fbpx
Wikipedia

Escáner 3D

Un escáner 3D es un dispositivo que analiza un objeto o una escena para reunir datos de su forma y ocasionalmente su color. La información obtenida se puede usar para construir modelos digitales tridimensionales que se utilizan en una amplia variedad de aplicaciones. Desarrollados inicialmente en aplicaciones industriales (metrología, automóvil), han encontrado un vasto campo de aplicación en actividades como la arqueología, arquitectura, ingeniería, y entretenimiento (en la producción de películas y videojuegos).

Funcionalidad

El propósito de un escáner 3D es, generalmente, el de crear una nube de puntos a partir de muestras geométricas en la superficie del objeto. Estos puntos se pueden usar entonces para extrapolar la forma del objeto (un proceso llamado reconstrucción). Si la información de color se incluye en cada uno de los puntos, entonces los colores en la superficie del objeto se pueden determinar también.

Los escáneres 3D son distintos a las cámaras. Al igual que éstas, tienen un campo de visión en forma de cono, pero mientras una cámara reúne información de color acerca de las superficies dentro de su campo de visión, los escáneres 3D reúnen información acerca de su geometría. El modelo obtenido por un escáner 3D describe la posición en el espacio tridimensional de cada punto analizado.

Si se define un sistema esférico de coordenadas y se considera que el origen es el escáner, cada punto analizado se asocia con una coordenada φ y θ y con una distancia, que corresponde al componente r. Estas coordenadas esféricas describen completamente la posición tridimensional de cada punto en el modelo, en un sistema de coordenadas local relativo al escáner.

Para la mayoría de las situaciones, un solo escaneo no producirá un modelo completo del objeto. Generalmente se requieren múltiples tomas, incluso centenares, desde muchas direcciones diferentes para obtener información de todos los lados del objeto. Estos escaneos tienen que ser integrados en un sistema común de referencia mediante, un proceso que se llama generalmente alineación, y que transforma las coordenadas locales de cada toma en coordenadas generales del modelo. El proceso completo que va de las tomas individuales a un modelo completo unificado define el flujo de captura de modelo 3D.[1]

Esquema de funcionamiento

  • Mediante un haz láser, el escáner calcula la distancia, desde el emisor hasta un punto de un objeto al alcance de su trayectoria.
  • Mediante un espejo o varios espejos giratorios, barriendo en (x,y) o (φ,θ), el escáner hace incidir dicho haz láser, en una gran cantidad de puntos dentro de una zona del espacio, proporcionando así la distancia a todos esos puntos.
  • La nube de puntos así generada, contiene también información sobre la distancia entre sí de los distintos puntos del objeto
  • Dependiendo de la distancia al objeto, la precisión deseada y el objeto en cuestión, suelen ser necesarias varias tomas.
  • Para producir un modelo 3D, se emplean aplicaciones software que permite orientar las distintas tomas.

Tecnología

Hay dos tipos de escáneres 3D en función de si hay contacto con el objeto o no. Los escáneres 3D sin contacto se pueden dividir además en dos categorías principales: escáneres activos y escáneres pasivos. Hay una variedad de tecnologías que caen bajo cada una de estas categorías.

Contacto

Los escáneres 3D examinan el objeto apoyando el elemento de medida (palpador) sobre la superficie del mismo, típicamente una punta de acero duro o zafiro. Una serie de sensores internos permiten determinar la posición espacial del palpador. Un CMM (Máquina de medición por coordenadas) o un brazo de medición son ejemplos de un escáner de contacto. Se usan en su mayoría en control dimensional en procesos de fabricación y pueden conseguir precisiones típicas de 0,01 mm. Su mayor desventaja es que requiere el contacto físico con el objeto para ser escaneado, por lo que el acto de escanear el objeto quizás lo modifique o lo dañe. Este hecho es crítico cuándo se escanean objetos delicados o valiosos tales como los artefactos históricos. La otra desventaja de los CMMs es que son muy lentos en comparación con los otros métodos que se pueden utilizar para escanear. El movimiento físico del brazo donde se monta el escáner puede ser muy lento y el CMMs más rápido puede sólo operar en unos pocos cientos de hertz. Por contraste, un sistema óptico semejante al de un sistema de escáner de láser puede operar de 10 a 1000 khz.

Sin contacto

Activos

Los escáneres activos emiten alguna clase de señal y analizan su retorno para capturar la geometría de un objeto o una escena. Se utilizan radiaciones electromagnéticas (desde ondas de radio hasta rayos X) o ultrasonidos.

Time of flight (Tiempo de vuelo)
 
Este escáner láser Leica puede ser usado para escanear edificios, formaciones rocosas, etc. y producir un modelo 3D. El equipo rota horizontalmente 360°, y un espejo deflecta el haz de medida hacia arriba y hacia abajo. El rayo láser es usado para medir la distancia al objeto que lo refleje.

Un escáner 3D de tiempo de vuelo determina la distancia a la escena cronometrando el tiempo del viaje de ida y vuelta de un pulso de luz. Un diodo láser emite un pulso de luz y se cronometra el tiempo que pasa hasta que la luz reflejada es vista por un detector. Como la velocidad de la luz C es conocida, el tiempo del viaje de ida y vuelta determina la distancia del viaje de la luz, que es dos veces la distancia entre el escáner y la superficie. Si T es el tiempo del viaje completo, entonces la distancia es igual a (C * T)/2. Claramente la certeza de un escáner láser de tiempo de vuelo 3D depende de la precisión con la que se puede medir el tiempo T: 3,3 picosegundos (aprox.) es el tiempo requerido para que la luz viaje 1 milímetro. Se utilizan láseres visibles (verdes) o invisibles (infrarrojo cercano).

El distanciómetro láser sólo mide la distancia de un punto en su dirección de la escena. Para llevar a cabo la medida completa, el escáner va variando la dirección del distanciómetro tras cada medida, bien moviendo el distanciómetro o deflectando el haz mediante un sistema óptico. Este último método se usa comúnmente porque los pequeños elementos que lo componen pueden ser girados mucho más rápido y con una precisión mayor. Los escáneres láser de tiempo de vuelo típicos pueden medir la distancia de 10 000 ~ 100 000 puntos cada segundo.

Resumen de características:

  • Rápido muestreo.
  • Dispone de un sistema de medición (contador) que se reinicia al alcanzar el objetivo.
  • Suelen ser equipos de alta precisión (submilimétrica).
  • Apto para trabajos de alta precisión en monumentos o elementos constructivos (para el análisis de las deformaciones).
  • Generación de una alta densidad de puntos.
  • Velicidad oscilante entre los 10 000-100 000 puntos por segundo.

Algunos ejemplos de escáneres basados en el tiempo de vuelo:

  • Callidus CP3200
  • Leica ScanStation2
  • Leica C10
  • Mensi GS100/200 (ahora Trimble GX)
  • Optech ILRIS
  • Riegl (toda la gama)
Triangulación
 
Principio de un sensor Láser de triangulación. Se muestra la posición de dos objetos.

El escáner láser de triangulación 3D es también un escáner activo que usa la luz del láser para examinar el entorno. El haz de luz láser incide en el objeto y se usa una cámara para buscar la ubicación del punto del láser. Dependiendo de la distancia a la que el láser golpee una superficie, el punto del láser aparece en lugares diferentes en el sensor de la cámara.

Esta técnica se llama triangulación porque el punto de láser, la cámara y el emisor del láser forman un triángulo. La longitud de un lado del triángulo definido por la cámara y el emisor del láser es conocida. El ángulo del vértice del emisor de láser se sabe también. El ángulo del vértice de la cámara (paralaje) puede ser determinado mirando la ubicación del punto del láser en la cámara. Estos tres valores permiten determinar el resto de las dimensiones del triángulo, y por tanto, la posición de cada punto en el espacio.

La precisión de este sistema de medida puede ser muy elevada (milésimas de milímetro), pero depende del ángulo del vértice opuesto al escáner (cuanto más se aparte de 90º más baja es la precisión), lo que limita el tamaño de la escena a analizar. Dado que ese ángulo depende fuertemente de la distancia entre el emisor láser y la cámara, el aumentar el alcance supone incrementar mucho el tamaño del equipo de medida. En la práctica, el alcance máximo de estos escáneres se limita a 20-30 cm.

En la mayoría de los casos en lugar de un punto de medida se proyecta una línea que barre la superficie del objeto para acelerar el proceso de adquisición.

Algunos ejemplos de escáneres 3D por triangulación:

  • Minolta Vivid

El Consejo Nacional de Investigación de Canadá fue de los primeros institutos en desarrollar la tecnología en la que se basa el escaneo por triangulación en 1978.[2]

Diferencia de fase

Este tercer tipo de escáner mide la diferencia de fase entre la luz emitida y la recibida, y utiliza dicha medida para estimar la distancia al objeto. El haz láser emitido por este tipo de escáner es continuo y de potencia modulada.

El rango y la precisión de este tipo de escáner es intermedio, situándose como una solución entre el largo alcance de los dispositivos de tiempo de vuelo y la alta precisión de los escáneres por triangulación. Su alcance ronda los 200 m en condiciones de poco ruido (baja iluminación ambiente), y su error característico ronda los 2 mm por cada 25 m.

En algunos modelos el alcance está limitado precisamente por su modo de funcionamiento, ya que al modular el haz con una frecuencia constante, existe ambigüedad en la medida de la distancia proporcional a la longitud de onda de la modulación utilizada.

La precisión de la medida también depende de la frecuencia utilizada, pero de manera inversa a como lo hace el alcance, por lo cual estos conceptos son complementarios, y se debe encontrar un punto de compromiso entre ambos, o bien utilizar dos frecuencias distintas (multi-frequency-ranging o MF). De este modo, empleando varias frecuencias de modulación, la frecuencia mayor será la empleada para calcular la distancia al punto, y la menor para resolver la ambigüedad de dicha medida

La velocidad de adquisición es muy alta, consiguiendo los modelos actuales velocidades de escaneo que oscilan entre los 100.000 y 1 millón de puntos por segundo, en función de la precisión requerida. Resumen de las características:

  • Haz continuo y de potencia modulada.
  • Rango y precisión intermedio (100 metros en condiciones de baja iluminación ambiente).
  • Error característico de 2 mm a los 25 m.
  • Alcance limitado por el fenómeno de ambigüedad de la onda en función de la frecuencia utilizada.
  • Posibilidad de establecer un modo de multifrecuencia.
  • Tiempo de adquisición del producto intermedio.
  • Velocidades de escaneo comprendidas entre los 100.000 y el millón de puntos.

Algunos ejemplos de escáneres basados en diferencia de fase:

  • Faro Photon, Zoom
  • Faro Focus 120, 130, 300, 500
  • Trimble CX (mixto, fase y tiempo de vuelo)
  • Trimble FX
  • Z+F Imager 5005, 5010
La holografía conoscópica

Es una técnica interferométrica por la que un haz reflejado en una superficie atraviesa un cristal birrefringente, esto es, un cristal que posee dos índices de refracción, uno ordinario y fijo y otro extraordinadio que es función del ángulo de incidencia del rayo en la superficie del cristal.

Como resultado de atravesar el cristal obtienen dos rayos paralelos que se hacen interferir utilizando para ello una lente cilíndrica, esta interferencia es capturada por el sensor de una cámara convencional obteniendo un patrón de franjas. La frecuencia de esta interferencia determina la distancia del objeto en el que se proyectó el haz. Esta técnica permite la medición de orificios en su configuración colineal, alcanzando precisiones mejores que una micra. La ventaja de esta técnica es que permite utilizar luz no coherente, esto quiere decir que la fuente de iluminación no tiene porqué ser un láser, la única condición es que sea monocromática.

Las aplicaciones de esta técnica son muy variadas, desde la ingeniería inversa hasta la inspección de defectos superficiales en la industria del acero a altas temperaturas. Los sensores de holografía conoscópica son fabricados por Optimet. La holografía conoscópica fue descubierta por Gabriel Sirat y Demetri Psaltis en el año 1985.

La luz estructurada

Los escáneres 3D de luz estructurada proyectan un patrón de luz en el objeto y analizan la deformación del patrón producida por la geometría de la escena. El modelo puede ser unidimensional o de dos dimensiones. Un ejemplo de un modelo unidimensional es una línea. La línea se proyecta sobre el objeto que se analiza con un proyector de LCD o un láser. Una cámara, desviada levemente del proyector de modelo, mira la forma de la línea y usa una técnica semejante a la triangulación para calcular la distancia de cada punto en la línea. En el caso del modelo de una sola línea, la línea se barre a través del campo del panorama para reunir información de distancia una tira a la vez.

Un ejemplo de un modelo bidimensional es una cuadrícula o un modelo de líneas. Una cámara se usa para registrar la deformación del modelo y un algoritmo bastante complejo se usa para calcular la distancia en cada punto en el modelo. Una razón para la complejidad es la ambigüedad. Considere una serie de rayas verticales paralelas de láser que barren horizontalmente a través de un blanco. En el caso más sencillo, uno podría analizar una imagen y asumir que la secuencia izquierda-derecha de rayas refleja la sucesión de los láseres en la serie, así de esta manera la raya de extremo izquierdo de la imagen sea el primer láser, el próximo es el segundo láser, etcétera. En objetivos no triviales que contienen cambio de patrón, hoyos, oclusiones, y de la profundidad, sin embargo, esta secuencia se descompone como rayas que a veces se esconden o pueden aparecer incluso con el orden cambiado, teniendo como resultado la ambigüedad de raya de láser. Este problema particular fue resuelto recientemente por una tecnología de ruptura llamada Multistripe Laser Triangulation (MLT). El escaneo estructurado de luz todavía es un área muy activa de investigación con muchas investigaciones publicadas cada año.

La ventaja de los escáneres 3D de luz estructurada es la velocidad. En vez de escanear un punto a la vez, escanean múltiples puntos o el campo entero del panorama inmediatamente. Esto reduce o elimina el problema de la deformación del movimiento. Algunos sistemas existentes son capaces de escanear objetos en movimiento en tiempo real.[3]

Ver: Escáner de luz estructurada.

La luz modulada

Escáneres 3D de luz modulada emiten una luz continuamente cambiante en el objeto. Generalmente la fuente de luz simplemente cicla su amplitud en un patrón sinodal. Una cámara detecta la luz reflejada y la cantidad que el patrón de luz cambia para determinar la distancia viajada por la luz.

Pasivos

Los escáneres pasivos no emiten ninguna clase de radiación por sí mismos, pero en lugar se fía de detectar la radiación reflejada del ambiente. La mayoría de los escáneres de este tipo detectan la luz visible porque es una radiación ya disponible en el ambiente. Otros tipos de radiación, tal como el infrarrojo podrían ser utilizados también. Los métodos pasivos pueden ser muy baratos, porque en la mayoría de los casos estos no necesitan hardware particular.

Estereoscópicos

Los sistemas estereoscópicos utilizan el mismo principio de la fotogrametría, utilizando la medida de la paralaje entre dos imágenes para determinar la distancia de cada pixel de la imagen. Emplean generalmente dos cámaras de video, levemente separadas, mirando a la misma escena. Analizando las diferencias leves entre las imágenes vistas por cada cámara, es posible determinar la distancia en cada punto en las imágenes. Este método se basa en la visión estereoscópica humana.

Silueta

Estos tipos de escáneres 3D usan bosquejos creados de una sucesión de fotografías alrededor de un objeto tridimensional contra un fondo muy bien contrastado. Estas siluetas se estiran y son cruzadas para formar la aproximación visual de casco del objeto. Con esta clase de técnicas alguna clase de concavidades de un objeto (como el interior de un tazón) no son detectadas.

Con ayuda del usuario (modelado basado en imagen)

Hay otros métodos que, basados en la ayuda del usuario para el descubrimiento e identificación de algunas características y formas en un conjunto de retratos diferentes de un objeto son capaces de construir una aproximación del objeto mismo. Esta clase de técnicas son útiles para construir la aproximación rápida de edificios a semejanza de objetos, formados y sencillos. Varios paquetes comerciales están disponibles como iModeller, el Escultor D o RealViz ImageModeler.

Este tipo de escaneo 3D se basa en los principios de la fotogrametría. Es también algo semejante en la metodología a la fotografía panorámica, excepto que las fotos se toman de un objeto en un espacio tridimensional para replicarlo en vez de tomar una serie de fotos de un punto en un espacio tridimensional para replicar el ambiente circundante.

Reconstrucción y Modelado

Las nubes de puntos producidas por los escáneres 3D pueden ser utilizadas directamente para la medición y la visualización en el mundo de la arquitectura y la construcción. No obstante, la mayoría de las aplicaciones utilizan modelos 3D poligonales, modelos de superficies NURBS, o modelos CAD basados en las características (modelos sólidos).

Modelos de malla de polígonos

En una representación poligonal de una forma, una superficie curva es modelada como muchas pequeñas superficies planas (al igual que una esfera es modelada como una bola de discoteca). El proceso de convertir una nube de puntos en un modelo poligonal 3D se llama reconstrucción. La reconstrucción de modelos poligonales implica encontrar y conectar los puntos adyacentes mediante líneas rectas con el fin de crear una superficie continua.

Los modelos poligonales, también llamados modelos de malla, son útiles para la visualización o para algunas aplicaciones CAM, pero son, en general, "pesados" (archivos de datos muy grandes), y son relativamente difíciles de editar en este formato.

Existen muchas aplicaciones, tanto libres como propietarias, destinadas a este fin: MeshLab, cyclone, kubit PointCloud para AutoCAD, JRC 3D Reconstructor, PhotoModeler, ImageModel, PolyWorks, Rapidform, Geomagic, ImageWare, Rhino, etc.

Modelos de superficies

El siguiente nivel de sofisticación en la modelización implica el uso de un conjunto de pequeñas superficies curvas que unidas entre sí modelan nuestra forma. Estas superficies pueden ser NURBS, T-Splines u otras representaciones de curvas. Utilizando NURBS, nuestra esfera es una esfera matemática verdadera.

Estas superficies tienen la ventaja de ser más ligeras y más fácilmente manipulables cuando se exportan a CAD. Los modelos de superficie son algo más modificables, pero solo en un sentido escultórico de empujar y tirar para deformar la superficie. Esta representación se presta bien al modelado de formas orgánicas o artísticas.

Algunas aplicaciones sólo ofrecen un diseño manual de las curvas, pero las más avanzadas ofrecen tanto manual como automático. Aplicaciones usadas para este modelado son: Rapidform, Geomagic, Rhino, Maya, T Splines, etc.

Modelos sólidos CAD

Desde el punto de vista de la ingeniería y la fabricación, la representación fundamental de una forma digitalizada es el modelo CAD, totalmente editable. Después de todo, el CAD es el "lenguaje común" de la industria para describir, editar y producir la forma de los bienes de una empresa. En CAD, nuestra esfera está descrita por parámetros que son fácilmente editables mediante el cambio de un valor (por ejemplo, el centro de la esfera o su radio).

Estos modelos CAD no describen simplemente el envoltorio o la forma del objeto, sino que también incorporan la "intención del diseño" (es decir, las características fundamentales y su relación con otras funciones). Un ejemplo de la intención del diseño más allá de la forma por sí sola podrían ser los tornillos de un freno de tambor, que deben ser concéntricos con el agujero en el centro del tambor. Este conocimiento podría guiar la secuencia y el método de creación del modelo CAD: Un diseñador con el conocimiento de esta relación, no diseñaría los tornillos referenciados al diámetro exterior, sino que lo haría depender del centro del tambor. Por tanto, un diseñador creando un modelo CAD, incluirá tanto la forma como la finalidad del diseño en el modelo CAD completo.

Distintos enfoques se ofrecen para llegar al modelo CAD. Algunos exportan las superficies NURBS tal cual y dejan que sea el diseñador el que complete el modelo en CAD (por ejemplo, Geomagic, ImageWare, Rhino). Otros utilizan el análisis de los datos para crear un modelo editable basado en las características que se importa en CAD con el árbol de características intacto, produciendo un modelo completo y nativo de CAD, recogiendo tanto la forma como la finalidad del diseño (Geomagic, Rapidform). Mientras que otras aplicaciones de CAD son lo suficientemente robustas como para manipular modelos de un número limitado de puntos o polígonos dentro del entorno CAD (por ejemplo, Catia).

Aplicaciones

Industria

El escáner 3D ha encontrado una aplicación insustituible en el control dimensional de fabricación de componentes que requieren tolerancias muy estrictas, como álabes de turbina, mecanizados de alta precisión, estampación y matricería,... Las piezas se escanean y la nube de puntos se compara con el modelo teórico, permitiendo un control muy minucioso sobre la producción. También se utiliza para "escalar" diseños a partir de modelos creados a mano.

Ingeniería inversa

La ingeniería inversa de un componente mecánico requiere un modelo digital preciso de los objetos a ser reproducido. Antes que un conjunto de los puntos que un modelo digital preciso es representado típicamente por un conjunto de superficies tal como un conjunto de superficies triangulares planas, un conjunto de la planicie o superficies curvas de NURBS, o idealmente para componentes mecánicos un sólido de CAD que se compone de un subconjunto de CAD de superficies de NURBS. Un escáner 3D se puede usar para digitalizar forma libre o componentes formados gradualmente cambiantes de geometrías así como también prismáticas mientras que una CMM es usada generalmente sólo para que determine las dimensiones sencillas de un modelo sumamente prismático. Estos puntos de datos entonces se procesan para crear un usable modelo digital.

Documentación "as built"

Los escáneres 3D permiten obtener modelos precisos de la situación real de un edificio o instalación, de manera que se pueden realizar proyectos de documentación o mantenimiento basados en su situación real. Además, permiten comparar la evolución temporal de un objeto, permitiendo identificar deformaciones, movimientos, etc.

Entretenimiento

Escáneres 3D son usados por la industria del entretenimiento para crear los modelos 3D digitales para películas y videojuegos. En caso de que exista en el mundo real el objeto cuyo modelo se quiere escanear, es mucho más rápido escanear el objeto físico que crear manualmente el modelo 3D por medio de software de modelado. Frecuentemente, los artistas esculpen los modelos físicos de lo que ellos quieren y los escanean en forma digital antes de pasarlos directamente a modelos digitales en una computadora.

Patrimonio cultural

Ha habido muchos proyectos de investigación que emprendieron el escanear sitios y artefactos históricos. La técnica de escaneo láser contribuye a la documentación y mantenimiento de edificaciones, monumentos y otros elementos históricos. Además, puede ser una herramienta para la divulgación de turismo histórico a través de modelos virtuales.

Documentación

Para una documentación completa de la información de un monumento histórico (arqueológico, arquitectónico, etc.) es necesario realizar un levantamiento preciso y en detalle de los distintos elementos que constituyen el objeto de estudio para obtener unos resultados fiables y ajustados a la realidad, así como identificar las distintas patologías que puedan afectar al objeto, como problemas estructurales, deformaciones, etc. Pero la documentación del patrimonio cultural no consiste únicamente en el levantamiento de campo de los datos necesarios para su registro en detalle, sino que también requiere procedimientos necesarios para procesar esta información, su presentación posterior y el archivo de los datos imprescindibles para representar la forma, volumen y tamaño del elemento documentado en un determinado momento de la vida del mismo. Como es cada vez más habitual, la exigencia en la rapidez y precisión en la documentación de los elementos patrimoniales, la tendencia actual es usar como herramientas más avanzadas de documentación geométrica los métodos topográficos y la fotogrametría.

Cada vez se hace más necesario obtener un registro en 3D y con ello, un modelo tridimensional que represente gráficamente tanto la geometría del edificio como el aspecto en que se encuentra. En este sentido ha avanzado en las últimas décadas la aplicación del escáner láser 3D en el campo del patrimonio cultural, que suple huecos de otras técnicas, presentándose como una alternativa eficiente para la documentación de elementos históricos. Así como en la fotogrametría, el escáner láser puede ser utilizado en suelo o aerotransportado. En un mundo donde la información se almacena fundamentalmente en formatos digitales, se hace cada vez más necesario generar sistemas en los que ésta quede archivada en formatos que permitan su conservación en el futuro; un formato que sea además compatible con otro tipo de información digital sobre los sitios analizados (bien sea ésta descriptiva, gráfica, histórica, etc.), con la cual se pueda también relacionar.

Miguel Ángel

En 1999, dos grupos diferentes de investigación comenzaron a escanear estatuas de Miguel Ángel. La Universidad de Stanford con un grupo dirigido por Levoy de Marc usó un escáner láser de triangulación comercial y construido por Cyberware para escudriñar las estatuas de Miguel Ángel en Florencia, notablemente el David, el Prigioni y las cuatro estatuas en la Capilla de Medici. El escaneo produjo una densidad de puntos de datos de una muestra por 0,25 mm, detallado bastante para ver las marcas de cincel de Miguel Ángel. Este detallado escaneo produjo una cantidad inmensa de datos (hasta 32 gigabits) y el procesamiento de los datos de su escaneo llevó 5 meses. Aproximadamente en el mismo período un grupo de investigación de IBM, dirigido por H. Rushmeier y F. Bernardini escaneo la Pietà de Florencia adquiriendo detalles geométricos y de color.[4]

Monticello

En 2002, David Luebke y otros escanearon Monticello.[5]​ Un tipo comercial de escáner de láser de tiempo vuelo, el DeltaSphere 3000, fue usado. Los datos de escáner se combinaron luego con datos de color de fotografías digitales para crear el Monticello Virtual, y se exhibieron en el Museo de Arte de Nueva Orleans en 2003. La exhibición virtual de Monticello simuló una ventana que mira a la Biblioteca Jefferson. La exhibición se compuso de un despliegue de la proyección en una pared y un par de lentes estéreo para el espectador. Las lentes, combinadas con proyectores polarizados, proporcionaron un efecto 3D. La posición rastreando hardware en las lentes permitió que el despliegue adaptara como el espectador circula, creando la ilusión que el despliegue es verdaderamente un hoyo en la pared que mira en la Biblioteca. La exhibición estereógrafa de la barrera (esencialmente un holograma no activo que aparece diferente de ángulos diferentes) del gabinete de Jefferson.

Generación de modelos digitales del terreno y/o elevación

Para muchos, el sistema láser es considerado como una solución completa que llega a reemplazar la fotogrametría. Es prudente que los usuarios de esa tecnología interpreten el láser como siendo otra herramienta más o sensor que ayuda en la solución de problemas específicos de la fotogrametría o de la ingeniería. Así como las imágenes satelitales, de RADAR, o de fotogrametría, los sistemas láser aerotransportados tienen su aplicación apuntada hacia donde sea económicamente viable. Puede proveer resultados muy rápidos y precisos en distintas situaciones donde los métodos convencionales no son los más apropiados.

Hay dos ventajas importantes respecto a los procesos fotogramétricos convencionales. Debido a sus características de operación, el sistema láser aerotransportado sufre menos influencia por las condiciones atmosféricas adversas, como cobertura de nubes y lluvia. Como se trata de luz próxima del espectro visible, interrupciones visuales del pulso son los únicos obstáculos en el proceso. De esa forma, días de poco sol son incluso más propicios para la ejecución de levantamientos láser. Otra ventaja es la rapidez en la captación, o sea, en las operaciones de campo y post relevamiento. El procesamiento de datos crudos independe de servicios adicionales, una vez que son exclusivamente numéricos. En los procesos fotogramétricos, el uso de escáner y estaciones de trabajo tienen importancia fundamental para la derivación de los modelos digitales. En el caso de los sistemas láser aerotransportados, el procesamiento de los datos crudos es la única actividad a ser hecha para la obtención del modelo digital.

Véase también

Referencias

  • C. Teutsch, "Model-based Analysis and Evaluation of Point Sets from Optical 3D Laser Scanners", volume 1. Shaker Verlag, 2007. ISBN 978-3-8322-6775-9
  • François Blais, Michel Picard, Guy Godin, "Accurate 3D acquisition of freely moving objects," Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004, pp.422-429.
  • Qian Chen, Toshikazu Wada, "A light Modulation/Demodulation Method for Real-Time 3D Imaging," Fifth International Conference on 3-D Digital Imaging and Modeling, 2005, pp.15-21.
  • Brian Curless, "From Range Scans to 3D Models," ACM SIGGRAPH Computer Graphics, Vol. 33, Issue 4, Nov 2000, pp.38-41.
  • Joseph P. Lavelle, Stefan R. Schuet, Daniel J. Schuet, "High Speed 3D Scanner with Real-Time 3D Processing," 2004 IEEE International Workshop on Imaging Systems and Techniques, 2004, pp.13-17.
  • Katsushi Lkeuchi, "Modeling from Reality," Third International Conference on 3-D Digital Imaging and Modeling, 2001, pp.117-124.
  1. Fausto Bernardini, Holly E. Rushmeier: The 3D Model Acquisition Pipeline. Comput. Graph. Forum 21(2): 149-172 (2002), (pdf).
  2. Roy Mayer, Scientific Canadian: Invention and Innovation From Canada's National Research Council, Vancouver: Raincoast Books, 1999.
  3. Song Zhang, Peisen Huang, "High-resolution, real-time 3-D shape measurement," Optical Engineering, 2006, pp.123601. (pdf) (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).
  4. Marc Levoy, Jeremy Ginsberg, Jonathan Shade, Duane Fulk, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, "The Digital Michelangelo Project: 3D Scanning of Large Statues," Proceedings of the 27th annual conference on Computer graphics and interactive techniques, 2000, pp.131-144. (pdf)
  5. David Luebke, Christopher Lutz, Rui Wang, and Cliff Woolley, “Scanning Monticello,” 2002, http://www.cs.virginia.edu/Monticello.

Enlaces externos

*Digitalizador Óptico COMET L3D - Distribuidor en México & América Latina

Novedades sobre el funcionamiento del escáner 3D

  • Geomagic Capture (Escáner 3D). CAD Avshmeip, Distribuidor Autorizado México
  • Escáneres 3D de láser u ópticos en México
  • Tabla de comparación de gran número de escáneres 3D
  • Curso de fotografía 3D
  • MeshLab - Programa de código abierto para limpiar las mallas escaneadas
  • Scanalyze - Programa de código abierto para alinear y unir datos de rango
  • DAVID-Laserscanner - Programa gratuito para escaneos láser 3D
  • Manual 3D scanner Descripción de la tecnología de escáner 3D
  •   Datos: Q1775257
  •   Multimedia: 3D Scanner

escáner, escáner, dispositivo, analiza, objeto, escena, para, reunir, datos, forma, ocasionalmente, color, información, obtenida, puede, usar, para, construir, modelos, digitales, tridimensionales, utilizan, amplia, variedad, aplicaciones, desarrollados, inici. Un escaner 3D es un dispositivo que analiza un objeto o una escena para reunir datos de su forma y ocasionalmente su color La informacion obtenida se puede usar para construir modelos digitales tridimensionales que se utilizan en una amplia variedad de aplicaciones Desarrollados inicialmente en aplicaciones industriales metrologia automovil han encontrado un vasto campo de aplicacion en actividades como la arqueologia arquitectura ingenieria y entretenimiento en la produccion de peliculas y videojuegos Indice 1 Funcionalidad 2 Esquema de funcionamiento 3 Tecnologia 3 1 Contacto 3 2 Sin contacto 3 2 1 Activos 3 2 1 1 Time of flight Tiempo de vuelo 3 2 1 2 Triangulacion 3 2 1 3 Diferencia de fase 3 2 1 4 La holografia conoscopica 3 2 1 5 La luz estructurada 3 2 1 6 La luz modulada 3 2 2 Pasivos 3 2 2 1 Estereoscopicos 3 2 2 2 Silueta 3 2 2 3 Con ayuda del usuario modelado basado en imagen 4 Reconstruccion y Modelado 4 1 Modelos de malla de poligonos 4 2 Modelos de superficies 4 3 Modelos solidos CAD 5 Aplicaciones 5 1 Industria 5 2 Ingenieria inversa 5 3 Documentacion as built 5 4 Entretenimiento 5 5 Patrimonio cultural 5 5 1 Documentacion 5 5 2 Miguel Angel 5 5 3 Monticello 5 6 Generacion de modelos digitales del terreno y o elevacion 6 Vease tambien 7 Referencias 8 Enlaces externosFuncionalidad EditarEl proposito de un escaner 3D es generalmente el de crear una nube de puntos a partir de muestras geometricas en la superficie del objeto Estos puntos se pueden usar entonces para extrapolar la forma del objeto un proceso llamado reconstruccion Si la informacion de color se incluye en cada uno de los puntos entonces los colores en la superficie del objeto se pueden determinar tambien Los escaneres 3D son distintos a las camaras Al igual que estas tienen un campo de vision en forma de cono pero mientras una camara reune informacion de color acerca de las superficies dentro de su campo de vision los escaneres 3D reunen informacion acerca de su geometria El modelo obtenido por un escaner 3D describe la posicion en el espacio tridimensional de cada punto analizado Si se define un sistema esferico de coordenadas y se considera que el origen es el escaner cada punto analizado se asocia con una coordenada f y 8 y con una distancia que corresponde al componente r Estas coordenadas esfericas describen completamente la posicion tridimensional de cada punto en el modelo en un sistema de coordenadas local relativo al escaner Para la mayoria de las situaciones un solo escaneo no producira un modelo completo del objeto Generalmente se requieren multiples tomas incluso centenares desde muchas direcciones diferentes para obtener informacion de todos los lados del objeto Estos escaneos tienen que ser integrados en un sistema comun de referencia mediante un proceso que se llama generalmente alineacion y que transforma las coordenadas locales de cada toma en coordenadas generales del modelo El proceso completo que va de las tomas individuales a un modelo completo unificado define el flujo de captura de modelo 3D 1 Esquema de funcionamiento EditarMediante un haz laser el escaner calcula la distancia desde el emisor hasta un punto de un objeto al alcance de su trayectoria Mediante un espejo o varios espejos giratorios barriendo en x y o f 8 el escaner hace incidir dicho haz laser en una gran cantidad de puntos dentro de una zona del espacio proporcionando asi la distancia a todos esos puntos La nube de puntos asi generada contiene tambien informacion sobre la distancia entre si de los distintos puntos del objeto Dependiendo de la distancia al objeto la precision deseada y el objeto en cuestion suelen ser necesarias varias tomas Para producir un modelo 3D se emplean aplicaciones software que permite orientar las distintas tomas Tecnologia EditarHay dos tipos de escaneres 3D en funcion de si hay contacto con el objeto o no Los escaneres 3D sin contacto se pueden dividir ademas en dos categorias principales escaneres activos y escaneres pasivos Hay una variedad de tecnologias que caen bajo cada una de estas categorias Contacto Editar Los escaneres 3D examinan el objeto apoyando el elemento de medida palpador sobre la superficie del mismo tipicamente una punta de acero duro o zafiro Una serie de sensores internos permiten determinar la posicion espacial del palpador Un CMM Maquina de medicion por coordenadas o un brazo de medicion son ejemplos de un escaner de contacto Se usan en su mayoria en control dimensional en procesos de fabricacion y pueden conseguir precisiones tipicas de 0 01 mm Su mayor desventaja es que requiere el contacto fisico con el objeto para ser escaneado por lo que el acto de escanear el objeto quizas lo modifique o lo dane Este hecho es critico cuando se escanean objetos delicados o valiosos tales como los artefactos historicos La otra desventaja de los CMMs es que son muy lentos en comparacion con los otros metodos que se pueden utilizar para escanear El movimiento fisico del brazo donde se monta el escaner puede ser muy lento y el CMMs mas rapido puede solo operar en unos pocos cientos de hertz Por contraste un sistema optico semejante al de un sistema de escaner de laser puede operar de 10 a 1000 khz Sin contacto Editar Activos Editar Los escaneres activos emiten alguna clase de senal y analizan su retorno para capturar la geometria de un objeto o una escena Se utilizan radiaciones electromagneticas desde ondas de radio hasta rayos X o ultrasonidos Time of flight Tiempo de vuelo Editar Este escaner laser Leica puede ser usado para escanear edificios formaciones rocosas etc y producir un modelo 3D El equipo rota horizontalmente 360 y un espejo deflecta el haz de medida hacia arriba y hacia abajo El rayo laser es usado para medir la distancia al objeto que lo refleje Un escaner 3D de tiempo de vuelo determina la distancia a la escena cronometrando el tiempo del viaje de ida y vuelta de un pulso de luz Un diodo laser emite un pulso de luz y se cronometra el tiempo que pasa hasta que la luz reflejada es vista por un detector Como la velocidad de la luz C es conocida el tiempo del viaje de ida y vuelta determina la distancia del viaje de la luz que es dos veces la distancia entre el escaner y la superficie Si T es el tiempo del viaje completo entonces la distancia es igual a C T 2 Claramente la certeza de un escaner laser de tiempo de vuelo 3D depende de la precision con la que se puede medir el tiempo T 3 3 picosegundos aprox es el tiempo requerido para que la luz viaje 1 milimetro Se utilizan laseres visibles verdes o invisibles infrarrojo cercano El distanciometro laser solo mide la distancia de un punto en su direccion de la escena Para llevar a cabo la medida completa el escaner va variando la direccion del distanciometro tras cada medida bien moviendo el distanciometro o deflectando el haz mediante un sistema optico Este ultimo metodo se usa comunmente porque los pequenos elementos que lo componen pueden ser girados mucho mas rapido y con una precision mayor Los escaneres laser de tiempo de vuelo tipicos pueden medir la distancia de 10 000 100 000 puntos cada segundo Resumen de caracteristicas Rapido muestreo Dispone de un sistema de medicion contador que se reinicia al alcanzar el objetivo Suelen ser equipos de alta precision submilimetrica Apto para trabajos de alta precision en monumentos o elementos constructivos para el analisis de las deformaciones Generacion de una alta densidad de puntos Velicidad oscilante entre los 10 000 100 000 puntos por segundo Algunos ejemplos de escaneres basados en el tiempo de vuelo Callidus CP3200 Leica ScanStation2 Leica C10 Mensi GS100 200 ahora Trimble GX Optech ILRIS Riegl toda la gama Triangulacion Editar Principio de un sensor Laser de triangulacion Se muestra la posicion de dos objetos El escaner laser de triangulacion 3D es tambien un escaner activo que usa la luz del laser para examinar el entorno El haz de luz laser incide en el objeto y se usa una camara para buscar la ubicacion del punto del laser Dependiendo de la distancia a la que el laser golpee una superficie el punto del laser aparece en lugares diferentes en el sensor de la camara Esta tecnica se llama triangulacion porque el punto de laser la camara y el emisor del laser forman un triangulo La longitud de un lado del triangulo definido por la camara y el emisor del laser es conocida El angulo del vertice del emisor de laser se sabe tambien El angulo del vertice de la camara paralaje puede ser determinado mirando la ubicacion del punto del laser en la camara Estos tres valores permiten determinar el resto de las dimensiones del triangulo y por tanto la posicion de cada punto en el espacio La precision de este sistema de medida puede ser muy elevada milesimas de milimetro pero depende del angulo del vertice opuesto al escaner cuanto mas se aparte de 90º mas baja es la precision lo que limita el tamano de la escena a analizar Dado que ese angulo depende fuertemente de la distancia entre el emisor laser y la camara el aumentar el alcance supone incrementar mucho el tamano del equipo de medida En la practica el alcance maximo de estos escaneres se limita a 20 30 cm En la mayoria de los casos en lugar de un punto de medida se proyecta una linea que barre la superficie del objeto para acelerar el proceso de adquisicion Algunos ejemplos de escaneres 3D por triangulacion Minolta VividEl Consejo Nacional de Investigacion de Canada fue de los primeros institutos en desarrollar la tecnologia en la que se basa el escaneo por triangulacion en 1978 2 Diferencia de fase Editar Este tercer tipo de escaner mide la diferencia de fase entre la luz emitida y la recibida y utiliza dicha medida para estimar la distancia al objeto El haz laser emitido por este tipo de escaner es continuo y de potencia modulada El rango y la precision de este tipo de escaner es intermedio situandose como una solucion entre el largo alcance de los dispositivos de tiempo de vuelo y la alta precision de los escaneres por triangulacion Su alcance ronda los 200 m en condiciones de poco ruido baja iluminacion ambiente y su error caracteristico ronda los 2 mm por cada 25 m En algunos modelos el alcance esta limitado precisamente por su modo de funcionamiento ya que al modular el haz con una frecuencia constante existe ambiguedad en la medida de la distancia proporcional a la longitud de onda de la modulacion utilizada La precision de la medida tambien depende de la frecuencia utilizada pero de manera inversa a como lo hace el alcance por lo cual estos conceptos son complementarios y se debe encontrar un punto de compromiso entre ambos o bien utilizar dos frecuencias distintas multi frequency ranging o MF De este modo empleando varias frecuencias de modulacion la frecuencia mayor sera la empleada para calcular la distancia al punto y la menor para resolver la ambiguedad de dicha medidaLa velocidad de adquisicion es muy alta consiguiendo los modelos actuales velocidades de escaneo que oscilan entre los 100 000 y 1 millon de puntos por segundo en funcion de la precision requerida Resumen de las caracteristicas Haz continuo y de potencia modulada Rango y precision intermedio 100 metros en condiciones de baja iluminacion ambiente Error caracteristico de 2 mm a los 25 m Alcance limitado por el fenomeno de ambiguedad de la onda en funcion de la frecuencia utilizada Posibilidad de establecer un modo de multifrecuencia Tiempo de adquisicion del producto intermedio Velocidades de escaneo comprendidas entre los 100 000 y el millon de puntos Algunos ejemplos de escaneres basados en diferencia de fase Faro Photon Zoom Faro Focus 120 130 300 500 Trimble CX mixto fase y tiempo de vuelo Trimble FX Z F Imager 5005 5010La holografia conoscopica Editar Es una tecnica interferometrica por la que un haz reflejado en una superficie atraviesa un cristal birrefringente esto es un cristal que posee dos indices de refraccion uno ordinario y fijo y otro extraordinadio que es funcion del angulo de incidencia del rayo en la superficie del cristal Como resultado de atravesar el cristal obtienen dos rayos paralelos que se hacen interferir utilizando para ello una lente cilindrica esta interferencia es capturada por el sensor de una camara convencional obteniendo un patron de franjas La frecuencia de esta interferencia determina la distancia del objeto en el que se proyecto el haz Esta tecnica permite la medicion de orificios en su configuracion colineal alcanzando precisiones mejores que una micra La ventaja de esta tecnica es que permite utilizar luz no coherente esto quiere decir que la fuente de iluminacion no tiene porque ser un laser la unica condicion es que sea monocromatica Las aplicaciones de esta tecnica son muy variadas desde la ingenieria inversa hasta la inspeccion de defectos superficiales en la industria del acero a altas temperaturas Los sensores de holografia conoscopica son fabricados por Optimet La holografia conoscopica fue descubierta por Gabriel Sirat y Demetri Psaltis en el ano 1985 La luz estructurada Editar Los escaneres 3D de luz estructurada proyectan un patron de luz en el objeto y analizan la deformacion del patron producida por la geometria de la escena El modelo puede ser unidimensional o de dos dimensiones Un ejemplo de un modelo unidimensional es una linea La linea se proyecta sobre el objeto que se analiza con un proyector de LCD o un laser Una camara desviada levemente del proyector de modelo mira la forma de la linea y usa una tecnica semejante a la triangulacion para calcular la distancia de cada punto en la linea En el caso del modelo de una sola linea la linea se barre a traves del campo del panorama para reunir informacion de distancia una tira a la vez Un ejemplo de un modelo bidimensional es una cuadricula o un modelo de lineas Una camara se usa para registrar la deformacion del modelo y un algoritmo bastante complejo se usa para calcular la distancia en cada punto en el modelo Una razon para la complejidad es la ambiguedad Considere una serie de rayas verticales paralelas de laser que barren horizontalmente a traves de un blanco En el caso mas sencillo uno podria analizar una imagen y asumir que la secuencia izquierda derecha de rayas refleja la sucesion de los laseres en la serie asi de esta manera la raya de extremo izquierdo de la imagen sea el primer laser el proximo es el segundo laser etcetera En objetivos no triviales que contienen cambio de patron hoyos oclusiones y de la profundidad sin embargo esta secuencia se descompone como rayas que a veces se esconden o pueden aparecer incluso con el orden cambiado teniendo como resultado la ambiguedad de raya de laser Este problema particular fue resuelto recientemente por una tecnologia de ruptura llamada Multistripe Laser Triangulation MLT El escaneo estructurado de luz todavia es un area muy activa de investigacion con muchas investigaciones publicadas cada ano La ventaja de los escaneres 3D de luz estructurada es la velocidad En vez de escanear un punto a la vez escanean multiples puntos o el campo entero del panorama inmediatamente Esto reduce o elimina el problema de la deformacion del movimiento Algunos sistemas existentes son capaces de escanear objetos en movimiento en tiempo real 3 Ver Escaner de luz estructurada La luz modulada Editar Escaneres 3D de luz modulada emiten una luz continuamente cambiante en el objeto Generalmente la fuente de luz simplemente cicla su amplitud en un patron sinodal Una camara detecta la luz reflejada y la cantidad que el patron de luz cambia para determinar la distancia viajada por la luz Pasivos Editar Los escaneres pasivos no emiten ninguna clase de radiacion por si mismos pero en lugar se fia de detectar la radiacion reflejada del ambiente La mayoria de los escaneres de este tipo detectan la luz visible porque es una radiacion ya disponible en el ambiente Otros tipos de radiacion tal como el infrarrojo podrian ser utilizados tambien Los metodos pasivos pueden ser muy baratos porque en la mayoria de los casos estos no necesitan hardware particular Estereoscopicos Editar Los sistemas estereoscopicos utilizan el mismo principio de la fotogrametria utilizando la medida de la paralaje entre dos imagenes para determinar la distancia de cada pixel de la imagen Emplean generalmente dos camaras de video levemente separadas mirando a la misma escena Analizando las diferencias leves entre las imagenes vistas por cada camara es posible determinar la distancia en cada punto en las imagenes Este metodo se basa en la vision estereoscopica humana Silueta Editar Estos tipos de escaneres 3D usan bosquejos creados de una sucesion de fotografias alrededor de un objeto tridimensional contra un fondo muy bien contrastado Estas siluetas se estiran y son cruzadas para formar la aproximacion visual de casco del objeto Con esta clase de tecnicas alguna clase de concavidades de un objeto como el interior de un tazon no son detectadas Con ayuda del usuario modelado basado en imagen Editar Hay otros metodos que basados en la ayuda del usuario para el descubrimiento e identificacion de algunas caracteristicas y formas en un conjunto de retratos diferentes de un objeto son capaces de construir una aproximacion del objeto mismo Esta clase de tecnicas son utiles para construir la aproximacion rapida de edificios a semejanza de objetos formados y sencillos Varios paquetes comerciales estan disponibles como iModeller el Escultor D o RealViz ImageModeler Este tipo de escaneo 3D se basa en los principios de la fotogrametria Es tambien algo semejante en la metodologia a la fotografia panoramica excepto que las fotos se toman de un objeto en un espacio tridimensional para replicarlo en vez de tomar una serie de fotos de un punto en un espacio tridimensional para replicar el ambiente circundante Reconstruccion y Modelado EditarLas nubes de puntos producidas por los escaneres 3D pueden ser utilizadas directamente para la medicion y la visualizacion en el mundo de la arquitectura y la construccion No obstante la mayoria de las aplicaciones utilizan modelos 3D poligonales modelos de superficies NURBS o modelos CAD basados en las caracteristicas modelos solidos Modelos de malla de poligonos Editar En una representacion poligonal de una forma una superficie curva es modelada como muchas pequenas superficies planas al igual que una esfera es modelada como una bola de discoteca El proceso de convertir una nube de puntos en un modelo poligonal 3D se llama reconstruccion La reconstruccion de modelos poligonales implica encontrar y conectar los puntos adyacentes mediante lineas rectas con el fin de crear una superficie continua Los modelos poligonales tambien llamados modelos de malla son utiles para la visualizacion o para algunas aplicaciones CAM pero son en general pesados archivos de datos muy grandes y son relativamente dificiles de editar en este formato Existen muchas aplicaciones tanto libres como propietarias destinadas a este fin MeshLab cyclone kubit PointCloud para AutoCAD JRC 3D Reconstructor PhotoModeler ImageModel PolyWorks Rapidform Geomagic ImageWare Rhino etc Modelos de superficies Editar El siguiente nivel de sofisticacion en la modelizacion implica el uso de un conjunto de pequenas superficies curvas que unidas entre si modelan nuestra forma Estas superficies pueden ser NURBS T Splines u otras representaciones de curvas Utilizando NURBS nuestra esfera es una esfera matematica verdadera Estas superficies tienen la ventaja de ser mas ligeras y mas facilmente manipulables cuando se exportan a CAD Los modelos de superficie son algo mas modificables pero solo en un sentido escultorico de empujar y tirar para deformar la superficie Esta representacion se presta bien al modelado de formas organicas o artisticas Algunas aplicaciones solo ofrecen un diseno manual de las curvas pero las mas avanzadas ofrecen tanto manual como automatico Aplicaciones usadas para este modelado son Rapidform Geomagic Rhino Maya T Splines etc Modelos solidos CAD Editar Desde el punto de vista de la ingenieria y la fabricacion la representacion fundamental de una forma digitalizada es el modelo CAD totalmente editable Despues de todo el CAD es el lenguaje comun de la industria para describir editar y producir la forma de los bienes de una empresa En CAD nuestra esfera esta descrita por parametros que son facilmente editables mediante el cambio de un valor por ejemplo el centro de la esfera o su radio Estos modelos CAD no describen simplemente el envoltorio o la forma del objeto sino que tambien incorporan la intencion del diseno es decir las caracteristicas fundamentales y su relacion con otras funciones Un ejemplo de la intencion del diseno mas alla de la forma por si sola podrian ser los tornillos de un freno de tambor que deben ser concentricos con el agujero en el centro del tambor Este conocimiento podria guiar la secuencia y el metodo de creacion del modelo CAD Un disenador con el conocimiento de esta relacion no disenaria los tornillos referenciados al diametro exterior sino que lo haria depender del centro del tambor Por tanto un disenador creando un modelo CAD incluira tanto la forma como la finalidad del diseno en el modelo CAD completo Distintos enfoques se ofrecen para llegar al modelo CAD Algunos exportan las superficies NURBS tal cual y dejan que sea el disenador el que complete el modelo en CAD por ejemplo Geomagic ImageWare Rhino Otros utilizan el analisis de los datos para crear un modelo editable basado en las caracteristicas que se importa en CAD con el arbol de caracteristicas intacto produciendo un modelo completo y nativo de CAD recogiendo tanto la forma como la finalidad del diseno Geomagic Rapidform Mientras que otras aplicaciones de CAD son lo suficientemente robustas como para manipular modelos de un numero limitado de puntos o poligonos dentro del entorno CAD por ejemplo Catia Aplicaciones EditarIndustria Editar El escaner 3D ha encontrado una aplicacion insustituible en el control dimensional de fabricacion de componentes que requieren tolerancias muy estrictas como alabes de turbina mecanizados de alta precision estampacion y matriceria Las piezas se escanean y la nube de puntos se compara con el modelo teorico permitiendo un control muy minucioso sobre la produccion Tambien se utiliza para escalar disenos a partir de modelos creados a mano Ingenieria inversa Editar La ingenieria inversa de un componente mecanico requiere un modelo digital preciso de los objetos a ser reproducido Antes que un conjunto de los puntos que un modelo digital preciso es representado tipicamente por un conjunto de superficies tal como un conjunto de superficies triangulares planas un conjunto de la planicie o superficies curvas de NURBS o idealmente para componentes mecanicos un solido de CAD que se compone de un subconjunto de CAD de superficies de NURBS Un escaner 3D se puede usar para digitalizar forma libre o componentes formados gradualmente cambiantes de geometrias asi como tambien prismaticas mientras que una CMM es usada generalmente solo para que determine las dimensiones sencillas de un modelo sumamente prismatico Estos puntos de datos entonces se procesan para crear un usable modelo digital Documentacion as built Editar Los escaneres 3D permiten obtener modelos precisos de la situacion real de un edificio o instalacion de manera que se pueden realizar proyectos de documentacion o mantenimiento basados en su situacion real Ademas permiten comparar la evolucion temporal de un objeto permitiendo identificar deformaciones movimientos etc Entretenimiento Editar Escaneres 3D son usados por la industria del entretenimiento para crear los modelos 3D digitales para peliculas y videojuegos En caso de que exista en el mundo real el objeto cuyo modelo se quiere escanear es mucho mas rapido escanear el objeto fisico que crear manualmente el modelo 3D por medio de software de modelado Frecuentemente los artistas esculpen los modelos fisicos de lo que ellos quieren y los escanean en forma digital antes de pasarlos directamente a modelos digitales en una computadora Patrimonio cultural Editar Ha habido muchos proyectos de investigacion que emprendieron el escanear sitios y artefactos historicos La tecnica de escaneo laser contribuye a la documentacion y mantenimiento de edificaciones monumentos y otros elementos historicos Ademas puede ser una herramienta para la divulgacion de turismo historico a traves de modelos virtuales Documentacion Editar Para una documentacion completa de la informacion de un monumento historico arqueologico arquitectonico etc es necesario realizar un levantamiento preciso y en detalle de los distintos elementos que constituyen el objeto de estudio para obtener unos resultados fiables y ajustados a la realidad asi como identificar las distintas patologias que puedan afectar al objeto como problemas estructurales deformaciones etc Pero la documentacion del patrimonio cultural no consiste unicamente en el levantamiento de campo de los datos necesarios para su registro en detalle sino que tambien requiere procedimientos necesarios para procesar esta informacion su presentacion posterior y el archivo de los datos imprescindibles para representar la forma volumen y tamano del elemento documentado en un determinado momento de la vida del mismo Como es cada vez mas habitual la exigencia en la rapidez y precision en la documentacion de los elementos patrimoniales la tendencia actual es usar como herramientas mas avanzadas de documentacion geometrica los metodos topograficos y la fotogrametria Cada vez se hace mas necesario obtener un registro en 3D y con ello un modelo tridimensional que represente graficamente tanto la geometria del edificio como el aspecto en que se encuentra En este sentido ha avanzado en las ultimas decadas la aplicacion del escaner laser 3D en el campo del patrimonio cultural que suple huecos de otras tecnicas presentandose como una alternativa eficiente para la documentacion de elementos historicos Asi como en la fotogrametria el escaner laser puede ser utilizado en suelo o aerotransportado En un mundo donde la informacion se almacena fundamentalmente en formatos digitales se hace cada vez mas necesario generar sistemas en los que esta quede archivada en formatos que permitan su conservacion en el futuro un formato que sea ademas compatible con otro tipo de informacion digital sobre los sitios analizados bien sea esta descriptiva grafica historica etc con la cual se pueda tambien relacionar Miguel Angel Editar En 1999 dos grupos diferentes de investigacion comenzaron a escanear estatuas de Miguel Angel La Universidad de Stanford con un grupo dirigido por Levoy de Marc uso un escaner laser de triangulacion comercial y construido por Cyberware para escudrinar las estatuas de Miguel Angel en Florencia notablemente el David el Prigioni y las cuatro estatuas en la Capilla de Medici El escaneo produjo una densidad de puntos de datos de una muestra por 0 25 mm detallado bastante para ver las marcas de cincel de Miguel Angel Este detallado escaneo produjo una cantidad inmensa de datos hasta 32 gigabits y el procesamiento de los datos de su escaneo llevo 5 meses Aproximadamente en el mismo periodo un grupo de investigacion de IBM dirigido por H Rushmeier y F Bernardini escaneo la Pieta de Florencia adquiriendo detalles geometricos y de color 4 Monticello Editar En 2002 David Luebke y otros escanearon Monticello 5 Un tipo comercial de escaner de laser de tiempo vuelo el DeltaSphere 3000 fue usado Los datos de escaner se combinaron luego con datos de color de fotografias digitales para crear el Monticello Virtual y se exhibieron en el Museo de Arte de Nueva Orleans en 2003 La exhibicion virtual de Monticello simulo una ventana que mira a la Biblioteca Jefferson La exhibicion se compuso de un despliegue de la proyeccion en una pared y un par de lentes estereo para el espectador Las lentes combinadas con proyectores polarizados proporcionaron un efecto 3D La posicion rastreando hardware en las lentes permitio que el despliegue adaptara como el espectador circula creando la ilusion que el despliegue es verdaderamente un hoyo en la pared que mira en la Biblioteca La exhibicion estereografa de la barrera esencialmente un holograma no activo que aparece diferente de angulos diferentes del gabinete de Jefferson Generacion de modelos digitales del terreno y o elevacion Editar Para muchos el sistema laser es considerado como una solucion completa que llega a reemplazar la fotogrametria Es prudente que los usuarios de esa tecnologia interpreten el laser como siendo otra herramienta mas o sensor que ayuda en la solucion de problemas especificos de la fotogrametria o de la ingenieria Asi como las imagenes satelitales de RADAR o de fotogrametria los sistemas laser aerotransportados tienen su aplicacion apuntada hacia donde sea economicamente viable Puede proveer resultados muy rapidos y precisos en distintas situaciones donde los metodos convencionales no son los mas apropiados Hay dos ventajas importantes respecto a los procesos fotogrametricos convencionales Debido a sus caracteristicas de operacion el sistema laser aerotransportado sufre menos influencia por las condiciones atmosfericas adversas como cobertura de nubes y lluvia Como se trata de luz proxima del espectro visible interrupciones visuales del pulso son los unicos obstaculos en el proceso De esa forma dias de poco sol son incluso mas propicios para la ejecucion de levantamientos laser Otra ventaja es la rapidez en la captacion o sea en las operaciones de campo y post relevamiento El procesamiento de datos crudos independe de servicios adicionales una vez que son exclusivamente numericos En los procesos fotogrametricos el uso de escaner y estaciones de trabajo tienen importancia fundamental para la derivacion de los modelos digitales En el caso de los sistemas laser aerotransportados el procesamiento de los datos crudos es la unica actividad a ser hecha para la obtencion del modelo digital Vease tambien EditarGraficos 3D por computadora LidarReferencias EditarC Teutsch Model based Analysis and Evaluation of Point Sets from Optical 3D Laser Scanners volume 1 Shaker Verlag 2007 ISBN 978 3 8322 6775 9 Francois Blais Michel Picard Guy Godin Accurate 3D acquisition of freely moving objects Proceedings 2nd International Symposium on 3D Data Processing Visualization and Transmission 2004 pp 422 429 Qian Chen Toshikazu Wada A light Modulation Demodulation Method for Real Time 3D Imaging Fifth International Conference on 3 D Digital Imaging and Modeling 2005 pp 15 21 Brian Curless From Range Scans to 3D Models ACM SIGGRAPH Computer Graphics Vol 33 Issue 4 Nov 2000 pp 38 41 Joseph P Lavelle Stefan R Schuet Daniel J Schuet High Speed 3D Scanner with Real Time 3D Processing 2004 IEEE International Workshop on Imaging Systems and Techniques 2004 pp 13 17 Katsushi Lkeuchi Modeling from Reality Third International Conference on 3 D Digital Imaging and Modeling 2001 pp 117 124 Fausto Bernardini Holly E Rushmeier The 3D Model Acquisition Pipeline Comput Graph Forum 21 2 149 172 2002 pdf Roy Mayer Scientific Canadian Invention and Innovation From Canada s National Research Council Vancouver Raincoast Books 1999 Song Zhang Peisen Huang High resolution real time 3 D shape measurement Optical Engineering 2006 pp 123601 pdf enlace roto disponible en Internet Archive vease el historial la primera version y la ultima Marc Levoy Jeremy Ginsberg Jonathan Shade Duane Fulk Kari Pulli Brian Curless Szymon Rusinkiewicz David Koller Lucas Pereira Matt Ginzton Sean Anderson James Davis The Digital Michelangelo Project 3D Scanning of Large Statues Proceedings of the 27th annual conference on Computer graphics and interactive techniques 2000 pp 131 144 pdf David Luebke Christopher Lutz Rui Wang and Cliff Woolley Scanning Monticello 2002 http www cs virginia edu Monticello Enlaces externos Editar Digitalizador optico COMET L3D Distribuidor en Mexico amp America LatinaNovedades sobre el funcionamiento del escaner 3D Geomagic Capture Escaner 3D CAD Avshmeip Distribuidor Autorizado Mexico Escaneres 3D de laser u opticos en Mexico Tabla de comparacion de gran numero de escaneres 3D Curso de fotografia 3D MeshLab Programa de codigo abierto para limpiar las mallas escaneadas Scanalyze Programa de codigo abierto para alinear y unir datos de rango DAVID Laserscanner Programa gratuito para escaneos laser 3D Manual 3D scanner Descripcion de la tecnologia de escaner 3D Datos Q1775257 Multimedia 3D ScannerObtenido de https es wikipedia org w index php title Escaner 3D amp oldid 129254879, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos