fbpx
Wikipedia

Teoría del gran impacto

La teoría del gran impacto (en inglés Giant Impact Hypothesis, Big Whack o Big Splash) es la teoría científica más aceptada para explicar la formación de la Luna, que postula que se originó como resultado de una colisión entre la joven Tierra y un protoplaneta del tamaño de Marte, que recibe el nombre de Tea (o Theia)[1]​ u ocasionalmente Orpheus u Orfeo. El nombre de Theia proviene de la mitología griega, ya que Theia o Tea era la titánide madre de la diosa lunar Selene. La hipótesis se planteó por primera vez en una conferencia sobre satélites en 1974 y luego fue publicada en la revista científica Icarus por William K. Hartmann y Donald R. Davis en 1975.

Representación artística del impacto gigante que es la hipótesis de cómo se formó la Luna

Tea

 
El gran impacto visto desde el polo sur terrestre

Una de las hipótesis plantea que Tea se formó en un punto de Lagrange respecto a la Tierra, es decir, aproximadamente en la misma órbita pero 60º por delante (L4) o por detrás (L5).[2]​ Conforme a lo sugerido en el año 1772 por el matemático Joseph-Louis de Lagrange, existen cinco puntos en la órbita terrestre en donde los efectos de la gravedad del planeta se anulan en relación con los del Sol. Dos de los puntos de Lagrange (L4 y L5), situados a 150 millones de kilómetros de la Tierra, son considerados estables y por tanto son zonas con potencial para permitir la acreción planetaria en competición con la Tierra. Fue en el punto L4 donde se piensa que Tea comenzó a formarse en el eón Hadeico.

Cuando el protoplaneta Tea creció hasta un tamaño comparable al de Marte, unos 20 o 30 millones de años después de su formación, se volvió demasiado masivo para permanecer de forma estable en una órbita troyana. La fuerza gravitacional impulsaba a Tea fuera del punto de Lagrange que ocupaba, al mismo tiempo que la fuerza de Coriolis empujaba al protoplaneta de vuelta al mismo. Como consecuencia de ello, su distancia angular a la Tierra comenzó a fluctuar, hasta que Tea tuvo masa suficiente para escapar de L4.

Formación de la Luna

Mientras Tea se encontraba atrapada en la órbita cíclica, la Tierra tuvo tiempo para diferenciar su estructura en el núcleo y manto que actualmente presenta. Tea también podría haber desarrollado alguna estratificación durante su estadio en L4. Cuando Tea creció lo suficiente para escapar del punto de Lagrange, entró en una órbita caótica y la colisión de ambos planetas se hizo inevitable, dado que ambos planetas ocupaban la misma órbita. Se piensa que el impacto pudo haber acontecido unos cientos de años después del escape definitivo. Se ha calculado que esto ocurrió hace 4 533 millones de años; se cree que Tea impactó la Tierra con un ángulo oblicuo a una velocidad de 40 000 km/h, destruyendo Tea y expulsando la mayor parte del manto de Tea y una fracción significativa del manto terrestre hacia el espacio, mientras que el núcleo de Tea se hundió dentro del núcleo terrestre. Ciertos modelos muestran que la colisión entre ambos cuerpos fue rasante y que Tea quedó en una órbita baja, estando unida con la Tierra por un puente de materia; posteriormente se alejó hasta varios diámetros terrestres para volver a chocar con la Tierra y acabar destruido por completo. Las condiciones existentes en el entorno terrestre tras el impacto fueron muy extremas, con el planeta fundido en su totalidad y rodeado por una atmósfera de roca vaporizada a 4000 °C que se extendía hasta una distancia de ocho radios terrestres.

Estimaciones actuales basadas en simulaciones por ordenador de dicho suceso sugieren que el 2% de la masa original de Tea acabó formando un disco de escombros, la mitad del cual se fusionó para formar la Luna entre uno y cien años después del impacto. Independientemente de la rotación e inclinación que tuviera la Tierra antes del impacto, después de este, el día habría tenido una duración aproximada de cinco horas y el ecuador terrestre se habría desplazado más cerca del plano de la órbita lunar.

Es posible, de acuerdo con diversas simulaciones, que se hubieran formado dos satélites a una distancia de 20 000 kilómetros de la Tierra. Sin embargo, la luna interna acabaría colisionando de nuevo con nuestro planeta o chocando con la otra 1 000 años después de su formación. Esta última hipótesis explicaría la diferencia existente entre la cara visible de la Luna y su cara oculta, proponiendo que la segunda luna habría tenido un diámetro aproximado de 1 200 kilómetros —más grande que el planeta enano Ceres— y que se hallaría en uno de los puntos de Lagrange de la órbita lunar de entonces, en el cual permanecería durante millones de años hasta que su órbita se desestabilizó para acabar colisionando con la mayor de las lunas en lo que hoy es la cara oculta. Dicha colisión se habría producido a una velocidad relativamente baja (2-3 km/s), de modo que el objeto impactante no habría formado un cráter sino que, tras el impacto, su destrucción habría cubierto con materiales rocosos el hemisferio alcanzado.[3]

Evidencias

Evidencias indirectas de este escenario de impacto provienen de las rocas recogidas durante las misiones Apolo, que muestran que la abundancia de los isótopos de oxígeno (16O, 17O y 18O) es prácticamente igual a la que existe en la Tierra.[1]​ La composición de la corteza lunar, rica en anortosita, así como la existencia de muestras ricas en KREEP, apoyan la idea de que en un pasado una gran parte de la Luna estuvo fundida, y un gigantesco impacto pudo aportar la energía suficiente para formar un océano de magma de estas características. Distintas evidencias muestran que si la Luna tiene un núcleo rico en hierro, este ha de ser pequeño, menor de un 25% del radio lunar, a diferencia de la mayor parte de los cuerpos terrestres en donde el núcleo supone en torno al 50% del radio total. Las condiciones de un impacto dan lugar a una Luna formada mayoritariamente por los mantos de la Tierra y del cuerpo impactante —con el núcleo de este último agregándose a la Tierra— y satisfacen las restricciones del momento angular del sistema Tierra-Luna.[4]

Dificultades

 
Animación que muestra cómo la órbita de Tea dejó de ser estable para acabar impactando con la Tierra

A pesar de ser la teoría dominante para explicar el origen de la Luna, existen varios interrogantes que no han sido resueltos. Entre estos se incluyen:

  • Las relaciones entre los elementos volátiles en la Luna no son consistentes con la hipótesis del gran impacto. En concreto cabría esperar que la relación entre los elementos rubidio/cesio fuera mayor en la Luna que en la Tierra, ya que el cesio es más volátil que el rubidio, pero el resultado es justamente el contrario.[5]
  • No existe evidencia de que en la Tierra haya existido un océano de magma global (una consecuencia derivada de la hipótesis del gran impacto), y se han encontrado materiales en el manto terrestre que parecen no haber estado nunca en un océano de magma.[5]
  • El contenido del 13% de óxido de hierro (FeO) en la Luna (superior al 8% que tiene el manto terrestre) descarta que el material proto-lunar pueda provenir, excepto en una parte pequeña, del manto de la Tierra.[6]
  • Si la mayor parte del material proto-lunar proviene del cuerpo impactante, la Luna debería estar enriquecida en elementos siderófilos, cuando en realidad es deficiente en ellos.[7]
  • Ciertas simulaciones de la formación de la Luna requieren que la cantidad de momento angular del sistema Tierra-Luna sea aproximadamente el doble que en la actualidad. Sin embargo, estas simulaciones no tienen en cuenta la rotación de la Tierra antes del impacto, por lo que algunos investigadores consideran que esto no es evidencia suficiente para descartar la hipótesis del gran impacto.[8][9]

Véase también

Referencias en texto

  1. U. Wiechert, A. N. Halliday, D.-C. Lee, G. A. Snyder, L. A. Taylor, D. Rumble (2001). «Oxygen Isotopes and the Moon-Forming Giant Impact». Science 294 (5541). p. 345-348. 
  2. Belbruno, E.; Gott III, J. R. (2005). «Where Did The Moon Come From?». The Astronomical Journal 129 (3). p. 1724-1745. 
  3. M. Jutzi, E. Asphaug (2011). . Nature 476. p. 69-72. Archivado desde el original el 26 de septiembre de 2011. 
  4. Canup, R. M.; Asphaug, E. (2001). «Origin of the Moon in a giant impact near the end of the Earth's formation». Nature 412 412. p. 708-712. 
  5. Tests of the Giant Impact Hypothesis, J. H. Jones, Lunar and Planetary Science, Origin of the Earth and Moon Conference, 1998 [1]
  6. The Bulk Composition of the Moon, Stuart R. Taylor, Lunar and Planetary Science, 1997, [2]
  7. Galimov, E. M,; Krivtsov, A. M. (2005). . J. Earth Syst. Sci. 144 (6). p. 593–600. Archivado desde el original el 24 de enero de 2014. 
  8. Canup, Robin (1999). «Big Bang, New Moon». Technology Today. Southwest Research Institute. Consultado el 25 de julio de 2007. 
  9. Taylor, G. Jeffrey (1998). «Origin of the Earth and Moon». Planetary Science Research Discoveries (PSRD). Hawaii Institute of Geophysics & Planetology. Consultado el 25 de julio de 2007. 

Referencias generales

  • LA LUNA. Una biografía. David Whitehouse. Kailas Editorial, 2008.

Enlaces externos

  • Planetary Science Institute: Giant Impact Hypothesis
  • Origin of the Moon por Prof. AGW Cameron
  • Simulaciones Klemperer Rosette (Java)
  • Simulación de la hipótesis del gran impacto. SwRI (.wmv and .mov)
  •   Datos: Q723219
  •   Multimedia: Big Splash

teoría, gran, impacto, teoría, gran, impacto, inglés, giant, impact, hypothesis, whack, splash, teoría, científica, más, aceptada, para, explicar, formación, luna, postula, originó, como, resultado, colisión, entre, joven, tierra, protoplaneta, tamaño, marte, . La teoria del gran impacto en ingles Giant Impact Hypothesis Big Whack o Big Splash es la teoria cientifica mas aceptada para explicar la formacion de la Luna que postula que se origino como resultado de una colision entre la joven Tierra y un protoplaneta del tamano de Marte que recibe el nombre de Tea o Theia 1 u ocasionalmente Orpheus u Orfeo El nombre de Theia proviene de la mitologia griega ya que Theia o Tea era la titanide madre de la diosa lunar Selene La hipotesis se planteo por primera vez en una conferencia sobre satelites en 1974 y luego fue publicada en la revista cientifica Icarus por William K Hartmann y Donald R Davis en 1975 Representacion artistica del impacto gigante que es la hipotesis de como se formo la Luna Indice 1 Tea 2 Formacion de la Luna 3 Evidencias 4 Dificultades 5 Vease tambien 6 Referencias en texto 7 Referencias generales 8 Enlaces externosTea Editar El gran impacto visto desde el polo sur terrestre Una de las hipotesis plantea que Tea se formo en un punto de Lagrange respecto a la Tierra es decir aproximadamente en la misma orbita pero 60º por delante L4 o por detras L5 2 Conforme a lo sugerido en el ano 1772 por el matematico Joseph Louis de Lagrange existen cinco puntos en la orbita terrestre en donde los efectos de la gravedad del planeta se anulan en relacion con los del Sol Dos de los puntos de Lagrange L4 y L5 situados a 150 millones de kilometros de la Tierra son considerados estables y por tanto son zonas con potencial para permitir la acrecion planetaria en competicion con la Tierra Fue en el punto L4 donde se piensa que Tea comenzo a formarse en el eon Hadeico Cuando el protoplaneta Tea crecio hasta un tamano comparable al de Marte unos 20 o 30 millones de anos despues de su formacion se volvio demasiado masivo para permanecer de forma estable en una orbita troyana La fuerza gravitacional impulsaba a Tea fuera del punto de Lagrange que ocupaba al mismo tiempo que la fuerza de Coriolis empujaba al protoplaneta de vuelta al mismo Como consecuencia de ello su distancia angular a la Tierra comenzo a fluctuar hasta que Tea tuvo masa suficiente para escapar de L4 Formacion de la Luna EditarMientras Tea se encontraba atrapada en la orbita ciclica la Tierra tuvo tiempo para diferenciar su estructura en el nucleo y manto que actualmente presenta Tea tambien podria haber desarrollado alguna estratificacion durante su estadio en L4 Cuando Tea crecio lo suficiente para escapar del punto de Lagrange entro en una orbita caotica y la colision de ambos planetas se hizo inevitable dado que ambos planetas ocupaban la misma orbita Se piensa que el impacto pudo haber acontecido unos cientos de anos despues del escape definitivo Se ha calculado que esto ocurrio hace 4 533 millones de anos se cree que Tea impacto la Tierra con un angulo oblicuo a una velocidad de 40 000 km h destruyendo Tea y expulsando la mayor parte del manto de Tea y una fraccion significativa del manto terrestre hacia el espacio mientras que el nucleo de Tea se hundio dentro del nucleo terrestre Ciertos modelos muestran que la colision entre ambos cuerpos fue rasante y que Tea quedo en una orbita baja estando unida con la Tierra por un puente de materia posteriormente se alejo hasta varios diametros terrestres para volver a chocar con la Tierra y acabar destruido por completo Las condiciones existentes en el entorno terrestre tras el impacto fueron muy extremas con el planeta fundido en su totalidad y rodeado por una atmosfera de roca vaporizada a 4000 C que se extendia hasta una distancia de ocho radios terrestres Estimaciones actuales basadas en simulaciones por ordenador de dicho suceso sugieren que el 2 de la masa original de Tea acabo formando un disco de escombros la mitad del cual se fusiono para formar la Luna entre uno y cien anos despues del impacto Independientemente de la rotacion e inclinacion que tuviera la Tierra antes del impacto despues de este el dia habria tenido una duracion aproximada de cinco horas y el ecuador terrestre se habria desplazado mas cerca del plano de la orbita lunar Es posible de acuerdo con diversas simulaciones que se hubieran formado dos satelites a una distancia de 20 000 kilometros de la Tierra Sin embargo la luna interna acabaria colisionando de nuevo con nuestro planeta o chocando con la otra 1 000 anos despues de su formacion Esta ultima hipotesis explicaria la diferencia existente entre la cara visible de la Luna y su cara oculta proponiendo que la segunda luna habria tenido un diametro aproximado de 1 200 kilometros mas grande que el planeta enano Ceres y que se hallaria en uno de los puntos de Lagrange de la orbita lunar de entonces en el cual permaneceria durante millones de anos hasta que su orbita se desestabilizo para acabar colisionando con la mayor de las lunas en lo que hoy es la cara oculta Dicha colision se habria producido a una velocidad relativamente baja 2 3 km s de modo que el objeto impactante no habria formado un crater sino que tras el impacto su destruccion habria cubierto con materiales rocosos el hemisferio alcanzado 3 Evidencias EditarEvidencias indirectas de este escenario de impacto provienen de las rocas recogidas durante las misiones Apolo que muestran que la abundancia de los isotopos de oxigeno 16O 17O y 18O es practicamente igual a la que existe en la Tierra 1 La composicion de la corteza lunar rica en anortosita asi como la existencia de muestras ricas en KREEP apoyan la idea de que en un pasado una gran parte de la Luna estuvo fundida y un gigantesco impacto pudo aportar la energia suficiente para formar un oceano de magma de estas caracteristicas Distintas evidencias muestran que si la Luna tiene un nucleo rico en hierro este ha de ser pequeno menor de un 25 del radio lunar a diferencia de la mayor parte de los cuerpos terrestres en donde el nucleo supone en torno al 50 del radio total Las condiciones de un impacto dan lugar a una Luna formada mayoritariamente por los mantos de la Tierra y del cuerpo impactante con el nucleo de este ultimo agregandose a la Tierra y satisfacen las restricciones del momento angular del sistema Tierra Luna 4 Dificultades Editar Animacion que muestra como la orbita de Tea dejo de ser estable para acabar impactando con la Tierra A pesar de ser la teoria dominante para explicar el origen de la Luna existen varios interrogantes que no han sido resueltos Entre estos se incluyen Las relaciones entre los elementos volatiles en la Luna no son consistentes con la hipotesis del gran impacto En concreto cabria esperar que la relacion entre los elementos rubidio cesio fuera mayor en la Luna que en la Tierra ya que el cesio es mas volatil que el rubidio pero el resultado es justamente el contrario 5 No existe evidencia de que en la Tierra haya existido un oceano de magma global una consecuencia derivada de la hipotesis del gran impacto y se han encontrado materiales en el manto terrestre que parecen no haber estado nunca en un oceano de magma 5 El contenido del 13 de oxido de hierro FeO en la Luna superior al 8 que tiene el manto terrestre descarta que el material proto lunar pueda provenir excepto en una parte pequena del manto de la Tierra 6 Si la mayor parte del material proto lunar proviene del cuerpo impactante la Luna deberia estar enriquecida en elementos siderofilos cuando en realidad es deficiente en ellos 7 Ciertas simulaciones de la formacion de la Luna requieren que la cantidad de momento angular del sistema Tierra Luna sea aproximadamente el doble que en la actualidad Sin embargo estas simulaciones no tienen en cuenta la rotacion de la Tierra antes del impacto por lo que algunos investigadores consideran que esto no es evidencia suficiente para descartar la hipotesis del gran impacto 8 9 Vease tambien EditarGeologia de la Luna KREEP Limite de RocheReferencias en texto Editar a b U Wiechert A N Halliday D C Lee G A Snyder L A Taylor D Rumble 2001 Oxygen Isotopes and the Moon Forming Giant Impact Science 294 5541 p 345 348 Belbruno E Gott III J R 2005 Where Did The Moon Come From The Astronomical Journal 129 3 p 1724 1745 M Jutzi E Asphaug 2011 Forming the lunar farside highlands by accretion of a companion moon Nature 476 p 69 72 Archivado desde el original el 26 de septiembre de 2011 Canup R M Asphaug E 2001 Origin of the Moon in a giant impact near the end of the Earth s formation Nature 412 412 p 708 712 a b Tests of the Giant Impact Hypothesis J H Jones Lunar and Planetary Science Origin of the Earth and Moon Conference 1998 1 The Bulk Composition of the Moon Stuart R Taylor Lunar and Planetary Science 1997 2 Galimov E M Krivtsov A M 2005 Origin of the Earth Moon system J Earth Syst Sci 144 6 p 593 600 Archivado desde el original el 24 de enero de 2014 Canup Robin 1999 Big Bang New Moon Technology Today Southwest Research Institute Consultado el 25 de julio de 2007 Taylor G Jeffrey 1998 Origin of the Earth and Moon Planetary Science Research Discoveries PSRD Hawaii Institute of Geophysics amp Planetology Consultado el 25 de julio de 2007 Referencias generales EditarLA LUNA Una biografia David Whitehouse Kailas Editorial 2008 Enlaces externos EditarPlanetary Science Institute Giant Impact Hypothesis Computer modelling of the Moon s creation Space com Origin of the Moon por Prof AGW Cameron Simulaciones Klemperer Rosette Java Simulacion de la hipotesis del gran impacto SwRI wmv and mov Datos Q723219 Multimedia Big SplashObtenido de https es wikipedia org w index php title Teoria del gran impacto amp oldid 135219678, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos