saber la actuación esperada por parte de un dispositivo sin tener que caracterizarlo experimentalmente.

Se podrían resumir los beneficios y mejoras de la figura de ruido con las siguientes especificaciones típicas de este tipo de circuitos integrados:

  • Mayor linealidad y bajo ruido
  • La integración del circuito de corriente, el cual simplifica el diseño de la red de acoplamiento.
  • Realimentación interna, la cual facilita la adaptación de impedancias a lo largo de un ancho de

banda mayor.

  • Estabilidad incondicional a lo largo de un mayor rango de frecuencias
  • El modo de ganancia FET requiere solo una toma positiva

Todos estos beneficios se traducen en un circuito compacto con un ciclo de diseño menor si se compara con su aproximación discreta, lo cual los hace más apropiados para soluciones portátiles con limitaciones de espacio.

Las características de los sistemas que operan en las bandas de RF y Microondas pueden ser optimizadas mediante la integración de componentes en MMIC (Microwave Monolithic Integrated Circuits). Es corriente usar componentes “off the shelf” pero a costa de aumentar la complejidad y el coste del diseño. El uso de componentes MMIC es un medio rápido y efectivo en coste. Sin embargo cuando se trata de diseñar MMICs a medida hay que tener en cuenta que su coste y tiempo de desarrollo son importantes por lo que solo en casos de grandes series o en aplicaciones especiales como en espacio, es aconsejable.

Mediante el uso de soluciones MMIC a medida se pueden mejorar las características del sistema, así como la funcionalidad y fiabilidad. Además se reduce el número de componentes, el tamaño del circuito, peso y consumo de potencia, así como los tiempos de ensamblado.

Algunas aplicaciones de la tecnología MMIC

Amplificadores MMIC en la banda Ka de banda ancha

Los sistemas de comunicaciones que requieren grandes capacidades en la banda milimétrica están teniendo un gran desarrollo como por ejemplo los sistemas de banda ancha para la distribución de señales de vídeo sin cable tales como LMDS (Local Multipoint Distribution System) que operan en la banda de 28 GHz. Para satisfacer esta demanda el diseño circuitos integrados monolíticos de microondas (MMIC) es de gran interés ya que poseen ventajas en cuanto a miniaturización, gran repetitividad, bajo coste en grandes producciones y mayor fiabilidad debido al reducido número de interconexiones.

Amplificador MMIC de ganancia variable y baja distorsión

Son amplificadores utilizados sobre todo en sistemas de comunicaciones. Estos amplificadores son muy lineales, debido a su realimentación negativa y al ser creado con tecnología MMIC, las frecuencias de trabajo llegan hasta la banda Ka. Su principal ventaja es que reduce de manera efectiva el efecto del retardo de fase y los productos de intermodulación (hasta 40dB en los productos de intermodulación de 3.er orden). Debido a estas características, son muy utilizados en sistemas digitales con modulaciones QAM.

Amplificadores de potencia

Debido a la división de potencia y a la combinación de redes, los MMIC tienen unas pérdidas de 0,5-1 dB y la impedancia de entrada disminuye con el incremento del número de puertas, el grado de división de potencia y de combinaciones pueden usarse para incrementar el límite del nivel de potencia.

Los amplificadores de potencia deben trabajar con potencias altas a la entrada y a la salida, y su tensión máxima está limitada por la tensión de ruptura, por lo que conviene que este valor sea alto en los transistores. Los FETs y HBTs de puerta o emisores limitarán la corriente en cada transistor, convirtiendo las pérdidas por resistividad en calor y reduciendo la fiabilidad del dispositivo. Para aumentarla, es necesario emplear puertas o emisores en paralelo para incrementar el área de emisión y reducir la resistencia. Pero esto provoca que el tamaño del dispositivo aumente al hacer que los elementos del transistor estén lo suficientemente separados para que se dé la disipación térmica adecuada.

Los amplificadores de potencia diseñados con varias fases (una de ellas es un transistor o una combinación en paralelo de estos) permiten agrupar las limitaciones térmicas y de corriente, y el voltaje de pico. El número de fases depende de las especificaciones de ganancia y frecuencia, ya que la potencia de salida disminuye con el aumento de frecuencia.

Los dispositivos pasivos y activos de microondas suelen derivar de la medida de parámetros S en un analizador vectorial. Estos modelos son buenos para circuitos de baja potencia, pero los transistores exhiben una cierta falta de linealidad, por lo que hay que realizar diseños no lineales para diseños de alta potencia. Además, esta no linealidad provoca distorsión de intermodulación (IMD), medida en dB, que es la potencia en frecuencias distintas a la de entrada: 2fRF, 3fRF, etc. Hay que tener en cuenta estas frecuencias para evitar problemas con el circuito.

Los amplificadores de potencia, además, se pueden dividir en varias clases:

Etapa clase A: El dispositivo se polariza en una zona de respuesta lineal, con capacidad de responder a señales de cualquier polaridad. Su principal ventaja es que sigue un modelo de amplificador lineal convencional. Su desventaja es que aun con señal nula disipa una cantidad considerable de potencia.

Etapa clase B: El dispositivo se polariza en el extremo de la zona de respuesta lineal, y en consecuencia solo tiene capacidad de responder a señales con una determinada polaridad. En estas etapas no se produce disipación de potencia cuando la señal es nula, pero requiere la utilización de etapas complementarias para pode generar una respuesta bipolar.

Etapa clase AB: El dispositivo se polariza en la zona lineal pero en un punto muy próximo al extremo de respuesta lineal. Esta configuración es una variante de la etapa de tipo B en la que se sacrifica la disipación de una pequeña cantidad de potencia cuando opera sin señal, a cambio de evitar la zona muerta de respuesta.

Etapa clase C: El dispositivo se polariza en zona de respuesta no lineal, de forma que los dispositivos activos solo conducen en una fracción reducida del periodo de la señal. De esta forma se consiguen rendimientos máximos, aunque se necesitan elementos reactivos que acumulen la energía durante la conducción y la liberen en el resto del ciclo en el que el dispositivo no conduce. Se puede utilizar para amplificar señales de banda muy estrecha.

Amplificadores de bajo ruido

La función principal de un amplificador de bajo ruido (LNA) es la de amplificar señales extremadamente pequeñas tratando de añadir la menor cantidad de ruido posible, esto es, preservando el nivel de relación señal a ruido (SNR) del sistema.

Para su diseño se debe tener en cuenta la ganancia disponible en cada transistor en función de su tamaño y del punto de polarización, en cuanto a su actuación, el criterio más importante será la figura de ruido. Para conseguir una figura baja, se emplean transistores HEMTs y PHEMTs, y para minimizar dicha figura se utilizan además puertas pequeñas, incluyendo puertas parásitas (de 0,1 a 0,25 mm).

Para reducir la figura de ruido del sistema es importante reducir las pérdidas de circuito, especialmente antes de la primera parte del amplificador de ruido bajo. También se puede minimizar reduciendo los valores de ruptura de temperatura, corriente y tensión, ya que los problemas térmicos, así como las corrientes y voltajes de ruptura que afectan al amplificador de potencia no afectan al amplificador de bajo ruido, al ser de menor potencia. Por tanto la minimización de la figura de ruido maximiza la ganancia.

Mezcladores

El mezclador convierte la señal de entrada con una frecuencia en una señal de salida con frecuencia distinta que permita el filtrado, el desfasaje y otras operaciones de procesamiento de datos en los circuitos. Idealmente, esta operación no afectaría a la amplitud de la seña ni introduciría ruido.

La conversión de frecuencia se consigue con dispositivos con características no lineales de corriente y tensión. En un principio, estos mezcladores eran creados usando diodos, pero actualmente se emplean MESFETs, HEMTs, y PHEMTs.

En el caso de los mezcladores con diodos, si dos señales de tensión, llamadas LO y RF, se colocan en los terminales del diodo, se obtendrá una frecuencia igual a la diferencia de las de cada señal llamada frecuencia inmediata (IF).

Para mejorar la actuación del sistema, es necesario eliminar el ruido y los armónicos, que crean distorsiones, de las señales RF y LO. Los circuitos más complejos permiten cancelar las componentes de frecuencia no deseadas y ayudan a eliminar el ruido variando la amplitud de la señal LO. Como inconveniente, se requiere mayor potencia LO, que es difícil de obtener a altas frecuencias.

Osciladores

Para minimizar el ruido de fase, se requiere resonantes de alta-Q que fijen la frecuencia de oscilación aportando un coeficiente de reflexión mayor que en un ancho de banda muy estrecho y se requiere transistores con bajo ruido 1/f. En los MMICs el desarrollo de los resonadores de alta-Q es el más difícil de obtener de los elementos desde la película estrecha en sustratos finos de GaAs teniendo una alta pérdida de conducción. Los HBTs tienen un bajo ruido 1/f y son usados frecuentemente como osciladores. Los cambios de temperatura pueden producir cambios en las características del transistor y causar cambios en la frecuencia de oscilación o incluso detener la oscilación. La compensación de temperaturas se puede realizar a través de diodos varactores o de elementos controlables con sensores y circuitos de control.

Desplazadores de fase (Phase Shifter)

Los desplazadores de fase son usados para comunicar un cambio repetible y controlable de fase en la señal de microondas sin que tenga repercusión en la amplitud de la señal. Además se suelen usar con arrays de antenas en fase, donde se usan para controlar la forma y la dirección del haz, también se usan en sistemas de comunicación, en sistemas radar y en instrumentación de microondas. Se suelen usar dos métodos para el cambio de fase en MMICs. El primer método conmuta la señal entre una longitud corta y una larga de la línea de transmisión para mejorar el desplazamiento de fase de β·l donde β es la constante de propagación de la línea de transmisión y l es el diferencial de longitud de la línea de transmisión. A este tipo de desplazador de fase se le llama switched-line phaser shifter. El segundo método cambia la reactancia de las líneas de transmisión, por lo que los cambios en la propagación son constantes a lo largo de la línea. La implementación de MMIC desplazador de fase es caracterizada como tipo de reflexión o como tipo de transmisión. Hay tres implementaciones que se usan comúnmente: pareado híbrido, línea cargada y línea conmutada.

Encapsulado

El encapsulado sirve para integrar el conjunto de componentes que componen el MMIC de forma que se reduzca al mínimo el tamaño, el coste, la masa y la complejidad; se proporcione interfaces eléctricos y térmicos entre el MMIC y el exterior y se asegure la fiabilidad de los componentes individuales y la del MMIC en conjunto. En resumen, las funciones del encapsulado son proporcionar soporte físico, proporcionar protección mecánica (arañazos, aceleraciones bruscas, etc.), proporcionar protección del ambiente (partículas, radiación, humedad, etc.), proporcionar distribución de energía y de la señal y estabilizar térmicamente el conjunto.

Los encapsulados se pueden dividir en los siguientes grupos básicos.

Encapsulado flip-chip

El análisis de elementos finitos y los estudios experimentales han demostrado que los chips de gran longitud y pequeña altura tienden a fallar más rápidamente que los menos largos y más altos. La fiabilidad de estos flip-chip está determinada por el coeficiente de expansión térmica (CTE) entre el chip y el sustrato cerámico o el circuito orgánico. La diferencia induce tensiones mecánicas y térmicas muy grandes, especialmente en las juntas, donde la distancia es la mayor desde la distancia del punto neutral (DNP) del chip. Esta tensión provoca la aparición de fisuras en las juntas, incrementando la resistencia de contacto, inhibiendo el flujo de corriente y llevando al fallo eléctrico del chip. Por tanto, la desventaja de elegir una altura mayor consiste en introducir una inductancia en serie que degrada la actuación en alta frecuencia e incrementa la resistencia térmica desde el MMIC hasta el portador.

Para mejorar la fiabilidad, se aplica el encapsulado cerca del chip y se conduce por acción capilar en el espacio entre el chip y su portador.

Para compensar la tensión producida, es necesario que haya una buena adherencia entre el material de relleno, el portador y la superficie del chip. Para evitar pérdida de adherencia, se requiere un proceso de ensamblado flip-chip sin flujos. Esto es posible con portadores cerámicos con oro, plata y películas gruesas de paladio-plata y a través de metalización.

Es deseable que no haya bolsas de aire ni vacío, especialmente estos últimos al producir una tensión aun mayor. Por ello, tras el ensamblaje se realiza una revisión acústica microscópica para localizar estos vacíos. El encapsulado también debe ser revisado para buscar microfisuras o fallos de la superficie, que tienen a propagarse en los ciclos térmicos, llevando al mal funcionamiento del chip.

Encapsulado de multichip módulo-dieléctrico

Los polímeros y los polímidos son los materiales más usados al crear encapsulado de multichip módulo-dieléctrico (MCM-D). Estos materiales absorben humedad en distinto grado. Los materiales con la menor absorción de humedad contienen un 0,5% de agua, mientras que otros tienen hasta un 4%. Las pruebas de longevidad en estructuras troqueladas con aluminio con varios polímeros mostraron fallos en la interacción entre el aluminio y el agua. Para polímidos, la vida media de la estructura de Al se sitúa entre 385 y 6950 horas, a 121 °C y 99,6% de humedad relativa y a 85 °C y 85% de humedad relativa respectivamente. La pasivación incrementa esta vida útil y no es dañada por el uso de cubierta hecha de polímero. Por tanto, la pasivación en el troquelado reduce los fallos por humedad y las cubiertas de polímero no son sustitutos para el encapsulado hermético.

El uso de polímero en el sustrato provoca en la interfaz una serie de tensiones debidas a diferencias de CTE entre los materiales, superando incluso la temperatura ambiente, llegando hasta los 300 °C de temperatura de proceso. La optimización del proceso puede minimizar este efecto negativo. Como las dificultades están relacionadas tanto con la diferencia de CTE como con el grosor del polímero o polímido usado, se recomienda que la base cerámica sea 20 veces más gruesa (en semiconductores es mayor).

El sistema de metal usado en MCM-D debe ser optimizado. Normalmente se usa cobre (Cu) en todas las líneas DC y RF debido a su bajo coste y alta conductividad eléctrica. Pero el cobre se difunde rápidamente en el polímido. Este proceso depende de la temperatura y a temperaturas de menos de 185 °C se da esto para el cobre. A mayor temperatura, se observará que la anchura de la línea se reduce aún más. El peor caso se da si la línea de Cu está justo encima de la superficie del polímero. También hay que destacar la falta de adhesión del cobre al polímero. Para minimizar estos problemas se utiliza Cr, Au o Ti como barrera de difusión entre el cobre y el polímido, aunque en el caso del cromo las propiedades mecánicas son bastante peores.

Los huecos-vía sirven para realizar una mayor cantidad de conexiones entre niveles. Estos huecos pueden hacerse con láser o ataques con ácido en ambientes húmedos o secos.

En muchos procesos de fabricación se observa que los polímeros se conectan sobre los MMICs y otros chips que han de interconectarse. Aunque sean finos, estos polímeros afectan a la actuación en microondas del MMIC, ya que aumentará la capacitancia de línea, reduciendo la longitud de onda guiada.

Encapsulado plástico

Durante el proceso de soldado a altas temperaturas se observó que la humedad presente en un encapsulado plástico puede evaporarse rápidamente y crear presión en el encapsulado, provocando fisuras. Estos efectos son más pronunciados si el encapsulado es mayor que el 0,23% de la humedad absorbida antes de la soldadura. La diferencia de CTE en los componentes del encapsulado también provoca tensión, combinándose con la presión anterior y aumentando el tamaño y número de fisuras.

Las siguientes recomendaciones permitirán un daño mínimo por humedad:

(1) Completar el ensamblaje a la palca una semana después de retirar los componentes de sus envoltorios secos, siempre que las condiciones ambientales no superen los 30 °C ni el 60% de humedad relativa.

(2) Una semana después, proceder a la cocción (12 horas a 115 °C) que gradualmente eliminará la humedad.

Encapsulado de resonancia y escape de campo

La actuación del encapsulado MMIC empeora por acción de resonancias de anillo (que se da cuando los campos electromagnéticos se acoplan a la cerámica del encapsulado) y de cavidad (que se dan cuando el volumen encerrado por el encapsulado se comporta como una cavidad metálica). Estas resonancias se observan como picos largos en la comparación de pérdidas de inserción y frecuencia en el marco del encapsulado.

Las resonancias de anillo pueden eliminarse fabricando el marco a partir de un metal. Ya que muchos diseños de marcos metálicos son difíciles de fabricar, se utilizan soluciones de menor coste, como fabricar a partir de un material cerámico (alúmina). Se colocan varias láminas finas de cerámica verde para formar un marco que es posteriormente metalizado y añadido a la base metálica. Además de ser más barato, este método asegurar que el marco quede unido a la base metálica, reduciendo el acoplamiento.

Las resonancias de cavidad se predicen a partir de un modelo donde se consideran la longitud, anchura y altura de la cavidad (L, W y H respectivamente). La plancha de dieléctrico es de grosor d y permitividad relativa Er. La cavidad está excitada por una línea microscópica de entrada y salida.

Fiabilidad

La fiabilidad se define como la probabilidad de que un elemento realice una función requerida bajo unas determinadas condiciones y durante un determinado período. La fiabilidad la podemos expresar como una distribución de probabilidad. Hay muchos factores que influyen en la fiabilidad de un producto, como pueden ser el diseño, la producción, aplicaciones eventuales, la aparición del factor humano en pasos de la cadena de producción…

Incidentes

La definición de un incidente es una parte importante a la hora de estudiar la fiabilidad en sistemas semiconductores, los clasificamos en 2 grupos:

  • incidentes por degradación, donde alguna propiedad de algún componente se encuentra muy lejos del valor que debería tener para su buen funcionamiento.
  • incidentes catastróficos:fin del ciclo de vida de algún componente o completa destrucción del mismo.

Incidentes Físicos

Los elementos que nos limitan en este sentido suelen ser los elementos activos (como los FET). Uno de los factores limitantes en fiabilidad suele ser la resistencia óhmica de los contactos de los FET, pero el factor más importante es el relacionado con el canal del FET. Otro de los factores limitantes en los dispositivos GaAs suele ser la migración metálica (movimiento del metal en el conductor causado por el flujo de corriente) el efecto del scattering metálico empuja los átomos en dirección del flujo. Así el metal puede ser eliminado de una zona y acumulado en otra, esto produce en la zona de acumulación que se reduzca la sección del área del conductor, lo que aumenta la densidad de corriente pudiendo llegar a quemar el dispositivo. Esta es la principal razón para la limitación de corriente en dispositivos MMIC. Aparte de estos factores, pueden darse otros si no préstamos la suficiente atención a la hora de la fabricación de los dispositivos MMIC. Tomando las suficientes precauciones el tiempo de vida de un dispositivo MMIC suele rondar las 1000000 horas a temperaturas de operación normales.

Incidentes por Radiación

La habilidad de los sistemas GaAs para soportar radiaciones es muy importante tanto en sistemas militares como espaciales. Los objetos en la órbita terrestre están sometidos a radiaciones. La dosis acumulada a lo largo del tiempo es bastante considerable, pero el blindaje de los dispositivos espaciales debe ser el mínimo por consideraciones obvias de peso y costes. Muchas aplicaciones militares han de soportar grandes dosis de radiación causada por explosiones nucleares. Los dispositivos GaAs generalmente soportan mucho mejor las radiaciones que los basados en silicio.

Fiabilidad de los sistemas GaAs

Para el estudio de la fiabilidad se exponen los sistemas a altas temperaturas, acelerando así el proceso de observación de incidentes, es una técnica conocida como testeo acelerado que usa la ecuación de Arrhenius, y es muy usada en la industria semiconductora. Para un buen testeo acelerado, es necesario conocer la temperatura del dispositivo. Los dispositivos MMIC con elementos activos como los FET generalmente tienen áreas más calientes que otras. Las resistencias pueden ser también puntos significativamente más calientes que las porciones colindantes en el chip. Los cambios físicos y químicos que producen los incidentes suelen producirse en estos puntos calientes. Por eso es necesario monitorizar estas zonas, comprobando su temperatura. El GaAs es relativamente un mal conductor térmico, su conducción térmica es aproximadamente 1/3 de la del Si. Por otra parte las partes activas de los dispositivos GaAs como los canales de los FET son también muy pequeñas. Estos dos factores significan que las áreas activas de los dispositivos GaAs están mucho más calientes que las áreas que las rodean, y que esta temperatura es superior a la temperatura ambiente. La conductividad térmica del GaAs decrece según se incrementa la temperatura. Esto significa que según la temperatura ambiente es aumenta, las diferencias de temperatura entre las áreas dentro del chip son mayores también. La temperatura en los dispositivos activos dentro del chip está caracterizada por la resistencia térmica. La resistencia térmica se define como la diferencia en temperatura entre el punto más caliente y algún punto de referencia (que generalmente es la temperatura ambiente) dividida por la potencia disipada por el dispositivo, y se mide en °C/W. Nótese que la resistencia térmica variará con el tamaño de dispositivo. Dado que la mayoría de las incidencias tienen lugar en el canal de los FET, la mayoría de los test están referenciados a la temperatura del canal.

Fallos que afectan a los dispositivos MMIC

La mayoría de los fallos que pueden afectar a los dispositivos se catalogan en dos categorías: catastróficos y no catastróficos. Estos fallos afectan de igual manera a la fiabilidad y al rendimiento.

Efectos generales en los MMIC

Estos fallos vienen dados por la degradación en los parámetros característicos de los dispositivos. Su gravedad será determinada por el diseño y la función que desarrolla el MMIC afectado, además de la gravedad de la degradación.

 

Fuentes de error en los MMIC

 
Responsabilidades generales de fallos mecánicos por categorías.

Los fallos en los mecanismos con semiconductores se dividen en cuatro categorías generales:

  • Inducción-Interacción-Materiales de los Mecanismos
  • Estrés inducido en los Mecanismos
  • Fallos inducidos Mecánicamente
  • Fallos inducidos por el Medio Ambiente

La primera categoría la podemos subdividir en dos subcategorías:

  • Desfallecimiento de los materiales semiconductores y las interacciones metálicas.
  • Desfallecimiento del encapsulado e interconexiones.

Los fallos por estrés debidos a un pobre diseño o dispositivos descuidados. La mayoría de los fallos en MMIC son derivados de la sucesión de varios incidentes de las categorías anteriores.

Fallos de Materiales-Inducidos-Interacciones

Los procesos que involucran interfaces de metales semiconductores y que no están diseñados o/y aplicados adecuadamente pueden producir una degradación del dispositivo hasta el fallo del mismo.

  • Hundimiento de Puerta: Se produce cuando los materiales o el proceso de creación de la capa barrera son de mala manufacturación. Permitiendo una rápida difusión dentro de la capa barrera. Este mecanismo es observado después de la exposición a una prueba de aceleración de la vida o el funcionamiento a temperaturas elevadas, el factor impulsor de este mecanismo es la difusión térmica acelerada de Au en GaAs. La estructura de la puerta de metalización consta de tres capas. El primer contacto con la capa de GaAs es una fina capa de Ti utilizados principalmente para la adhesión. La segunda capa es Pd o Pt. Esta capa se utiliza como una barrera Au a la difusión en GaAs. La última capa es espesa Au utilizada para la conducción. La tasa de Au en la difusión de la puerta de metal de GaAs es una función de la difusividad del material de la puerta de metal, la temperatura, y el gradiente de concentración de materiales.
  • Degradación del contacto óhmico: En este caso la degradación de los materiales de la capa barrera produce una variación en la resistencia de contacto. Produciendo variaciones entre 0,5 eV y 1,8 eV. La comprensión general de contactos óhmicos atribuye la degradación a lo siguiente:
 1. Difusión Ga en la capa de Au, lo que crea una región defecto-rica de alta resistividad debajo del contacto. 2. Difusión de Au y Ni en el GaAs, lo que puede causar una reducción en la concentración contra el dopaje en el canal activo del dispositivo . 3. La formación de fases intermetálicas tales como AuGa y Ni2AsGe como resultado del proceso de aleación. 
  • Degradación del Canal: Se atribuye a cambios en la calidad y la pureza de la zona de canales activos y una reducción en la concentración por debajo de la puerta Schottky. Estos cambios han sido postulados para ser el resultado de la difusión de dopante del canal o la difusión de la impurezas o defectos del substrato del canal.
  • Efectos de Estado de Superficie: El rendimiento depende de la limpieza de la superficie de los materiales y procedimientos, del método y las condiciones de deposición, además de la composición de la capa de pasivación. Si estas condiciones no alcanzan los niveles óptimos se produce un aumento de la densidad de superficie de estado reduciendo el efecto eléctrico de la región drenador.

Fallos por estrés inducido

Todo dispositivo en funcionamiento está sujeto a unas ciertas condiciones de estrés. Si estas condiciones son elevadas o inadecuadas para su diseño y funcionamiento pueden conllevar a fallos catastróficos.

  • Electromigración: Es el movimiento de los átomos de metal a lo largo de una tira metalizada debido al impulso producido por el intercambio de electrones. Esto dependerá de la temperatura y el número de electrones que participen en el proceso. Este movimiento puede provocar la acumulación de material y la formación de vacíos perpendiculares en la fuente y oteros en la zona del drenador, provocando cortocircuitos o fallos catastróficos.
  • Agotamiento: Es el aumento localizado de la disipación de energía. Hay dos tipos de agotamiento:

Instantáneo: Causado por eventos súbitos tales como las descargas electrostáticas (ESD), eléctricas overstress (EOS) y los picos RF. Están relacionados con la robustez del diseño y los materiales.

A largo plazo: Debido a la degradación de los parámetros a largo plazo por el envejecimiento de los materiales. Uno de los factores que pueden contribuir a esta condición de los efectos superficiales, como la oxidación reducción de GaAs y el recocido de los estados de superficie, puede causar un aumento de la corriente de fuga y reducir el desglose de tensión.

  • Captura de Electrones Sobreexcitados: Cuando se trabaja en busca de la máxima potencia o rendimiento se puede producir una sobreexcitación de los electrones. La captura de estos electrones sobreexcitados conlleva una variación y degradación del umbral de tensión. Con capacidades de modelado de dispositivo y la utilización de nuevas técnicas de medición, es posible optimizar sin muchas iteraciones. Mejora de la Si3N4 como una superficie de pasivación es otro claro enfoque para limitar el efecto descrito. Sin embargo, la pasivación perfecta de la superficie GaAs todavía no se ha encontrado. Otros enfoques, tales como limitar la tensión de funcionamiento e incluir en la región de drenador dopajes bajos son comunes en un MOSFET.
  • Estrés eléctrico: Es debido a un funcionamiento o utilización inadecuada del dispositivo, llevando a una degradación acelerada que desemboca en errores catastróficos. También puede ser por una inadecuada protección del dispositivo ante descargas electrostáticas (ESD). La alta densidad de corriente causada por la ESD puede provocar calentamiento localizado en la interfaz principal metal-semiconductor a la difusión Ga en la metalización y difusión Au en GaAs. Los elementos pasivos MMIC, tales como condensadores, resistencias, e interconexiones metálicas, también pueden exponer los efectos perjudiciales de la ESD.

Fallos Inducidos Mecánicamente

  • Fractura del troquelado: La diferencia de coeficientes termales de expansión (CTE), el portador o el sustrato en el encapsulado puede producir fracturas en el troquelado durante el ciclo de temperatura. Las grietas de superficie también pueden derivarse de una inadecuada operación de corte, o de una inadecuada técnica de montaje. Las grietas y fracturas cerca de una región activa del dispositivo pueden dan lugar a cambios del umbral de voltaje y el rendimiento general del dispositivo de degradación. Un aumento en la corriente de fuga en ese lugar puede resultar en una condición térmica y, en última instancia, fallo catastrófico de los dispositivos.
  • Huecos en el troquelado: La presencia de huecos en las bornas del troquelado pueden inducir alta potencia longitudinal en su ciclo de temperatura. La propagación de estos huecos puede desembocar en la determinación e interrupción de la vía térmica. Rara vez se observa el troquelado del encapsulado o substrato debido a propagación en el vacío. Aunque los huecos pueden formar a partir de una serie de fuentes, el control de procesos puede limitar los efectos a un nivel aceptable. El encapsulado o construcción del substrato, las propiedades físicas, la limpieza y métodos de aplicación, y la nula concentración y la ubicación determinan el efecto de los huecos en el dispositivo.

Fallos inducidos por el medio ambiente

Todos los dispositivos dependen de las condiciones medioambientales en las que trabajan. Esto afectará a su estabilidad y rendimiento. Algunos ejemplos son:

  • Humedad: Acelera la aparición de fallos mecánicos y se da en los dispositivos empaquetados de GaAs no herméticos con envases cerrados o de plástico. La corrosión anódica de oro es el principal culpable de los fallos en el dispositivo de GaAs en ambientes con humedad alta, al detectarse hidróxido de oro. En estas condiciones, también se han observado la disolución de As y el crecimiento de filamentos Ni a lo largo de la dirección del campo eléctrico de contactos óhmicos adyacentes a la puerta.
  • Efectos del hidrógeno: Produce degradaciones de IDDS, VP, gm y POUT. Se da en recipientes encapsulados herméticamente en condiciones de hidrógeno. Se cree que el hidrógeno atómico se difunde en los canales de GaAs y formas Si-H, neutralizando los donantes, lo que puede reducir la concentración de portadores en el canal, que, a su vez, puede disminuir la fuga de corriente, transconductancia y la ganancia del dispositivo. Algunas de las posibles soluciones incluyen tratamiento térmico de los materiales de empaquetado para reducir la cantidad de hidrógeno a partir del empaquetado hermético, y el uso de barreras materiales que no contengan las estructuras Pt / Ti o Pd / Ti. Estas soluciones tienen limitaciones y los posibles problemas de inestabilidad que deben ser plenamente corregidos antes de su aplicación en entornos de alta fiabilidad.
  • Contaminación iónica: Puede producir cambios en la concentración umbral y esto en cambios de voltaje. La contaminación iónica puede ocurrir durante el proceso, el empaquetamiento, la interconexión y el funcionamiento en un lugar desprotegido. La preparación de la superficie y la limpieza, la caracterización y control de materiales y entornos, y la protección (pasivación) de la zona activa de los dispositivos puede reducir o eliminar algunos fallos relacionados de la contaminación iónica. El horneado y la exposición a altas temperaturas durante la combustión en dichas medidas han resultado ser eficaces como métodos de detección de problemas de contaminación iónica.

Metodología de diseño y verificación de MMIC

Este capítulo describe los aspectos generales del diseño de un MMIC.

Documentación

En general, la documentación disponible debería proveer al cliente interesado de una descripción de los instrumentos de CAD, los pasos de proceso, y métodos de evaluación usados en el proceso de creación. Una documentación típica puede incluir:

  • Las capacidades de procesamiento de un conductor
  • Diseño, normativa a seguir y herramientas para el layout
  • Librerías disponibles
  • Herramientas de simulación disponibles
  • Dispositivos disponibles y modelos de los diferentes elementos del circuito
  • Diagrama de flujo
  • Verificación y revisión
  • Métodos de evaluación.

Simulación del MMIC

La simulación del circuito es un paso esencial en el diseño y fabricación de MMICs con propósito de producción. Una simulación puede dar una primera aproximación del circuito funcional realizado bajo unas condiciones de entrada y salida. Actualmente la mayoría de los simuladores incluyen herramientas de optimización que reducen en gran medida el tiempo de diseño e incrementa la probabilidad de éxito. Además la mejora de procesamiento de los ordenadores los recientes avances en desarrollo software y nuevas técnicas software han dado lugar a herramientas de diseño interactivas muy avanzadas.

El desarrollo de un software comercial que integra los diferentes estados de desarrollo de un MMIC como el esquema, capturas de datos, simulación layout, han sido el resultado de los recientes avances tecnológicos de MMIC CAD motivados por las necesidades del mercado. Algunas herramientas de simulación:

  • Compact Software’s Microwave Harmonica (r) es bastante utilizado para el diseño de MMICs de GaAs. Sirve en simulaciones de circuitos de microondas tanto lineales como no lineales, simulándolos con modelos de elementos distribuidos. Los circuitos no lineales se simulan usando técnicas de equilibrado armónico en la interfaz entre las partes lineal y no lineal del circuito. Este simulador también ofrece optimización, análisis estadístico y síntesis de tensión, además de análisis y optimización de oscilador y ruido de fase.
  • The Compact Software Microwave Explorer (r) es una herramienta de análisis electromagnético en 3-D empleada para simular estructuras pasivas planares en medios abiertos y encapsulados. Se introducen los circuitos con un editor de polígonos integrados. Este paquete incluye una interfaz de gráficos para la visualización de cartas de Smith, gráficas rectangulares y de distribución de corriente.
  • The Compact Microwave Success (r) es un simulador de bloques que permite examinar información como parámetros S y parámetros de ruido en componentes de radiofrecuencia y microondas. Este programa permite trabajar con mezcladores, filtros, antenas y amplificadores. El paquete también generará los datos en diversos formatos estándar, ofrecer análisis de temperatura, frecuencia, potencia y otras variables definidas por el usuario.
  • HP EEsof’s Libra (r) es otra herramienta de diseño y simulación empleada en MMICs de GaAs lineales y no lineales. Realiza simulaciones en el domino de la frecuencia usando modelos de elementos utilizados en circuitos de microondas. Los circuitos no lineales se simulan con técnicas de equilibrado de armónicos. Libra Design Suite (r) es una herramienta de simulación y trazado desarrollado para el diseño de RF y microondas.
  • Series IV Project Design Environment (r) es un medio de diseño gráfico. Permite el diseño, simulación, trazado y documentación de sistemas y circuitos de alta frecuencia. Este paquete contiene capacidad de captura de esquemas, simulación en alta frecuencia, simulación electromagnética, simulación de sistemas, trazado de circuitos y una recopilación de bibliotecas de diseño y varias herramientas y enlaces de terceros.
  • Microwave Design System (r), de HP/EEsof, se basa en UNIX y sirve para el diseño de circuitos y sistemas de alta frecuencia. Permite simulación lineal y no lineal, análisis de sensibilidad, además de captura de diseño y trazado de circuitos.
  • Mathematica (r) es un software interactivo para la resolución de problemas matemáticos complejos que permite desarrollar modelos matemáticos de sistemas y componentes de microondas.
  • Microwave Spice (r) es un simulador en dominio del tiempo parecido al Berkeley Spice (r). Incluye muchos efectos y componentes de microondas, útiles en el diseño de MMICs, sobre todo en el diseño de osciladores de microondas.

Existen muchos más en el mercado dependiendo de las necesidades de diseño que requiera el MMIC. Así, las herramientas de simulación electromagnética pueden emplearse junto a simuladores en domino del tiempo o de la frecuencia o como simuladores de EM independientes, como Ansoft Maxwell Eminence (r), un simulador en 3-D. Otro ejemplo es Sonnet (r), capaz de aceptar entradas en los formatos de GDSII, HP/EEsof, Cadence, y AutoCAD. Las salidas obtenidas son parámetros S, distribuciones de corrientes y patrones de radiación.

Metodología típica del diseño

En el mercado competitivo, la reducción de coste en todas las etapas de diseño, fabricación, y de evaluación tienen suma importancia. El empleo de simulación de CAD y herramientas de diseño juega un papel principal en el éxito y producción de un diseño de MMIC

El diseño de un MMIC implica dos etapas críticas: la especificación de funcionamiento, el diseño del circuito y la simulación. Otras funciones como la fabricación y el testeo también deben considerase durante las etapas de diseño hasta llegar a un producto manufacturable con la alta prestación y el funcionamiento deseado.

Etapas:

  • Requerimientos del cliente.
  • Estudio de las diferentes tecnologías para el proceso de diseño
  • Disponibilidad de elementos para el diseño.
  • Coste y compensación de funcionamiento.

Modelado de dispositivos

Es sumamente importante completar el modelado de dispositivo MMIC y la simulación antes de la fabricación porque la tecnología y el diseño iterativo son caros y la tecnología a menudo no permite a la sintonía de post-fabricación. Por lo tanto, la exactitud del modelado es una parte esencial para tener éxito en el diseño. El modelado de dispositivo es útil no solo en el diseño, sino también en el control de producción, y el análisis de la productividad y rendimiento.

Para el estudio de este apartado veremos: los diferentes tipos de modelos, circuitos equivalentes, el enfoque al modelado, el software de modelado disponible en el comercio, o la sensibilidad de los modelos.

Aunque el contenido acentúe MESFETS, la metodología usada puede ser aplicada a otros dispositivos MMIC, como HEMTS, HBTs, y diodos.

Tipos de modelos

Un modelo de dispositivo puede estar compuesto por un conjunto de circuitos elementales equivalentes con una topología de circuito particular, o por un conjunto de ecuaciones que, siendo evaluadas, predicen el funcionamiento de dispositivo. Un proceso de modelado generalmente incluye tres pasos: caracterización, extracción de parámetros y modelado.

Tres procesos están estrechamente relacionados en un número de importante caminos. La exactitud de cualquier modelado de dispositivo, en última instancia, es limitada por la precisión con que sus parámetros son determinados. La extracción de parámetro es dependiente del tipo y de la exactitud de datos de caracterización del dispositivo disponibles. Las ventajas del modelado de dispositivo son parcialmente determinadas por el tipo de caracterización requerida. Por lo general, el modelado de dispositivo MMIC puede ser clasificado en tres categorías: Modelos de Dispositivo Empíricos (EDMs), Modelos Físicos (PBMs), y modelos basados en datos.

Los EDMs usan circuitos equivalentes para simular el comportamiento externo de los dispositivos. Este modelo consiste en un número de elementos lineales y no lineales conectados mediante una topología predefinida. Varios EDMS, incluyendo los de pequeña señal y los de gran señal, han sido extensamente usado en la ingeniería MMIC automatizada. Las ventajas de EDMS son su sencilla caracterización, su implementación, y la simulación de circuito.

Para obtener sus predicciones de funcionamiento, los PBMs estudian los parámetros físicos que describen la geometría del dispositivo, los materiales, y los parámetros de proceso. Estos parámetros normalmente incluyen la longitud de puerta, la anchura de puerta, grosor del canal, y la densidad de dopaje. Los PBMs tienen una ventaja sobre los EDMS, y es que permiten estudiar los efectos de la variación del proceso durante el funcionamiento del dispositivo; tales efectos son críticos para la predicción de producción y para el proceso de control. Sin embargo, es difícil, y en algunos casos incluso imposibles, obtener los parámetros exactos físicos requeridos para describir el dispositivo.

Recientemente, modelos basados en datos (también conocidos como basados en la medida) se han hecho populares entre los diseñadores de dispositivo. Los Modelos basados en datos están directamente creados a partir de los datos medidos independientemente de los parámetros de proceso. Un modelo basado en datos puede predecir el comportamiento que se producirá en un nuevo proceso, que mediante funciones empíricas podría ser difícil de representar. Sin embargo, su carencia “idea física” en el dispositivo real estudiado es una desventaja.

Circuitos Equivalentes

El circuito equivalente de un dispositivo MMIC es una abstracción y la simplificación que cede una representación del dispositivo. Esta debe representar adecuadamente todas las características físicas importantes del dispositivo. Explotar las relaciones entre los elementos de los circuitos equivalentes y los físicos del dispositivo será importante para el modelado del dispositivo.

Software de modelado

El Modeling software MMIC incluye el modelado de dispositivo y el modelado de proceso. Ya que hay un número grande de dispositivos de modeling software disponibles, es necesario examinar la compatibilidad del software usado por clientes y la fundición, y entre el usado para el modelado y la simulación.

Metodologías de cualificación

En este apartado se perfila el procedimiento recomendado para el diseño, la fabricación, y la aceptación de espacio calificado como MMICS. No se presentan datos específicos para la fiabilidad, sino las preguntas que un usuario MMIC debería pedir del fabricante para asegurar un nivel razonable de la fiabilidad, y al mismo tiempo esto trata de presentar al fabricante MMIC las metodologías que han sido aceptadas y practicadas por algunos miembros de la industria en la esperanza que un procedimiento de cualificación estándar puede desarrollarse. Además, los detalles de esta metodología de cualificación dependen del tipo de circuito siendo fabricado y los dispositivos incorporados en el circuito.

Certificación de la compañía

La obtención de MMICS es a menudo resultado de una sociedad a largo plazo entre el cliente y el fabricante para la obtención del mismo ambas partes añaden conocimiento y experiencia al proceso para asegurar que la fiabilidad sea la requerida y se obtenga la satisfacción de los datos específicos de funcionamiento requeridos. La relación se desarrolla después de que la confianza mutua es establecida. Si las partes nunca han trabajado juntas, el usuario MMIC todavía puede ganar la confianza necesaria en el fabricante si el fabricante puede demostrar que tiene la documentación, procedimientos, y las prácticas de dirección que controlan las instalaciones, el equipo, diseñan procesos, procesos de fabricación, y el personal. Estos artículos son típicamente la parte de un Programa de Dirección de Calidad total y perfilados en un Plan de Dirección de Calidad. Explicando algunos de los apartados más importantes de la certificación tenemos:

  • Comité examinador de tecnología

Para asegurar la calidad y la fiabilidad de MMICS, los fabricantes deberán tener un comité permanente o se alojarán en el lugar dotados del conocimiento del proceso de fabricación entero del MMIC y la autoridad para cambiar el proceso si la calidad de las partes no se mantiene. Comúnmente se llama a este Consejo Comité examinador de Tecnología.

  • Control de la manufactura

La fabricación MMIC es un proceso muy complicado que implica muchos materiales y pasos, lo que resulta crítico cara al funcionamiento del MMIC y su fiabilidad. Solo se puede esperar que una línea de producción correctamente controlada y de forma rutinaria produzca la calidad esperada para los MMIC. Así, al cliente se le debería asegurar que el fabricante solamente utiliza procesos certificados y tecnologías cualificadas en cada intervenir la fabricación del MMIC del ordenamiento de materiales al embarque (transporte) del MMIC.

  • Entrenamiento

Incluso estando bien mantenido y calibrado el equipo, no puede producir la calidad MMICs sin operadores expertos. Para asegurar las habilidades del personal empleado en el diseño, la fabricación, y las pruebas del MMICS, cada ingeniero, el científico, y el técnico deberían tener la educación (el entrenamiento) formal en relación con sus tareas. Deberían proporcionar además el mantenimiento, probando de nuevo y reciclando con regularidad para mantener la habilidad del trabajador, sobre todo si el nuevo equipo o procedimientos son presentados en el proceso de la fabricación.

  • Acción del plan correctivo

Una de las mejores maneras de mejorar la fiabilidad de los productos manufacturados por partes, es poner a prueba y analizar las partes incluida la no-retorno de todas las etapas de fabricación, y, basándose en las conclusiones, que las medidas correctoras a la industria proceso o la educación de los usuarios MMIC. El plan que describen estas acciones correctivas está documentado normalmente.

El plan de acción correctiva debe describir los pasos seguidos por el fabricante para corregir cualquier proceso que está fuera de control o que sea defectuoso, y el mecanismo y los plazos que el fabricante seguirá para notificar a los clientes posibles problemas de fiabilidad.

Proceso de cualificación

Verificación del diseño

  • Diseño, modelo y simulación

Una de las mejores maneras de reducir la ingeniería de costos de MMIC y la mejora para verificar la fiabilidad, es el diseño, modelo y simulación, para la disposición de las MMIC lo que comienza antes de la fabricación. Durante el ciclo de diseño, estas verificaciones se abordan normalmente a través de una serie de comentarios de diseño que incluyen representantes de todas las empresas que participan con el fabricante y con el futuro uso de la MMIC. Además, los representantes deben proceder de todos los departamentos MMIC que participan en la integración, incluida la de los diseñadores, personal de la fabricación, el personal de la metrología de RF, los ingenieros, diseñadores… Normalmente, los exámenes se realizan antes de que se envíe a los circuitos de diseño y maquetación, pero antes de la fabricación de máscaras, y después de esto se realiza la caracterización final MMIC.

Cualificación del producto

Un consumidor espera que el fabricante verifique que sus productos son correctamente diseñados.El consumidor también podría esperar que el fabricante especificase las condiciones medio ambientales para el cual el producto ha sido diseñado. El fabricante podrá asegurar su funcionamiento en estos entornos solo si ha verificado el producto después de la fabricación.

Para MMICs el proceso de obtener todos estos datos se llama cualificación del producto o validación del diseño, y cada diseño MMIC debe pasar la cualificación del producto antes de que se ponga a la venta.

El primer paso en la verificación del diseño tiene lugar antes de la generación de la máscara e incluye el diseño, la simulación y la verificación de la disposición de los circuitos. El resto de la verificación del diseño incluye la caracterización eléctrica completa del circuito para establecer su funcionamiento, análisis de las condiciones ambientales y la caracterización electrostática de la descarga. Posteriormente verifica los resultados de la prueba de voltaje y de temperatura. Aunque la secuencia de las pruebas puede ser alterada, se recomienda que la verificación del diseño y de la disposición circuital se realicen primero. A continuación, se debe seguir por la verificación eléctrica. Esto es solo una recomendación y no todas las pruebas se pueden aplicar a todos los diseños circuitales. Todos los participantes en el diseño MMIC, fabricación e integración del producto final deben estar implicados en la decisión de las pruebas requeridas.

Aceptación del producto

Aunque un MMIC puede ser diseñado por ingenieros altamente cualificados, ser fabricados en un proceso de línea de producción cualificado, a través de mediciones y verificado para satisfacer los objetivos de diseño, con piezas características, aun existen problemas de fiabilidad.

Esto puede ser debido a variaciones en el proceso de fabricación, o fallos que se detectan en el material, o, por lo que es el caso más a menudo, al paquete MMIC, por fallos impuestos al MMIC durante el embalaje. Independientemente de la causa, estas debilidades se deben encontrar y ser eliminadas antes de que se integren en el sistema.

Por lo tanto, todos los fabricantes de alta fiabilidad de sistemas, incluyendo sistemas espaciales, requieren la MMICs que superen aceptación por pantallas, cuyo único propósito es aumentar la confianza en la fiabilidad de la MMICs.

Hay que tener en cuenta que este paso en la metodología de calificación es la principal diferencia entre el espacio cualificado MMICs y de calidad comercial MMICs.

Pasos para la aceptación de un producto

-Estabilización

-Análisis SEM (Scanning Electrón Microscopy)

-Prueba del enlace

-Inspección visual

-Pantalla de choque y ciclo de temperatura

-Pantalla de choque mecánica

-Aceleración constante

-Detección de ruido

-Prueba de escape

Aplicaciones

Los MMIC se usan en sistemas comunicaciones para la banda de microondas, como la telefonía móvil o los sistemas de satélite, ya que estos requieren circuitos más pequeños y más baratos. También se utilizan cuando la reactancia parásita inherente a los circuitos integrados híbridos está degradando el funcionamiento del circuito, normalmente esto sucede en el alto espectro de las microondas y en el espectro de las ondas milimétricas.

Otros sistemas de telecomunicaciones en los que se utiliza tecnología MMIC son receptores y transmisores para comunicaciones, arrays de antenas en fase donde se requiere pequeño tamaño y funcionamiento de circuito uniforme, sensores y radares que trabajen en altas frecuencias.

Tecnología espacial y militar

Desde sus comienzos, se introdujeron los MMICs de GaAs en varias aplicaciones espaciales y militares (de hecho, su uso era exclusivo de ambos en estos comienzos), convirtiéndose en la tecnología elegida por la NASA y el Departamento de Defensa de Estados Unidos para sistemas de telecomunicación avanzados. El desarrollo de los MMICs ha proseguido hasta el fosfato de indio (InP), que permite una velocidad de cuatro a diez veces mayor que la anterior tecnología MMIC y requiere menos potencia, algo que tanto la NASA como el Departamento de Defensa están empezando a considerar.

Programa SETI (Búsqueda de Inteligencia Extraterrestre)

Los MMICs han mostrado ser de utilidad para la creación de componentes relacionados con el programa SETI. El MMIC normalmente solo necesita un par de condensadores emparejados y una resistencia para crear un amplificador de propósito general con impedancia de entrada y salida constantes, ganancia fija y una figura de ruido constante sobre un gran rango de frecuencias, además de ser muy baratos.

En los laboratorios de la Liga SETI se han estado usando MMICs tanto de silicio (Si) como de arseniuro de galio (GaAs) con amplificadores de ruido bajo, amplificadores activos, amplificadores de frecuencia inmediata (IF), cadenas locales de osciladores, pruebas de señales de origen y en otros dispositivos donde se requiera un bloque de ganancia estable y de banda ancha.

ACTS (Tecnología Avanzada de Comunicaciones por Satélite)

Los MMICs han demostrado ser útiles en terminales aeronáuticas y en terminales fijos o móviles terrestres relacionados con la Tecnología Avanzada de Comunicaciones por Satélite (ACTS) de la NASA. Se realizaron pruebas entre mayo de 1994 y mayo de 1995 con MMICs de GaAs transmitiendo a 30 GHz, desarrollado por el Centro de Investigación Lewis de la NASA y por Texas Instruments, y receptores de 20 GHz para ACTS por el Laboratorio Rome de la Fuerza Aérea, empleando tecnología de circuitos integrados proporcionada por la compañía Boeing y la corporación Lockheed Martin.

Las pruebas tenían especial interés tanto para el Gobierno como para aplicaciones comerciales y demostraron la posibilidad de establecer una comunicación dúplex de voz, por ejemplo, con una terminal aeronáutica o con un vehículo de propósito múltiple de gran movilidad (HMMWV).

El éxito de estas pruebas, basado en cooperación entre Gobierno e industria y al trabajo en equipo dentro de Lewis, supuso un incentivo para continuar la investigación y desarrollo de la tecnología de comunicación por satélite basada en MMIC, centrándose en los problemas de empaquetamiento y costes.

Uso comercial

Siguiendo una visión de "uso dual", Northrop Grumman transformó la tecnología para uso en amplificadores de potencia para telefonía móvil. Una de las divisiones de Northrop Grumman es actualmente el proveedor mundial de estos amplificadores de potencia. En la actualidad, se está tratando de buscar nuevas aplicaciones comerciales, como los sistemas de aviso de colisiones de vehículos.

Enlaces de interés

http://www.ugr.es/~decacien/Planes/Electronica/Plan%202000/temarios/10011c2.htm

http://www.accesomedia.com/display_release.html?id=44570

http://www.iec.csic.es/ursi/articulos_villaviciosaodon_2001/articulos/209.pdf (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).

http://www.acorde.biz

http://parts.jpl.nasa.gov/mmic/3-IX.PDF

http://www.wipo.int/pctdb/en/wo.jsp?IA=WO1992005580&DISPLAY=DESC (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).

http://www.tdx.cesca.es/TDX/TDR_UC/TESIS/AVAILABLE/TDR-0305107-174432//04de10.BAA_cap4.pdf (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).

  •   Datos: Q1945036
  •   Multimedia: MMIC

mmic, circuitos, monolithic, microwave, integrated, circuits, tipo, circuitos, integrados, operan, frecuencias, microondas, decir, entre, técnica, fabricación, circuitos, basa, utilización, líneas, transmisión, planares, realiza, compuestos, semiconductores, c. Los circuitos MMI o MMIC Monolithic Microwave Integrated Circuits son un tipo de circuitos integrados que operan en frecuencias de microondas es decir entre 300 MHz y 300 GHz La tecnica de fabricacion de los circuitos MMIC se basa en la utilizacion de lineas de transmision planares y se realiza con compuestos de semiconductores compuestos tales como el arseniuro de galio GaAS nitruro de galio GaN y el silicio germanio SiGe Las entradas y salidas de los dispositivos MMIC estan generalmente internamente adaptadas con una impedancia caracteristica de 50 ohmios Esto facilita el uso de dichos dispositivos asi como su uso en forma de cascada ya que no requieren red de adaptacion externa Adicionalmente la mayoria de los equipamientos de pruebas de microondas se disenan para operar en unas condiciones de 50 ohmios Los MMIC son dimensionalmente pequenos desde 1 mm a 10 mm y pueden ser producidos a gran escala lo que ha facilitado su proliferacion en dispositivos de alta frecuencia como pueden ser los telefonos moviles Indice 1 Historia 2 Fabricacion 2 1 Tecnologia de Fabricacion SIGe 3 Cuales son las principales ventajas y desventajas de la tecnologia MMIC 4 Algunas aplicaciones de la tecnologia MMIC 4 1 Amplificadores MMIC en la banda Ka de banda ancha 4 2 Amplificador MMIC de ganancia variable y baja distorsion 4 3 Amplificadores de potencia 4 4 Amplificadores de bajo ruido 4 5 Mezcladores 4 6 Osciladores 4 7 Desplazadores de fase Phase Shifter 5 Encapsulado 5 1 Encapsulado flip chip 5 2 Encapsulado de multichip modulo dielectrico 5 3 Encapsulado plastico 5 4 Encapsulado de resonancia y escape de campo 6 Fiabilidad 6 1 Incidentes 6 2 Incidentes Fisicos 6 3 Incidentes por Radiacion 6 4 Fiabilidad de los sistemas GaAs 7 Fallos que afectan a los dispositivos MMIC 7 1 Efectos generales en los MMIC 7 2 Fuentes de error en los MMIC 7 2 1 Fallos de Materiales Inducidos Interacciones 7 2 2 Fallos por estres inducido 7 2 3 Fallos Inducidos Mecanicamente 7 2 4 Fallos inducidos por el medio ambiente 8 Metodologia de diseno y verificacion de MMIC 8 1 Documentacion 8 2 Simulacion del MMIC 8 3 Metodologia tipica del diseno 9 Modelado de dispositivos 9 1 Tipos de modelos 9 2 Circuitos Equivalentes 9 3 Software de modelado 10 Metodologias de cualificacion 10 1 Certificacion de la compania 10 2 Proceso de cualificacion 10 2 1 Verificacion del diseno 10 3 Cualificacion del producto 10 4 Aceptacion del producto 10 5 Pasos para la aceptacion de un producto 11 Aplicaciones 11 1 Tecnologia espacial y militar 11 1 1 Programa SETI Busqueda de Inteligencia Extraterrestre 11 2 ACTS Tecnologia Avanzada de Comunicaciones por Satelite 11 3 Uso comercial 12 Enlaces de interesHistoria EditarEntre 1930 y 1960 la tecnologia de microondas consistia en la utilizacion de guias de ondas para la creacion de circuitos lo que conllevaba que el proceso de fabricacion fuese largo y costoso La revolucion aparece sobre 1960 con la aparicion de la tecnologia planar y la produccion de materiales dielectricos mas baratos y con menos perdidas dando lugar a la tecnologia MIC Microwaves Integrated Circuits Esta tecnologia evoluciona a los MIC monoliticos MMIC cuando en 1975 Ray Pengelly y James Turner publican su estudio Monolithic Broadband GaAs FET Amplifiers convirtiendose asi en los padres e inventores de los MMIC Cuando trabajaban en Plessey disenaron un amplificador de una sola etapa con una ganancia de 5 dB en la banda X que usaba puertas de escritura optica de 1 micron Usaban sistemas de optimizacion por ordenador para disenar su elemento haciendo uniones de estructuras El proceso de backside todavia no habia sido inventado asi que los FET tenian toma de tierra externa Los primeros MMIC se fabricaron de Arseniuro de Galio GaAs el cual tiene dos ventajas fundamentales frente al Silicio Si que es el material tradicional para la fabricacion de circuitos integrados la velocidad del dispositivo y el sustrato semi aislante Este tipo de circuito usa una solucion cristalina para el dielectrico y la capa activa El GaAs es util gracias a su capacidad para trabajar en altas frecuencias y a que su alta resistividad evita interferencias entre dispositivos Esto permite la integracion de dispositivos activos radiofrecuencia lineas de transmision y elementos pasivos en un unico sustrato En los anos 80 la Agencia de Proyectos Avanzados de Investigacion de Defensa DARPA empezo a realizar un gran esfuerzo para obtener un mayor desarrollo de los circuitos integrados de microondas para sustituir los tubos cavidades y dispositivos discretos usados en sistemas de telecomunicacion y radar Bajo contratacion de DARPA Northrop Grumman Corporation antiguamente TRW consiguio producir con exito MMICs de GaAs usando Transistores de Alta Movilidad Electronica HEMT y Transistores Bipolares de Union Heterogenea HBT En los primeros MMICs todos los circuitos estaban hechos con GaAs MESFET diodos IMPATT Impact Ionization Avalanche Transit Time y diodos varactores pero con la maduracion de la tecnologia GaAs se incrementa el uso de Hits HEMTs y PHEMTs en aplicaciones nicho En la siguiente tabla se tiene los circuitos usados comunmente en cada dispositivo ademas de los fallos originados en la mayoria dispositivos activos de los MMIC La importancia del Arseniuro de Galio semi aislante se basa en que los dispositivos hechos del mismo mediante implantacion directa de iones estan semi aislados por eso esta adaptado a la fabricacion de circuitos integrados Ademas el sustrato semi aislante produce reducidas capacitancias parasitas siendo asi dispositivos mas rapidos y que permiten la implementacion de MMIC Sin embargo la velocidad de las tecnologias de Silicio ha ido incrementandose al mismo tiempo que el tamano de los transistores ha ido disminuyendo es por este motivo que es posible construir MMIC con este material Es muy importante este hecho ya que la principal ventaja de la tecnologia de Silicio es el coste y los MMIC de Silicio abaratan costes frente a sus homonimos de Arseniuro de Galio Otro de los factores que abaratan costes si se emplea Silicio en la fabricacion en lugar de Arseniuro de Galio es que los diametros de la oblea son ligeramente mayores de 8 a 12 pulgadas frente a las 4 o 6 que se emplean para Arseniuro de Galio Todos estos factores colaboran en abaratar los precios en la fabricacion de los circuitos integrados Hasta el momento se han mentado el Silicio y el Arseniuro de Galio en la fabricacion de MMIC pero no solo se emplean estos materiales Tambien se utiliza por ejemplo el Fosfato de Indio que mejora la ganancia la frecuencia de corte y produce ruidos mas bajos Pero es debido a su alto coste y la fragilidad de los materiales ya que las obleas hechas de este material tienen que ser mas pequenas que no sea muy extendido su uso Otro de los materiales que puede usarse para este tipo de circuitos integrados es el Germanio de Silicio SiGe que ofrece mas altas velocidades que los dispositivos de silicio convencionales pero ventajas de coste similares Por otra parte el GaAs posee propiedades que eliminan la diafonia por lo que se integra en dispositivos de radio lineas de transmision En comparacion con otras tecnologias de microondas los MMIC de GaAs ofrece las siguientes ventajas Reduccion de tamano Reduccion de costes para volumenes de produccion medio altos Mejora de las caracteristicas de los sistemas por la inclusion de algunas funciones como logicas RF en un unico circuito Mejora de la reproducibilidad debido al procesamiento e integracion uniforme para todas las partes del circuito Mejora del diseno sin necesidad de realizar numerosas iteraciones debido a la reproducibilidad y al diseno asistido por ordenador Mayor rango de frecuencias reduciendo efectos parasitarios en los dispositivos Fabricacion EditarDesde hace unas cuantas decadas los circuitos de microondas de estado solido eran fabricados exclusivamente sobre la base de componentes discretos que incluian dispositivos de circuitos activos de semiconductor como transistores y diodos Incluso hoy el mercado es compartido entre los antiguos disenos y los nuevos Mientras que los componentes discretos son hechos sobre la base de tecnologias bipolares de silicio los circuitos MMIC son hechos principalmente de arseniuro de galio GaAs Los circuitos MMIC ofrecen mejoras de ancho de banda sobre los circuitos hechos sobre la base de componentes integrados La razon de esto es que se evitan perdidas electricas y capacidades parasitas al poderse colocar las redes de acoplamiento mas proximamente a los transistores Este efecto produce un gran avance en la fiabilidad de las aplicaciones que requieren un gran numero de elementos En estas aplicaciones cada modulo del sistema de arrays puede necesitar cerca de tres chips que incorporen amplificadores de potencia amplificadores de bajo ruido y desplazadores de fase Los beneficios de la integracion de aplicaciones de microondas hasta ahora han sido exclusivamente para los dispositivos de arseniuro de galio Una razon de que el arseniuro de galio haya sido elegido para este tipo de aplicaciones es que este material tiene una alta movilidad de electrones que incrementa el rendimiento de los dispositivos a altas frecuencias Mientras que los transistores bipolares pueden ser utilizados a frecuencias de microondas los circuitos integrados que tienen una movilidad de electrones mas baja son generalmente inferiores en frecuencias de microondas La movilidad de los electrones no es el unico parametro a favor del arseniuro de galio La gran capacidad de aislamiento del arseniuro de galio tambien debe ser tomada en cuenta Ordinariamente el material de silicio es varios ordenes de magnitud mas conductivo que el arseniuro de galio limitando esta caracteristica la ganancia maxima que puede estar disponible a altas frecuencias por dispositivos de silicio Este aislamiento inhibe corrientes parasitas entre electrodos de transistores en el mismo chip que de otra forma afectarian su rendimiento como un circuito de microondas integrado Historicamente y a pesar de los avances en arseniuro de galio descritos mas arriba la utilizacion de este materias a gran escala ha sido lento debidos a los problemas de fabricacion Estos problemas han incluido la indisponibilidad de material de substrato de arseniuro de galio de gran calidad Metodos de fabricacion no orientados hacia las obleas de rapida respuesta que en silicio han tendido hacia la evolucion de una tecnologia de fabricacion competitiva y los problemas basicos con un compuesto de semiconductor frente a uno simple Estos se reflejan en la dificultad del procedimiento de control y ceden en mantenimiento que afecta al coste por unidad Ademas de esto la fragilidad fisica y quimica del material que hace mas compleja la fabricacion incluso desde sus inicios Las obleas de arseniuro de galio se destacan por su fragilidad que desemboca en que solo la mitad de las obleas sobreviven desde las primeras pruebas de radiofrecuencia Mientras que la industria de silicio se orienta hacia las obleas de 200 mm el arseniuro de galio estan disponibles desde los 75 mm de diametro con un coste muy superior al silicio Hoy en dia la produccion de arseniuro de galio es una pequena parte del mercado para dispositivos de silicio Por lo tanto la penalizacion en costes asociada con el mayor rendimiento del arseniuro de galio es un punto en contra Un subconjunto de la tecnologia CMOS es llamada SOI Silicon On Insulator Durante la ultima decada las implementaciones de SOI se han convertido en las preferidas para fabricar circuitos integrados de senal de alta radiacion Un subconjunto de SIO es el SOS Silicon On Sapphire Esta tecnologia conduce al endurecimiento de los requisitos para mejorar el aislamiento electronico de los componentes en el substrato En particular la distribucion del exceso de electrones creada por el bombardeo de radiacion es confinada a fin de evitar que cause sobrecargas o errores debiles La misma tecnica ofrece una gran mejora en frecuencia Aun asi el problema con la tecnologia SOS es que posee una interfaz electronica imperfecta entre el aislante sobre la que el silicio se deposita y el mismo silicio Esto resulta en un efecto de canal de lagunas Mientras que las imperfecciones relacionadas con este efecto no dificultan la radiacion por si solas tienden a deteriorar el dispositivo con respecto a su rendimiento habitual y pueden afectar gravemente las especificaciones normales del circuito Este efecto puede ser particularmente desastroso en frecuencias de microondas ya que limita la ganancia maxima disponible Aparte de estas limitaciones el grosor minimo del dispositivo que puede ser aislado es una contrapartida Sin embargo hoy en dia hay alternativas al silicio sobre zafiro En los ultimos anos una nueva tecnologia de materiales de silicio SOI se ha desarrollado Se llama Separacion por Implantacion en Oxigeno SIMOX Para hacer una oblea en esta tecnologia se implanta una gran cantidad de oxigeno sobre la superficie de la oblea Templando esta superficie convierte esta superficie en una pelicula de cristal aislante La ventaja de esta tecnica sobre el SOS es la disminucion del grosor de la capa activa confinando los efectos de la radiacion de ionizacion Los efectos del efecto de lagunas tambien es minimizado Sin embargo aunque los dispositivos activos estan desacoplados del substrato literalmente permanecen acoplados en cuanto a efectos de capacitancia y por tanto unos con respecto a otros en frecuencias de microondas a causa de las propiedades conductivas del substrato En otras palabras a pesar de la capa de aislamiento inclusive los dispositivos SIMOX no son idoneos para su utilizacion en circuitos de microondas debido a que el silicio bajo la capa de aislamiento tiene propiedades conductivas a frecuencias de microondas A fin de aumentar el rendimiento y disminuir la limitacion de costes de las tecnologias actuales esta tecnica permite mejorar la fabricacion de circuitos monoliticos en silicio que son capaces de operar en frecuencias de microondas se utilizara un sustrato de silicio de alta resistividad que se obtiene con una tecnica de zona flotante que implanta una capa de aislamiento cerca de su superficie superior preferiblemente SIMOX Se forja un plano conductivo en el fondo del sustrato y se forja un circuito en la capa activa de silicio que permanece sobre la capa SIMOX de aislamiento Las tecnologias que incrementan el rendimiento en altas frecuencias del MICROX comprenden Una superficie inferior de rectificacion de contacto Replicacion de circuitos usando litografia Bajo coste microstrip Capa de nitrato en el fondo de la oblea durante el procesamiento CMOS Este metodo de fabricacion se llama MICROX Esta tecnica conlleva unos costes mas de fabricacion sobre silicio de circuitos integrados que son operativos a frecuencias de gigahercios Como toda tecnologia basada en silicio MICROX saca partido de la amplia infraestructura de fabricacion que conllevan los dispositivos modernos Para aplicaciones que necesitan de un gran numero de dispositivos como los sistemas de comunicaciones modernos la implementacion de dispositivos MICROX puede hacer disponible grandes cantidades de circuitos integrados para aplicaciones de microondas Quizas la ventaja mas importante de GaAs es que sus electrones son acelerados a velocidades mas altas por lo que atraviesan el canal de transistor en menos tiempo Esta mejora de la movilidad de electrones es la propiedad fundamental que permite trabajar a frecuencias mas altas y velocidades de conmutacion mas rapidas Mientras que la principal razon de hacer transistores de GaAs es la mayor velocidad en el funcionamiento que se consigue con una frecuencia maxima de operacion mas alta o velocidades de conmutacion mas altas las propiedades fisicas y quimicas de GaAs hacen que su empleo en la fabricacion de transistores sea dificil Los inconvenientes del GaAs son una conductividad termica inferior y un coeficiente de expansion termica mas alto que el silicio y el germanio Sin embargo como las nuevas aplicaciones de mercado exigieron el funcionamiento mas alto que podria ser alcanzado solamente con la maxima dinamica de los electrones de GaAs estos obstaculos han sido vencidos Los mercados que llevaron a los avances en el crecimiento del material y las tecnicas de fabricacion de semiconductores de GaAs son la industria de defensa y espaciales Estas requirieron sistemas con circuitos de frecuencia mas alta para radares comunicaciones seguras y sensores La madurez de GaAs condujo a la aparicion de nuevos mercados como redes locales inalambricas WLANs sistemas de comunicacion personales PCSs el satelite de difusion directa DBS la transmision y la recepcion por el consumidor sistemas de posicionamiento global GPS y la comunicacion global celular Estos mercados comerciales requirieron la introduccion de tecnologia basada en GaAs para encontrar utilidades a los sistemas que no eran alcanzables con el silicio y el germanio Una desventaja del GaAs es el coste y la disponibilidad respecto al silicio Existen muchas reticencias en lo relativo al uso del GaAs como pueden ser El entendimiento de los mecanismos a la hora de implementar sistemas de silicio es mas sencillo El coste del GaAs es mucho mas elevado que el del silicio El uso del silicio en sistemas de baja frecuencia y en sistemas de integracion a gran escala ha desarrollado tecnicas muy fuertes para produccion industrial Sin embargo cuando el coste de fabricacion es comparado al funcionamiento el valor anadido al sistema al usar tecnologia GaAs en la mayoria de los casos justifica los pagos producidos por el aumento del coste de fabricacion Al tiempo que WLAN PCS DBS el GPS y mercados celulares crecen el coste para fabricar GaAs disminuira y la duda de usar GaAs mas que el silicio dependera de la capacidad de GaAs de satisfacer las necesidades tecnicas del mercado Los diodos PIN p type insulator n type de GaAs no estaba disponible para los disenadores de MMIC Esta se debia a su rapida velocidad de transferencia su alto voltaje de corte y a una resistencia variable perjudicial Esta indisponibilidad de las regiones tipo p del GaAs cambiaron con el GaAs HTB MMIC Con el buen rendimiento de los HBTs la implantacion de iones tipo p y el crecimiento MBE se estan incorporando ahora a las fabricas de produccion de GaAs Mediante el uso de la capa base p la region colectora n y la capa de contacto ohmica del colector n del HBT como se muestra en la figura los MMIC con diodos PIN se pueden fabricar facilmente en la linea de fabricacion de GaAs HBT Tecnologia de Fabricacion SIGe Editar Es una tecnologia innovadora que ofrece menos ruido que otras alternativas de silicio y rendimiento comparables a los dispositivos mas caros GaAs Con esta nueva tecnologia se aumentara enormemente la sensibilidad del sistema y los usuarios de 3G GPS television movil o dispositivos portatiles no solo encontraran funciones como la recepcion de datos de alta velocidad navegacion o los servicios de television descritos en el manual sino que ademas podran usar esas caracteristicas incluso en condiciones dificiles por ejemplo en el interior de un edificio o espacios cerrados Cuales son las principales ventajas y desventajas de la tecnologia MMIC EditarPosiblemente la principal ventaja de los circuitos integrados de microondas monoliticas MMIC para soluciones discretas sea que con esta tecnologia se consigue una figura de ruido menor Otra gran ventaja es la combinacion de funciones multicircuitales sin necesidad interconexion cableada lo que permite la produccion de lineas microstrip compactas En la tecnologia MMIC tanto los componentes activos como los pasivos son creados en el propio sustrato con lo que reduce en gran medida el tamano del circuito y los problemas que tenia la tecnologia MIC o hibrida Sin embargo estas soluciones discretas tienen tambien sus propias desventajas especialmente en las aplicaciones portatiles modernas con circuiteria compactada y periodos de implantacion en el mercado muy cortos Otra desventaja es que una vez creado el circuito es muy poco ajustable la mayoria de sus caracteristicas de funcionamiento no son modificables por lo que el proceso de diseno ha de ser muy exhaustivo y requiere modelos precisos de fisica y quimica para elementos activos y pasivos Dicho proceso requiere de programas software que permitan sintetizar analizar y perfilar circuitos lineales y no lineales Es por eso que muchos fabricantes poseen bibliotecas con modelos existentes que permiten al disenador de MMIC saber la actuacion esperada por parte de un dispositivo sin tener que caracterizarlo experimentalmente Se podrian resumir los beneficios y mejoras de la figura de ruido con las siguientes especificaciones tipicas de este tipo de circuitos integrados Mayor linealidad y bajo ruido La integracion del circuito de corriente el cual simplifica el diseno de la red de acoplamiento Realimentacion interna la cual facilita la adaptacion de impedancias a lo largo de un ancho debanda mayor Estabilidad incondicional a lo largo de un mayor rango de frecuencias El modo de ganancia FET requiere solo una toma positivaTodos estos beneficios se traducen en un circuito compacto con un ciclo de diseno menor si se compara con su aproximacion discreta lo cual los hace mas apropiados para soluciones portatiles con limitaciones de espacio Las caracteristicas de los sistemas que operan en las bandas de RF y Microondas pueden ser optimizadas mediante la integracion de componentes en MMIC Microwave Monolithic Integrated Circuits Es corriente usar componentes off the shelf pero a costa de aumentar la complejidad y el coste del diseno El uso de componentes MMIC es un medio rapido y efectivo en coste Sin embargo cuando se trata de disenar MMICs a medida hay que tener en cuenta que su coste y tiempo de desarrollo son importantes por lo que solo en casos de grandes series o en aplicaciones especiales como en espacio es aconsejable Mediante el uso de soluciones MMIC a medida se pueden mejorar las caracteristicas del sistema asi como la funcionalidad y fiabilidad Ademas se reduce el numero de componentes el tamano del circuito peso y consumo de potencia asi como los tiempos de ensamblado Algunas aplicaciones de la tecnologia MMIC EditarAmplificadores MMIC en la banda Ka de banda ancha Editar Los sistemas de comunicaciones que requieren grandes capacidades en la banda milimetrica estan teniendo un gran desarrollo como por ejemplo los sistemas de banda ancha para la distribucion de senales de video sin cable tales como LMDS Local Multipoint Distribution System que operan en la banda de 28 GHz Para satisfacer esta demanda el diseno circuitos integrados monoliticos de microondas MMIC es de gran interes ya que poseen ventajas en cuanto a miniaturizacion gran repetitividad bajo coste en grandes producciones y mayor fiabilidad debido al reducido numero de interconexiones Amplificador MMIC de ganancia variable y baja distorsion Editar Son amplificadores utilizados sobre todo en sistemas de comunicaciones Estos amplificadores son muy lineales debido a su realimentacion negativa y al ser creado con tecnologia MMIC las frecuencias de trabajo llegan hasta la banda Ka Su principal ventaja es que reduce de manera efectiva el efecto del retardo de fase y los productos de intermodulacion hasta 40dB en los productos de intermodulacion de 3 er orden Debido a estas caracteristicas son muy utilizados en sistemas digitales con modulaciones QAM Amplificadores de potencia Editar Debido a la division de potencia y a la combinacion de redes los MMIC tienen unas perdidas de 0 5 1 dB y la impedancia de entrada disminuye con el incremento del numero de puertas el grado de division de potencia y de combinaciones pueden usarse para incrementar el limite del nivel de potencia Los amplificadores de potencia deben trabajar con potencias altas a la entrada y a la salida y su tension maxima esta limitada por la tension de ruptura por lo que conviene que este valor sea alto en los transistores Los FETs y HBTs de puerta o emisores limitaran la corriente en cada transistor convirtiendo las perdidas por resistividad en calor y reduciendo la fiabilidad del dispositivo Para aumentarla es necesario emplear puertas o emisores en paralelo para incrementar el area de emision y reducir la resistencia Pero esto provoca que el tamano del dispositivo aumente al hacer que los elementos del transistor esten lo suficientemente separados para que se de la disipacion termica adecuada Los amplificadores de potencia disenados con varias fases una de ellas es un transistor o una combinacion en paralelo de estos permiten agrupar las limitaciones termicas y de corriente y el voltaje de pico El numero de fases depende de las especificaciones de ganancia y frecuencia ya que la potencia de salida disminuye con el aumento de frecuencia Los dispositivos pasivos y activos de microondas suelen derivar de la medida de parametros S en un analizador vectorial Estos modelos son buenos para circuitos de baja potencia pero los transistores exhiben una cierta falta de linealidad por lo que hay que realizar disenos no lineales para disenos de alta potencia Ademas esta no linealidad provoca distorsion de intermodulacion IMD medida en dB que es la potencia en frecuencias distintas a la de entrada 2fRF 3fRF etc Hay que tener en cuenta estas frecuencias para evitar problemas con el circuito Los amplificadores de potencia ademas se pueden dividir en varias clases Etapa clase A El dispositivo se polariza en una zona de respuesta lineal con capacidad de responder a senales de cualquier polaridad Su principal ventaja es que sigue un modelo de amplificador lineal convencional Su desventaja es que aun con senal nula disipa una cantidad considerable de potencia Etapa clase B El dispositivo se polariza en el extremo de la zona de respuesta lineal y en consecuencia solo tiene capacidad de responder a senales con una determinada polaridad En estas etapas no se produce disipacion de potencia cuando la senal es nula pero requiere la utilizacion de etapas complementarias para pode generar una respuesta bipolar Etapa clase AB El dispositivo se polariza en la zona lineal pero en un punto muy proximo al extremo de respuesta lineal Esta configuracion es una variante de la etapa de tipo B en la que se sacrifica la disipacion de una pequena cantidad de potencia cuando opera sin senal a cambio de evitar la zona muerta de respuesta Etapa clase C El dispositivo se polariza en zona de respuesta no lineal de forma que los dispositivos activos solo conducen en una fraccion reducida del periodo de la senal De esta forma se consiguen rendimientos maximos aunque se necesitan elementos reactivos que acumulen la energia durante la conduccion y la liberen en el resto del ciclo en el que el dispositivo no conduce Se puede utilizar para amplificar senales de banda muy estrecha Amplificadores de bajo ruido Editar La funcion principal de un amplificador de bajo ruido LNA es la de amplificar senales extremadamente pequenas tratando de anadir la menor cantidad de ruido posible esto es preservando el nivel de relacion senal a ruido SNR del sistema Para su diseno se debe tener en cuenta la ganancia disponible en cada transistor en funcion de su tamano y del punto de polarizacion en cuanto a su actuacion el criterio mas importante sera la figura de ruido Para conseguir una figura baja se emplean transistores HEMTs y PHEMTs y para minimizar dicha figura se utilizan ademas puertas pequenas incluyendo puertas parasitas de 0 1 a 0 25 mm Para reducir la figura de ruido del sistema es importante reducir las perdidas de circuito especialmente antes de la primera parte del amplificador de ruido bajo Tambien se puede minimizar reduciendo los valores de ruptura de temperatura corriente y tension ya que los problemas termicos asi como las corrientes y voltajes de ruptura que afectan al amplificador de potencia no afectan al amplificador de bajo ruido al ser de menor potencia Por tanto la minimizacion de la figura de ruido maximiza la ganancia Mezcladores Editar El mezclador convierte la senal de entrada con una frecuencia en una senal de salida con frecuencia distinta que permita el filtrado el desfasaje y otras operaciones de procesamiento de datos en los circuitos Idealmente esta operacion no afectaria a la amplitud de la sena ni introduciria ruido La conversion de frecuencia se consigue con dispositivos con caracteristicas no lineales de corriente y tension En un principio estos mezcladores eran creados usando diodos pero actualmente se emplean MESFETs HEMTs y PHEMTs En el caso de los mezcladores con diodos si dos senales de tension llamadas LO y RF se colocan en los terminales del diodo se obtendra una frecuencia igual a la diferencia de las de cada senal llamada frecuencia inmediata IF Para mejorar la actuacion del sistema es necesario eliminar el ruido y los armonicos que crean distorsiones de las senales RF y LO Los circuitos mas complejos permiten cancelar las componentes de frecuencia no deseadas y ayudan a eliminar el ruido variando la amplitud de la senal LO Como inconveniente se requiere mayor potencia LO que es dificil de obtener a altas frecuencias Osciladores Editar Para minimizar el ruido de fase se requiere resonantes de alta Q que fijen la frecuencia de oscilacion aportando un coeficiente de reflexion mayor que en un ancho de banda muy estrecho y se requiere transistores con bajo ruido 1 f En los MMICs el desarrollo de los resonadores de alta Q es el mas dificil de obtener de los elementos desde la pelicula estrecha en sustratos finos de GaAs teniendo una alta perdida de conduccion Los HBTs tienen un bajo ruido 1 f y son usados frecuentemente como osciladores Los cambios de temperatura pueden producir cambios en las caracteristicas del transistor y causar cambios en la frecuencia de oscilacion o incluso detener la oscilacion La compensacion de temperaturas se puede realizar a traves de diodos varactores o de elementos controlables con sensores y circuitos de control Desplazadores de fase Phase Shifter Editar Los desplazadores de fase son usados para comunicar un cambio repetible y controlable de fase en la senal de microondas sin que tenga repercusion en la amplitud de la senal Ademas se suelen usar con arrays de antenas en fase donde se usan para controlar la forma y la direccion del haz tambien se usan en sistemas de comunicacion en sistemas radar y en instrumentacion de microondas Se suelen usar dos metodos para el cambio de fase en MMICs El primer metodo conmuta la senal entre una longitud corta y una larga de la linea de transmision para mejorar el desplazamiento de fase de b l donde b es la constante de propagacion de la linea de transmision y l es el diferencial de longitud de la linea de transmision A este tipo de desplazador de fase se le llama switched line phaser shifter El segundo metodo cambia la reactancia de las lineas de transmision por lo que los cambios en la propagacion son constantes a lo largo de la linea La implementacion de MMIC desplazador de fase es caracterizada como tipo de reflexion o como tipo de transmision Hay tres implementaciones que se usan comunmente pareado hibrido linea cargada y linea conmutada Encapsulado EditarEl encapsulado sirve para integrar el conjunto de componentes que componen el MMIC de forma que se reduzca al minimo el tamano el coste la masa y la complejidad se proporcione interfaces electricos y termicos entre el MMIC y el exterior y se asegure la fiabilidad de los componentes individuales y la del MMIC en conjunto En resumen las funciones del encapsulado son proporcionar soporte fisico proporcionar proteccion mecanica aranazos aceleraciones bruscas etc proporcionar proteccion del ambiente particulas radiacion humedad etc proporcionar distribucion de energia y de la senal y estabilizar termicamente el conjunto Los encapsulados se pueden dividir en los siguientes grupos basicos Encapsulado flip chip Editar El analisis de elementos finitos y los estudios experimentales han demostrado que los chips de gran longitud y pequena altura tienden a fallar mas rapidamente que los menos largos y mas altos La fiabilidad de estos flip chip esta determinada por el coeficiente de expansion termica CTE entre el chip y el sustrato ceramico o el circuito organico La diferencia induce tensiones mecanicas y termicas muy grandes especialmente en las juntas donde la distancia es la mayor desde la distancia del punto neutral DNP del chip Esta tension provoca la aparicion de fisuras en las juntas incrementando la resistencia de contacto inhibiendo el flujo de corriente y llevando al fallo electrico del chip Por tanto la desventaja de elegir una altura mayor consiste en introducir una inductancia en serie que degrada la actuacion en alta frecuencia e incrementa la resistencia termica desde el MMIC hasta el portador Para mejorar la fiabilidad se aplica el encapsulado cerca del chip y se conduce por accion capilar en el espacio entre el chip y su portador Para compensar la tension producida es necesario que haya una buena adherencia entre el material de relleno el portador y la superficie del chip Para evitar perdida de adherencia se requiere un proceso de ensamblado flip chip sin flujos Esto es posible con portadores ceramicos con oro plata y peliculas gruesas de paladio plata y a traves de metalizacion Es deseable que no haya bolsas de aire ni vacio especialmente estos ultimos al producir una tension aun mayor Por ello tras el ensamblaje se realiza una revision acustica microscopica para localizar estos vacios El encapsulado tambien debe ser revisado para buscar microfisuras o fallos de la superficie que tienen a propagarse en los ciclos termicos llevando al mal funcionamiento del chip Encapsulado de multichip modulo dielectrico Editar Los polimeros y los polimidos son los materiales mas usados al crear encapsulado de multichip modulo dielectrico MCM D Estos materiales absorben humedad en distinto grado Los materiales con la menor absorcion de humedad contienen un 0 5 de agua mientras que otros tienen hasta un 4 Las pruebas de longevidad en estructuras troqueladas con aluminio con varios polimeros mostraron fallos en la interaccion entre el aluminio y el agua Para polimidos la vida media de la estructura de Al se situa entre 385 y 6950 horas a 121 C y 99 6 de humedad relativa y a 85 C y 85 de humedad relativa respectivamente La pasivacion incrementa esta vida util y no es danada por el uso de cubierta hecha de polimero Por tanto la pasivacion en el troquelado reduce los fallos por humedad y las cubiertas de polimero no son sustitutos para el encapsulado hermetico El uso de polimero en el sustrato provoca en la interfaz una serie de tensiones debidas a diferencias de CTE entre los materiales superando incluso la temperatura ambiente llegando hasta los 300 C de temperatura de proceso La optimizacion del proceso puede minimizar este efecto negativo Como las dificultades estan relacionadas tanto con la diferencia de CTE como con el grosor del polimero o polimido usado se recomienda que la base ceramica sea 20 veces mas gruesa en semiconductores es mayor El sistema de metal usado en MCM D debe ser optimizado Normalmente se usa cobre Cu en todas las lineas DC y RF debido a su bajo coste y alta conductividad electrica Pero el cobre se difunde rapidamente en el polimido Este proceso depende de la temperatura y a temperaturas de menos de 185 C se da esto para el cobre A mayor temperatura se observara que la anchura de la linea se reduce aun mas El peor caso se da si la linea de Cu esta justo encima de la superficie del polimero Tambien hay que destacar la falta de adhesion del cobre al polimero Para minimizar estos problemas se utiliza Cr Au o Ti como barrera de difusion entre el cobre y el polimido aunque en el caso del cromo las propiedades mecanicas son bastante peores Los huecos via sirven para realizar una mayor cantidad de conexiones entre niveles Estos huecos pueden hacerse con laser o ataques con acido en ambientes humedos o secos En muchos procesos de fabricacion se observa que los polimeros se conectan sobre los MMICs y otros chips que han de interconectarse Aunque sean finos estos polimeros afectan a la actuacion en microondas del MMIC ya que aumentara la capacitancia de linea reduciendo la longitud de onda guiada Encapsulado plastico Editar Durante el proceso de soldado a altas temperaturas se observo que la humedad presente en un encapsulado plastico puede evaporarse rapidamente y crear presion en el encapsulado provocando fisuras Estos efectos son mas pronunciados si el encapsulado es mayor que el 0 23 de la humedad absorbida antes de la soldadura La diferencia de CTE en los componentes del encapsulado tambien provoca tension combinandose con la presion anterior y aumentando el tamano y numero de fisuras Las siguientes recomendaciones permitiran un dano minimo por humedad 1 Completar el ensamblaje a la palca una semana despues de retirar los componentes de sus envoltorios secos siempre que las condiciones ambientales no superen los 30 C ni el 60 de humedad relativa 2 Una semana despues proceder a la coccion 12 horas a 115 C que gradualmente eliminara la humedad Encapsulado de resonancia y escape de campo Editar La actuacion del encapsulado MMIC empeora por accion de resonancias de anillo que se da cuando los campos electromagneticos se acoplan a la ceramica del encapsulado y de cavidad que se dan cuando el volumen encerrado por el encapsulado se comporta como una cavidad metalica Estas resonancias se observan como picos largos en la comparacion de perdidas de insercion y frecuencia en el marco del encapsulado Las resonancias de anillo pueden eliminarse fabricando el marco a partir de un metal Ya que muchos disenos de marcos metalicos son dificiles de fabricar se utilizan soluciones de menor coste como fabricar a partir de un material ceramico alumina Se colocan varias laminas finas de ceramica verde para formar un marco que es posteriormente metalizado y anadido a la base metalica Ademas de ser mas barato este metodo asegurar que el marco quede unido a la base metalica reduciendo el acoplamiento Las resonancias de cavidad se predicen a partir de un modelo donde se consideran la longitud anchura y altura de la cavidad L W y H respectivamente La plancha de dielectrico es de grosor d y permitividad relativa Er La cavidad esta excitada por una linea microscopica de entrada y salida Fiabilidad EditarLa fiabilidad se define como la probabilidad de que un elemento realice una funcion requerida bajo unas determinadas condiciones y durante un determinado periodo La fiabilidad la podemos expresar como una distribucion de probabilidad Hay muchos factores que influyen en la fiabilidad de un producto como pueden ser el diseno la produccion aplicaciones eventuales la aparicion del factor humano en pasos de la cadena de produccion Incidentes Editar La definicion de un incidente es una parte importante a la hora de estudiar la fiabilidad en sistemas semiconductores los clasificamos en 2 grupos incidentes por degradacion donde alguna propiedad de algun componente se encuentra muy lejos del valor que deberia tener para su buen funcionamiento incidentes catastroficos fin del ciclo de vida de algun componente o completa destruccion del mismo Incidentes Fisicos Editar Los elementos que nos limitan en este sentido suelen ser los elementos activos como los FET Uno de los factores limitantes en fiabilidad suele ser la resistencia ohmica de los contactos de los FET pero el factor mas importante es el relacionado con el canal del FET Otro de los factores limitantes en los dispositivos GaAs suele ser la migracion metalica movimiento del metal en el conductor causado por el flujo de corriente el efecto del scattering metalico empuja los atomos en direccion del flujo Asi el metal puede ser eliminado de una zona y acumulado en otra esto produce en la zona de acumulacion que se reduzca la seccion del area del conductor lo que aumenta la densidad de corriente pudiendo llegar a quemar el dispositivo Esta es la principal razon para la limitacion de corriente en dispositivos MMIC Aparte de estos factores pueden darse otros si no prestamos la suficiente atencion a la hora de la fabricacion de los dispositivos MMIC Tomando las suficientes precauciones el tiempo de vida de un dispositivo MMIC suele rondar las 1000000 horas a temperaturas de operacion normales Incidentes por Radiacion Editar La habilidad de los sistemas GaAs para soportar radiaciones es muy importante tanto en sistemas militares como espaciales Los objetos en la orbita terrestre estan sometidos a radiaciones La dosis acumulada a lo largo del tiempo es bastante considerable pero el blindaje de los dispositivos espaciales debe ser el minimo por consideraciones obvias de peso y costes Muchas aplicaciones militares han de soportar grandes dosis de radiacion causada por explosiones nucleares Los dispositivos GaAs generalmente soportan mucho mejor las radiaciones que los basados en silicio Fiabilidad de los sistemas GaAs Editar Para el estudio de la fiabilidad se exponen los sistemas a altas temperaturas acelerando asi el proceso de observacion de incidentes es una tecnica conocida como testeo acelerado que usa la ecuacion de Arrhenius y es muy usada en la industria semiconductora Para un buen testeo acelerado es necesario conocer la temperatura del dispositivo Los dispositivos MMIC con elementos activos como los FET generalmente tienen areas mas calientes que otras Las resistencias pueden ser tambien puntos significativamente mas calientes que las porciones colindantes en el chip Los cambios fisicos y quimicos que producen los incidentes suelen producirse en estos puntos calientes Por eso es necesario monitorizar estas zonas comprobando su temperatura El GaAs es relativamente un mal conductor termico su conduccion termica es aproximadamente 1 3 de la del Si Por otra parte las partes activas de los dispositivos GaAs como los canales de los FET son tambien muy pequenas Estos dos factores significan que las areas activas de los dispositivos GaAs estan mucho mas calientes que las areas que las rodean y que esta temperatura es superior a la temperatura ambiente La conductividad termica del GaAs decrece segun se incrementa la temperatura Esto significa que segun la temperatura ambiente es aumenta las diferencias de temperatura entre las areas dentro del chip son mayores tambien La temperatura en los dispositivos activos dentro del chip esta caracterizada por la resistencia termica La resistencia termica se define como la diferencia en temperatura entre el punto mas caliente y algun punto de referencia que generalmente es la temperatura ambiente dividida por la potencia disipada por el dispositivo y se mide en C W Notese que la resistencia termica variara con el tamano de dispositivo Dado que la mayoria de las incidencias tienen lugar en el canal de los FET la mayoria de los test estan referenciados a la temperatura del canal Fallos que afectan a los dispositivos MMIC EditarLa mayoria de los fallos que pueden afectar a los dispositivos se catalogan en dos categorias catastroficos y no catastroficos Estos fallos afectan de igual manera a la fiabilidad y al rendimiento Efectos generales en los MMIC Editar Estos fallos vienen dados por la degradacion en los parametros caracteristicos de los dispositivos Su gravedad sera determinada por el diseno y la funcion que desarrolla el MMIC afectado ademas de la gravedad de la degradacion Fuentes de error en los MMIC Editar Responsabilidades generales de fallos mecanicos por categorias Los fallos en los mecanismos con semiconductores se dividen en cuatro categorias generales Induccion Interaccion Materiales de los Mecanismos Estres inducido en los Mecanismos Fallos inducidos Mecanicamente Fallos inducidos por el Medio AmbienteLa primera categoria la podemos subdividir en dos subcategorias Desfallecimiento de los materiales semiconductores y las interacciones metalicas Desfallecimiento del encapsulado e interconexiones Los fallos por estres debidos a un pobre diseno o dispositivos descuidados La mayoria de los fallos en MMIC son derivados de la sucesion de varios incidentes de las categorias anteriores Fallos de Materiales Inducidos Interacciones Editar Los procesos que involucran interfaces de metales semiconductores y que no estan disenados o y aplicados adecuadamente pueden producir una degradacion del dispositivo hasta el fallo del mismo Hundimiento de Puerta Se produce cuando los materiales o el proceso de creacion de la capa barrera son de mala manufacturacion Permitiendo una rapida difusion dentro de la capa barrera Este mecanismo es observado despues de la exposicion a una prueba de aceleracion de la vida o el funcionamiento a temperaturas elevadas el factor impulsor de este mecanismo es la difusion termica acelerada de Au en GaAs La estructura de la puerta de metalizacion consta de tres capas El primer contacto con la capa de GaAs es una fina capa de Ti utilizados principalmente para la adhesion La segunda capa es Pd o Pt Esta capa se utiliza como una barrera Au a la difusion en GaAs La ultima capa es espesa Au utilizada para la conduccion La tasa de Au en la difusion de la puerta de metal de GaAs es una funcion de la difusividad del material de la puerta de metal la temperatura y el gradiente de concentracion de materiales Degradacion del contacto ohmico En este caso la degradacion de los materiales de la capa barrera produce una variacion en la resistencia de contacto Produciendo variaciones entre 0 5 eV y 1 8 eV La comprension general de contactos ohmicos atribuye la degradacion a lo siguiente 1 Difusion Ga en la capa de Au lo que crea una region defecto rica de alta resistividad debajo del contacto 2 Difusion de Au y Ni en el GaAs lo que puede causar una reduccion en la concentracion contra el dopaje en el canal activo del dispositivo 3 La formacion de fases intermetalicas tales como AuGa y Ni2AsGe como resultado del proceso de aleacion Degradacion del Canal Se atribuye a cambios en la calidad y la pureza de la zona de canales activos y una reduccion en la concentracion por debajo de la puerta Schottky Estos cambios han sido postulados para ser el resultado de la difusion de dopante del canal o la difusion de la impurezas o defectos del substrato del canal Efectos de Estado de Superficie El rendimiento depende de la limpieza de la superficie de los materiales y procedimientos del metodo y las condiciones de deposicion ademas de la composicion de la capa de pasivacion Si estas condiciones no alcanzan los niveles optimos se produce un aumento de la densidad de superficie de estado reduciendo el efecto electrico de la region drenador Fallos por estres inducido Editar Todo dispositivo en funcionamiento esta sujeto a unas ciertas condiciones de estres Si estas condiciones son elevadas o inadecuadas para su diseno y funcionamiento pueden conllevar a fallos catastroficos Electromigracion Es el movimiento de los atomos de metal a lo largo de una tira metalizada debido al impulso producido por el intercambio de electrones Esto dependera de la temperatura y el numero de electrones que participen en el proceso Este movimiento puede provocar la acumulacion de material y la formacion de vacios perpendiculares en la fuente y oteros en la zona del drenador provocando cortocircuitos o fallos catastroficos Agotamiento Es el aumento localizado de la disipacion de energia Hay dos tipos de agotamiento Instantaneo Causado por eventos subitos tales como las descargas electrostaticas ESD electricas overstress EOS y los picos RF Estan relacionados con la robustez del diseno y los materiales A largo plazo Debido a la degradacion de los parametros a largo plazo por el envejecimiento de los materiales Uno de los factores que pueden contribuir a esta condicion de los efectos superficiales como la oxidacion reduccion de GaAs y el recocido de los estados de superficie puede causar un aumento de la corriente de fuga y reducir el desglose de tension Captura de Electrones Sobreexcitados Cuando se trabaja en busca de la maxima potencia o rendimiento se puede producir una sobreexcitacion de los electrones La captura de estos electrones sobreexcitados conlleva una variacion y degradacion del umbral de tension Con capacidades de modelado de dispositivo y la utilizacion de nuevas tecnicas de medicion es posible optimizar sin muchas iteraciones Mejora de la Si3N4 como una superficie de pasivacion es otro claro enfoque para limitar el efecto descrito Sin embargo la pasivacion perfecta de la superficie GaAs todavia no se ha encontrado Otros enfoques tales como limitar la tension de funcionamiento e incluir en la region de drenador dopajes bajos son comunes en un MOSFET Estres electrico Es debido a un funcionamiento o utilizacion inadecuada del dispositivo llevando a una degradacion acelerada que desemboca en errores catastroficos Tambien puede ser por una inadecuada proteccion del dispositivo ante descargas electrostaticas ESD La alta densidad de corriente causada por la ESD puede provocar calentamiento localizado en la interfaz principal metal semiconductor a la difusion Ga en la metalizacion y difusion Au en GaAs Los elementos pasivos MMIC tales como condensadores resistencias e interconexiones metalicas tambien pueden exponer los efectos perjudiciales de la ESD Fallos Inducidos Mecanicamente Editar Fractura del troquelado La diferencia de coeficientes termales de expansion CTE el portador o el sustrato en el encapsulado puede producir fracturas en el troquelado durante el ciclo de temperatura Las grietas de superficie tambien pueden derivarse de una inadecuada operacion de corte o de una inadecuada tecnica de montaje Las grietas y fracturas cerca de una region activa del dispositivo pueden dan lugar a cambios del umbral de voltaje y el rendimiento general del dispositivo de degradacion Un aumento en la corriente de fuga en ese lugar puede resultar en una condicion termica y en ultima instancia fallo catastrofico de los dispositivos Huecos en el troquelado La presencia de huecos en las bornas del troquelado pueden inducir alta potencia longitudinal en su ciclo de temperatura La propagacion de estos huecos puede desembocar en la determinacion e interrupcion de la via termica Rara vez se observa el troquelado del encapsulado o substrato debido a propagacion en el vacio Aunque los huecos pueden formar a partir de una serie de fuentes el control de procesos puede limitar los efectos a un nivel aceptable El encapsulado o construccion del substrato las propiedades fisicas la limpieza y metodos de aplicacion y la nula concentracion y la ubicacion determinan el efecto de los huecos en el dispositivo Fallos inducidos por el medio ambiente Editar Todos los dispositivos dependen de las condiciones medioambientales en las que trabajan Esto afectara a su estabilidad y rendimiento Algunos ejemplos son Humedad Acelera la aparicion de fallos mecanicos y se da en los dispositivos empaquetados de GaAs no hermeticos con envases cerrados o de plastico La corrosion anodica de oro es el principal culpable de los fallos en el dispositivo de GaAs en ambientes con humedad alta al detectarse hidroxido de oro En estas condiciones tambien se han observado la disolucion de As y el crecimiento de filamentos Ni a lo largo de la direccion del campo electrico de contactos ohmicos adyacentes a la puerta Efectos del hidrogeno Produce degradaciones de IDDS VP gm y POUT Se da en recipientes encapsulados hermeticamente en condiciones de hidrogeno Se cree que el hidrogeno atomico se difunde en los canales de GaAs y formas Si H neutralizando los donantes lo que puede reducir la concentracion de portadores en el canal que a su vez puede disminuir la fuga de corriente transconductancia y la ganancia del dispositivo Algunas de las posibles soluciones incluyen tratamiento termico de los materiales de empaquetado para reducir la cantidad de hidrogeno a partir del empaquetado hermetico y el uso de barreras materiales que no contengan las estructuras Pt Ti o Pd Ti Estas soluciones tienen limitaciones y los posibles problemas de inestabilidad que deben ser plenamente corregidos antes de su aplicacion en entornos de alta fiabilidad Contaminacion ionica Puede producir cambios en la concentracion umbral y esto en cambios de voltaje La contaminacion ionica puede ocurrir durante el proceso el empaquetamiento la interconexion y el funcionamiento en un lugar desprotegido La preparacion de la superficie y la limpieza la caracterizacion y control de materiales y entornos y la proteccion pasivacion de la zona activa de los dispositivos puede reducir o eliminar algunos fallos relacionados de la contaminacion ionica El horneado y la exposicion a altas temperaturas durante la combustion en dichas medidas han resultado ser eficaces como metodos de deteccion de problemas de contaminacion ionica Metodologia de diseno y verificacion de MMIC EditarEste capitulo describe los aspectos generales del diseno de un MMIC Documentacion Editar En general la documentacion disponible deberia proveer al cliente interesado de una descripcion de los instrumentos de CAD los pasos de proceso y metodos de evaluacion usados en el proceso de creacion Una documentacion tipica puede incluir Las capacidades de procesamiento de un conductor Diseno normativa a seguir y herramientas para el layout Librerias disponibles Herramientas de simulacion disponibles Dispositivos disponibles y modelos de los diferentes elementos del circuito Diagrama de flujo Verificacion y revision Metodos de evaluacion Simulacion del MMIC Editar La simulacion del circuito es un paso esencial en el diseno y fabricacion de MMICs con proposito de produccion Una simulacion puede dar una primera aproximacion del circuito funcional realizado bajo unas condiciones de entrada y salida Actualmente la mayoria de los simuladores incluyen herramientas de optimizacion que reducen en gran medida el tiempo de diseno e incrementa la probabilidad de exito Ademas la mejora de procesamiento de los ordenadores los recientes avances en desarrollo software y nuevas tecnicas software han dado lugar a herramientas de diseno interactivas muy avanzadas El desarrollo de un software comercial que integra los diferentes estados de desarrollo de un MMIC como el esquema capturas de datos simulacion layout han sido el resultado de los recientes avances tecnologicos de MMIC CAD motivados por las necesidades del mercado Algunas herramientas de simulacion Compact Software s Microwave Harmonica r es bastante utilizado para el diseno de MMICs de GaAs Sirve en simulaciones de circuitos de microondas tanto lineales como no lineales simulandolos con modelos de elementos distribuidos Los circuitos no lineales se simulan usando tecnicas de equilibrado armonico en la interfaz entre las partes lineal y no lineal del circuito Este simulador tambien ofrece optimizacion analisis estadistico y sintesis de tension ademas de analisis y optimizacion de oscilador y ruido de fase The Compact Software Microwave Explorer r es una herramienta de analisis electromagnetico en 3 D empleada para simular estructuras pasivas planares en medios abiertos y encapsulados Se introducen los circuitos con un editor de poligonos integrados Este paquete incluye una interfaz de graficos para la visualizacion de cartas de Smith graficas rectangulares y de distribucion de corriente The Compact Microwave Success r es un simulador de bloques que permite examinar informacion como parametros S y parametros de ruido en componentes de radiofrecuencia y microondas Este programa permite trabajar con mezcladores filtros antenas y amplificadores El paquete tambien generara los datos en diversos formatos estandar ofrecer analisis de temperatura frecuencia potencia y otras variables definidas por el usuario HP EEsof s Libra r es otra herramienta de diseno y simulacion empleada en MMICs de GaAs lineales y no lineales Realiza simulaciones en el domino de la frecuencia usando modelos de elementos utilizados en circuitos de microondas Los circuitos no lineales se simulan con tecnicas de equilibrado de armonicos Libra Design Suite r es una herramienta de simulacion y trazado desarrollado para el diseno de RF y microondas Series IV Project Design Environment r es un medio de diseno grafico Permite el diseno simulacion trazado y documentacion de sistemas y circuitos de alta frecuencia Este paquete contiene capacidad de captura de esquemas simulacion en alta frecuencia simulacion electromagnetica simulacion de sistemas trazado de circuitos y una recopilacion de bibliotecas de diseno y varias herramientas y enlaces de terceros Microwave Design System r de HP EEsof se basa en UNIX y sirve para el diseno de circuitos y sistemas de alta frecuencia Permite simulacion lineal y no lineal analisis de sensibilidad ademas de captura de diseno y trazado de circuitos Mathematica r es un software interactivo para la resolucion de problemas matematicos complejos que permite desarrollar modelos matematicos de sistemas y componentes de microondas Microwave Spice r es un simulador en dominio del tiempo parecido al Berkeley Spice r Incluye muchos efectos y componentes de microondas utiles en el diseno de MMICs sobre todo en el diseno de osciladores de microondas Existen muchos mas en el mercado dependiendo de las necesidades de diseno que requiera el MMIC Asi las herramientas de simulacion electromagnetica pueden emplearse junto a simuladores en domino del tiempo o de la frecuencia o como simuladores de EM independientes como Ansoft Maxwell Eminence r un simulador en 3 D Otro ejemplo es Sonnet r capaz de aceptar entradas en los formatos de GDSII HP EEsof Cadence y AutoCAD Las salidas obtenidas son parametros S distribuciones de corrientes y patrones de radiacion Metodologia tipica del diseno Editar En el mercado competitivo la reduccion de coste en todas las etapas de diseno fabricacion y de evaluacion tienen suma importancia El empleo de simulacion de CAD y herramientas de diseno juega un papel principal en el exito y produccion de un diseno de MMICEl diseno de un MMIC implica dos etapas criticas la especificacion de funcionamiento el diseno del circuito y la simulacion Otras funciones como la fabricacion y el testeo tambien deben considerase durante las etapas de diseno hasta llegar a un producto manufacturable con la alta prestacion y el funcionamiento deseado Etapas Requerimientos del cliente Estudio de las diferentes tecnologias para el proceso de diseno Disponibilidad de elementos para el diseno Coste y compensacion de funcionamiento Modelado de dispositivos EditarEs sumamente importante completar el modelado de dispositivo MMIC y la simulacion antes de la fabricacion porque la tecnologia y el diseno iterativo son caros y la tecnologia a menudo no permite a la sintonia de post fabricacion Por lo tanto la exactitud del modelado es una parte esencial para tener exito en el diseno El modelado de dispositivo es util no solo en el diseno sino tambien en el control de produccion y el analisis de la productividad y rendimiento Para el estudio de este apartado veremos los diferentes tipos de modelos circuitos equivalentes el enfoque al modelado el software de modelado disponible en el comercio o la sensibilidad de los modelos Aunque el contenido acentue MESFETS la metodologia usada puede ser aplicada a otros dispositivos MMIC como HEMTS HBTs y diodos Tipos de modelos Editar Un modelo de dispositivo puede estar compuesto por un conjunto de circuitos elementales equivalentes con una topologia de circuito particular o por un conjunto de ecuaciones que siendo evaluadas predicen el funcionamiento de dispositivo Un proceso de modelado generalmente incluye tres pasos caracterizacion extraccion de parametros y modelado Tres procesos estan estrechamente relacionados en un numero de importante caminos La exactitud de cualquier modelado de dispositivo en ultima instancia es limitada por la precision con que sus parametros son determinados La extraccion de parametro es dependiente del tipo y de la exactitud de datos de caracterizacion del dispositivo disponibles Las ventajas del modelado de dispositivo son parcialmente determinadas por el tipo de caracterizacion requerida Por lo general el modelado de dispositivo MMIC puede ser clasificado en tres categorias Modelos de Dispositivo Empiricos EDMs Modelos Fisicos PBMs y modelos basados en datos Los EDMs usan circuitos equivalentes para simular el comportamiento externo de los dispositivos Este modelo consiste en un numero de elementos lineales y no lineales conectados mediante una topologia predefinida Varios EDMS incluyendo los de pequena senal y los de gran senal han sido extensamente usado en la ingenieria MMIC automatizada Las ventajas de EDMS son su sencilla caracterizacion su implementacion y la simulacion de circuito Para obtener sus predicciones de funcionamiento los PBMs estudian los parametros fisicos que describen la geometria del dispositivo los materiales y los parametros de proceso Estos parametros normalmente incluyen la longitud de puerta la anchura de puerta grosor del canal y la densidad de dopaje Los PBMs tienen una ventaja sobre los EDMS y es que permiten estudiar los efectos de la variacion del proceso durante el funcionamiento del dispositivo tales efectos son criticos para la prediccion de produccion y para el proceso de control Sin embargo es dificil y en algunos casos incluso imposibles obtener los parametros exactos fisicos requeridos para describir el dispositivo Recientemente modelos basados en datos tambien conocidos como basados en la medida se han hecho populares entre los disenadores de dispositivo Los Modelos basados en datos estan directamente creados a partir de los datos medidos independientemente de los parametros de proceso Un modelo basado en datos puede predecir el comportamiento que se producira en un nuevo proceso que mediante funciones empiricas podria ser dificil de representar Sin embargo su carencia idea fisica en el dispositivo real estudiado es una desventaja Circuitos Equivalentes Editar El circuito equivalente de un dispositivo MMIC es una abstraccion y la simplificacion que cede una representacion del dispositivo Esta debe representar adecuadamente todas las caracteristicas fisicas importantes del dispositivo Explotar las relaciones entre los elementos de los circuitos equivalentes y los fisicos del dispositivo sera importante para el modelado del dispositivo Software de modelado Editar El Modeling software MMIC incluye el modelado de dispositivo y el modelado de proceso Ya que hay un numero grande de dispositivos de modeling software disponibles es necesario examinar la compatibilidad del software usado por clientes y la fundicion y entre el usado para el modelado y la simulacion Metodologias de cualificacion EditarEn este apartado se perfila el procedimiento recomendado para el diseno la fabricacion y la aceptacion de espacio calificado como MMICS No se presentan datos especificos para la fiabilidad sino las preguntas que un usuario MMIC deberia pedir del fabricante para asegurar un nivel razonable de la fiabilidad y al mismo tiempo esto trata de presentar al fabricante MMIC las metodologias que han sido aceptadas y practicadas por algunos miembros de la industria en la esperanza que un procedimiento de cualificacion estandar puede desarrollarse Ademas los detalles de esta metodologia de cualificacion dependen del tipo de circuito siendo fabricado y los dispositivos incorporados en el circuito Certificacion de la compania Editar La obtencion de MMICS es a menudo resultado de una sociedad a largo plazo entre el cliente y el fabricante para la obtencion del mismo ambas partes anaden conocimiento y experiencia al proceso para asegurar que la fiabilidad sea la requerida y se obtenga la satisfaccion de los datos especificos de funcionamiento requeridos La relacion se desarrolla despues de que la confianza mutua es establecida Si las partes nunca han trabajado juntas el usuario MMIC todavia puede ganar la confianza necesaria en el fabricante si el fabricante puede demostrar que tiene la documentacion procedimientos y las practicas de direccion que controlan las instalaciones el equipo disenan procesos procesos de fabricacion y el personal Estos articulos son tipicamente la parte de un Programa de Direccion de Calidad total y perfilados en un Plan de Direccion de Calidad Explicando algunos de los apartados mas importantes de la certificacion tenemos Comite examinador de tecnologiaPara asegurar la calidad y la fiabilidad de MMICS los fabricantes deberan tener un comite permanente o se alojaran en el lugar dotados del conocimiento del proceso de fabricacion entero del MMIC y la autoridad para cambiar el proceso si la calidad de las partes no se mantiene Comunmente se llama a este Consejo Comite examinador de Tecnologia Control de la manufacturaLa fabricacion MMIC es un proceso muy complicado que implica muchos materiales y pasos lo que resulta critico cara al funcionamiento del MMIC y su fiabilidad Solo se puede esperar que una linea de produccion correctamente controlada y de forma rutinaria produzca la calidad esperada para los MMIC Asi al cliente se le deberia asegurar que el fabricante solamente utiliza procesos certificados y tecnologias cualificadas en cada intervenir la fabricacion del MMIC del ordenamiento de materiales al embarque transporte del MMIC EntrenamientoIncluso estando bien mantenido y calibrado el equipo no puede producir la calidad MMICs sin operadores expertos Para asegurar las habilidades del personal empleado en el diseno la fabricacion y las pruebas del MMICS cada ingeniero el cientifico y el tecnico deberian tener la educacion el entrenamiento formal en relacion con sus tareas Deberian proporcionar ademas el mantenimiento probando de nuevo y reciclando con regularidad para mantener la habilidad del trabajador sobre todo si el nuevo equipo o procedimientos son presentados en el proceso de la fabricacion Accion del plan correctivoUna de las mejores maneras de mejorar la fiabilidad de los productos manufacturados por partes es poner a prueba y analizar las partes incluida la no retorno de todas las etapas de fabricacion y basandose en las conclusiones que las medidas correctoras a la industria proceso o la educacion de los usuarios MMIC El plan que describen estas acciones correctivas esta documentado normalmente El plan de accion correctiva debe describir los pasos seguidos por el fabricante para corregir cualquier proceso que esta fuera de control o que sea defectuoso y el mecanismo y los plazos que el fabricante seguira para notificar a los clientes posibles problemas de fiabilidad Proceso de cualificacion Editar Verificacion del diseno Editar Diseno modelo y simulacionUna de las mejores maneras de reducir la ingenieria de costos de MMIC y la mejora para verificar la fiabilidad es el diseno modelo y simulacion para la disposicion de las MMIC lo que comienza antes de la fabricacion Durante el ciclo de diseno estas verificaciones se abordan normalmente a traves de una serie de comentarios de diseno que incluyen representantes de todas las empresas que participan con el fabricante y con el futuro uso de la MMIC Ademas los representantes deben proceder de todos los departamentos MMIC que participan en la integracion incluida la de los disenadores personal de la fabricacion el personal de la metrologia de RF los ingenieros disenadores Normalmente los examenes se realizan antes de que se envie a los circuitos de diseno y maquetacion pero antes de la fabricacion de mascaras y despues de esto se realiza la caracterizacion final MMIC Cualificacion del producto Editar Un consumidor espera que el fabricante verifique que sus productos son correctamente disenados El consumidor tambien podria esperar que el fabricante especificase las condiciones medio ambientales para el cual el producto ha sido disenado El fabricante podra asegurar su funcionamiento en estos entornos solo si ha verificado el producto despues de la fabricacion Para MMICs el proceso de obtener todos estos datos se llama cualificacion del producto o validacion del diseno y cada diseno MMIC debe pasar la cualificacion del producto antes de que se ponga a la venta El primer paso en la verificacion del diseno tiene lugar antes de la generacion de la mascara e incluye el diseno la simulacion y la verificacion de la disposicion de los circuitos El resto de la verificacion del diseno incluye la caracterizacion electrica completa del circuito para establecer su funcionamiento analisis de las condiciones ambientales y la caracterizacion electrostatica de la descarga Posteriormente verifica los resultados de la prueba de voltaje y de temperatura Aunque la secuencia de las pruebas puede ser alterada se recomienda que la verificacion del diseno y de la disposicion circuital se realicen primero A continuacion se debe seguir por la verificacion electrica Esto es solo una recomendacion y no todas las pruebas se pueden aplicar a todos los disenos circuitales Todos los participantes en el diseno MMIC fabricacion e integracion del producto final deben estar implicados en la decision de las pruebas requeridas Aceptacion del producto Editar Aunque un MMIC puede ser disenado por ingenieros altamente cualificados ser fabricados en un proceso de linea de produccion cualificado a traves de mediciones y verificado para satisfacer los objetivos de diseno con piezas caracteristicas aun existen problemas de fiabilidad Esto puede ser debido a variaciones en el proceso de fabricacion o fallos que se detectan en el material o por lo que es el caso mas a menudo al paquete MMIC por fallos impuestos al MMIC durante el embalaje Independientemente de la causa estas debilidades se deben encontrar y ser eliminadas antes de que se integren en el sistema Por lo tanto todos los fabricantes de alta fiabilidad de sistemas incluyendo sistemas espaciales requieren la MMICs que superen aceptacion por pantallas cuyo unico proposito es aumentar la confianza en la fiabilidad de la MMICs Hay que tener en cuenta que este paso en la metodologia de calificacion es la principal diferencia entre el espacio cualificado MMICs y de calidad comercial MMICs Pasos para la aceptacion de un producto Editar Estabilizacion Analisis SEM Scanning Electron Microscopy Prueba del enlace Inspeccion visual Pantalla de choque y ciclo de temperatura Pantalla de choque mecanica Aceleracion constante Deteccion de ruido Prueba de escapeAplicaciones EditarLos MMIC se usan en sistemas comunicaciones para la banda de microondas como la telefonia movil o los sistemas de satelite ya que estos requieren circuitos mas pequenos y mas baratos Tambien se utilizan cuando la reactancia parasita inherente a los circuitos integrados hibridos esta degradando el funcionamiento del circuito normalmente esto sucede en el alto espectro de las microondas y en el espectro de las ondas milimetricas Otros sistemas de telecomunicaciones en los que se utiliza tecnologia MMIC son receptores y transmisores para comunicaciones arrays de antenas en fase donde se requiere pequeno tamano y funcionamiento de circuito uniforme sensores y radares que trabajen en altas frecuencias Tecnologia espacial y militar Editar Desde sus comienzos se introdujeron los MMICs de GaAs en varias aplicaciones espaciales y militares de hecho su uso era exclusivo de ambos en estos comienzos convirtiendose en la tecnologia elegida por la NASA y el Departamento de Defensa de Estados Unidos para sistemas de telecomunicacion avanzados El desarrollo de los MMICs ha proseguido hasta el fosfato de indio InP que permite una velocidad de cuatro a diez veces mayor que la anterior tecnologia MMIC y requiere menos potencia algo que tanto la NASA como el Departamento de Defensa estan empezando a considerar Programa SETI Busqueda de Inteligencia Extraterrestre Editar Los MMICs han mostrado ser de utilidad para la creacion de componentes relacionados con el programa SETI El MMIC normalmente solo necesita un par de condensadores emparejados y una resistencia para crear un amplificador de proposito general con impedancia de entrada y salida constantes ganancia fija y una figura de ruido constante sobre un gran rango de frecuencias ademas de ser muy baratos En los laboratorios de la Liga SETI se han estado usando MMICs tanto de silicio Si como de arseniuro de galio GaAs con amplificadores de ruido bajo amplificadores activos amplificadores de frecuencia inmediata IF cadenas locales de osciladores pruebas de senales de origen y en otros dispositivos donde se requiera un bloque de ganancia estable y de banda ancha ACTS Tecnologia Avanzada de Comunicaciones por Satelite Editar Los MMICs han demostrado ser utiles en terminales aeronauticas y en terminales fijos o moviles terrestres relacionados con la Tecnologia Avanzada de Comunicaciones por Satelite ACTS de la NASA Se realizaron pruebas entre mayo de 1994 y mayo de 1995 con MMICs de GaAs transmitiendo a 30 GHz desarrollado por el Centro de Investigacion Lewis de la NASA y por Texas Instruments y receptores de 20 GHz para ACTS por el Laboratorio Rome de la Fuerza Aerea empleando tecnologia de circuitos integrados proporcionada por la compania Boeing y la corporacion Lockheed Martin Las pruebas tenian especial interes tanto para el Gobierno como para aplicaciones comerciales y demostraron la posibilidad de establecer una comunicacion duplex de voz por ejemplo con una terminal aeronautica o con un vehiculo de proposito multiple de gran movilidad HMMWV El exito de estas pruebas basado en cooperacion entre Gobierno e industria y al trabajo en equipo dentro de Lewis supuso un incentivo para continuar la investigacion y desarrollo de la tecnologia de comunicacion por satelite basada en MMIC centrandose en los problemas de empaquetamiento y costes Uso comercial Editar Siguiendo una vision de uso dual Northrop Grumman transformo la tecnologia para uso en amplificadores de potencia para telefonia movil Una de las divisiones de Northrop Grumman es actualmente el proveedor mundial de estos amplificadores de potencia En la actualidad se esta tratando de buscar nuevas aplicaciones comerciales como los sistemas de aviso de colisiones de vehiculos Enlaces de interes Editarhttp www ugr es decacien Planes Electronica Plan 202000 temarios 10011c2 htmhttps web archive org web 20080429201616 http www mmicsolutions com https web archive org web 20091219211409 http biblioteca universia net html bura ficha params id 3996141 htmlhttp www accesomedia com display release html id 44570http www iec csic es ursi articulos villaviciosaodon 2001 articulos 209 pdf enlace roto disponible en Internet Archive vease el historial la primera version y la ultima http www acorde bizhttps web archive org web 20080506020240 http www microwaves101 com encyclopedia mmics cfmhttp parts jpl nasa gov mmic 3 IX PDFhttp www wipo int pctdb en wo jsp IA WO1992005580 amp DISPLAY DESC enlace roto disponible en Internet Archive vease el historial la primera version y la ultima http www tdx cesca es TDX TDR UC TESIS AVAILABLE TDR 0305107 174432 04de10 BAA cap4 pdf enlace roto disponible en Internet Archive vease el historial la primera version y la ultima Datos Q1945036 Multimedia MMICObtenido de https es wikipedia org w index php title MMIC amp oldid 132959217, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos