fbpx
Wikipedia

Efecto Bohr

El efecto Bohr es una propiedad de la hemoglobina descrita por primera vez en 1904 por el fisiólogo danés Christian Bohr (padre del físico Niels Bohr), que establece que a un pH menor (más ácido, más hidrogeniones), la hemoglobina se unirá al oxígeno con menos afinidad. Puesto que el dióxido de carbono está directamente relacionado con la concentración de hidrogeniones (iones H), liberados en la disociación del H2CO3 a iones HCO3- más iones H que conduce finalmente a una disminución de la afinidad por el oxígeno de la hemoglobina.[1][2][3]

Curva de disociación de la hemoglobina. La línea roja punteada corresponde al desplazamiento hacia la derecha causado por el efecto Bohr.

Acoplamiento del hidrón y del oxígeno

En la desoxihemoglobina (hemoglobina reducida), la N-terminal de los grupos amino de las subunidades α y el C-terminal de la histidina de la subunidad β participan en las interacciones iónicas. La formación de pares iónicos hace que aumente la acidez.

Así, la desoxihemoglobina une un hidrón por cada dos O2 liberados.

En la oxihemoglobina, estos pares iónicos están ausentes y, por lo tanto, disminuye la acidez. Consecuentemente, un hidrón se libera por cada dos O2 unidos.

En concreto, este acoplamiento recíproco de los protones y el oxígeno es el efecto Bohr.

Papel fisiológico

Este efecto facilita el transporte de oxígeno cuando este gas se une a la hemoglobina en los pulmones, para posteriormente liberarlo en los tejidos, especialmente en aquellos que más lo necesitan. Cuando aumenta la tasa metabólica de los tejidos, su producción de dióxido de carbono aumenta. El dióxido de carbono forma bicarbonato mediante la siguiente reacción:

CO2 + H2O   H2CO3   H+ + HCO3-

Aunque la reacción suele ser lenta, las enzimas de la familia de la anhidrasa carbónica en los glóbulos rojos aceleran la formación de bicarbonato y protones. Esto hace que el pH de los tejidos disminuya, y por eso, aumenta la disociación del oxígeno de la hemoglobina en los tejidos, permitiendo que los tejidos obtengan oxígeno suficiente para satisfacer sus necesidades.

Por otro lado, en los pulmones, donde la concentración de oxígeno es alta, la unión del oxígeno provoca la liberación de protones de la hemoglobina, que se combinan con bicarbonato y se elimina el dióxido de carbono en la respiración. Dado que estas dos reacciones se compensan, hay pocos cambios en el pH de la sangre.

La curva de disociación se desplaza hacia la derecha cuando aumenta el dióxido de carbono o la concentración de iones de hidrógeno. Este mecanismo permite que el cuerpo se adapte al problema de suministrar más oxígeno a los tejidos que más lo necesitan. Cuando los músculos están sometidos a una actividad intensa, generan dióxido de carbono y ácido láctico como consecuencia de la respiración celular y de la fermentación de ácido láctico. De hecho, los músculos generan ácido láctico tan rápidamente que el pH de la sangre que pasa a través de los músculos se reduce alrededor de 7,2. Dado que el ácido láctico libera su protones, disminuye el pH, lo que hace que la hemoglobina libere aproximadamente un 10% más de oxígeno.

Carbamatos

El dióxido de carbono regula la unión de O2 a la hemoglobina mediante combinación reversible con los grupos aminos de la N-terminal de las proteínas de la sangre para formar carbamatos:

R-NH2 + CO2 R-NH-COO- + H+

La desoxihemoglobina se une al CO2 más fácilmente que la oxihemoglobina para formar carbamatos (carbaminohemoglobina). Cuando la concentración de CO2 es alta (como en los capilares), los protones liberados por la formación de carbamato promueven la liberación de oxígeno. Aunque la diferencia de CO2 vinculante entre la oxihemoglobina y la desoxihemoglobina sólo representa el 5% del CO2 total de la sangre, es responsable de la mitad del CO2 transportado por ésta. Esto es debido porque el 10% del CO2 total de la sangre se pierde a través de los pulmones en cada ciclo circulatorio.

Efectos de la cooperatividad

El efecto Bohr depende de las interacciones cooperativas entre los grupos hemo tetrámero de la hemoglobina. Esto se evidencia por el hecho de que la mioglobina, un monómero sin cooperatividad, no muestra el efecto Bohr. Mutantes de la hemoglobina con cooperatividad más débil pueden mostrar un efecto Bohr reducido.

En la hemoglobina Hiroshima, variante de la hemoglobina, la cooperatividad de la hemoglobina es reducida, y el efecto Bohr también. Durante los períodos de ejercicio, la hemoglobina mutante tiene una mayor afinidad por el oxígeno y los tejidos pueden sufrir falta de oxígeno.

Véase también

Referencias

  1. Murray, Robert K.; Darryl K. Granner, Peter A. Mayes, Victor W. Rodwell (2003). Harper’s Illustrated Biochemistry (LANGE Basic Science) (26th ed.). McGraw-Hill Medical. p. 44-45.
  2. Olson, JS; Gibson QH, Nagel RL, Hamilton HB (December 1972). "The ligand-binding properties of hemoglobin Hiroshima ( 2 2 146asp )". The Journal of Biological Chemistry 247 (23): 7485–93. PMID 4636319.
  3. Voet, Donald; Judith G. Voet, Charlotte W. Pratt (2008). Fundamentals of Biochemistry: Life at the Molecular Level (3rd ed.). John Wiley & Sons. p. 189-190.

Enlaces externos

  • Journal of Applied Physiology, Vol 52, Issue 6 1524-1529
  •   Datos: Q890877
  •   Multimedia: Bohr effect

efecto, bohr, efecto, bohr, propiedad, hemoglobina, descrita, primera, 1904, fisiólogo, danés, christian, bohr, padre, físico, niels, bohr, establece, menor, más, ácido, más, hidrogeniones, hemoglobina, unirá, oxígeno, menos, afinidad, puesto, dióxido, carbono. El efecto Bohr es una propiedad de la hemoglobina descrita por primera vez en 1904 por el fisiologo danes Christian Bohr padre del fisico Niels Bohr que establece que a un pH menor mas acido mas hidrogeniones la hemoglobina se unira al oxigeno con menos afinidad Puesto que el dioxido de carbono esta directamente relacionado con la concentracion de hidrogeniones iones H liberados en la disociacion del H2CO3 a iones HCO3 mas iones H que conduce finalmente a una disminucion de la afinidad por el oxigeno de la hemoglobina 1 2 3 Curva de disociacion de la hemoglobina La linea roja punteada corresponde al desplazamiento hacia la derecha causado por el efecto Bohr Indice 1 Acoplamiento del hidron y del oxigeno 2 Papel fisiologico 3 Carbamatos 4 Efectos de la cooperatividad 5 Vease tambien 6 Referencias 7 Enlaces externosAcoplamiento del hidron y del oxigeno EditarEn la desoxihemoglobina hemoglobina reducida la N terminal de los grupos amino de las subunidades a y el C terminal de la histidina de la subunidad b participan en las interacciones ionicas La formacion de pares ionicos hace que aumente la acidez Asi la desoxihemoglobina une un hidron por cada dos O2 liberados En la oxihemoglobina estos pares ionicos estan ausentes y por lo tanto disminuye la acidez Consecuentemente un hidron se libera por cada dos O2 unidos En concreto este acoplamiento reciproco de los protones y el oxigeno es el efecto Bohr Papel fisiologico EditarEste efecto facilita el transporte de oxigeno cuando este gas se une a la hemoglobina en los pulmones para posteriormente liberarlo en los tejidos especialmente en aquellos que mas lo necesitan Cuando aumenta la tasa metabolica de los tejidos su produccion de dioxido de carbono aumenta El dioxido de carbono forma bicarbonato mediante la siguiente reaccion CO2 H2O displaystyle rightleftharpoons H2CO3 displaystyle rightleftharpoons H HCO3 Aunque la reaccion suele ser lenta las enzimas de la familia de la anhidrasa carbonica en los globulos rojos aceleran la formacion de bicarbonato y protones Esto hace que el pH de los tejidos disminuya y por eso aumenta la disociacion del oxigeno de la hemoglobina en los tejidos permitiendo que los tejidos obtengan oxigeno suficiente para satisfacer sus necesidades Por otro lado en los pulmones donde la concentracion de oxigeno es alta la union del oxigeno provoca la liberacion de protones de la hemoglobina que se combinan con bicarbonato y se elimina el dioxido de carbono en la respiracion Dado que estas dos reacciones se compensan hay pocos cambios en el pH de la sangre La curva de disociacion se desplaza hacia la derecha cuando aumenta el dioxido de carbono o la concentracion de iones de hidrogeno Este mecanismo permite que el cuerpo se adapte al problema de suministrar mas oxigeno a los tejidos que mas lo necesitan Cuando los musculos estan sometidos a una actividad intensa generan dioxido de carbono y acido lactico como consecuencia de la respiracion celular y de la fermentacion de acido lactico De hecho los musculos generan acido lactico tan rapidamente que el pH de la sangre que pasa a traves de los musculos se reduce alrededor de 7 2 Dado que el acido lactico libera su protones disminuye el pH lo que hace que la hemoglobina libere aproximadamente un 10 mas de oxigeno Carbamatos EditarEl dioxido de carbono regula la union de O2 a la hemoglobina mediante combinacion reversible con los grupos aminos de la N terminal de las proteinas de la sangre para formar carbamatos R NH2 CO2 displaystyle rightleftharpoons R NH COO H La desoxihemoglobina se une al CO2 mas facilmente que la oxihemoglobina para formar carbamatos carbaminohemoglobina Cuando la concentracion de CO2 es alta como en los capilares los protones liberados por la formacion de carbamato promueven la liberacion de oxigeno Aunque la diferencia de CO2 vinculante entre la oxihemoglobina y la desoxihemoglobina solo representa el 5 del CO2 total de la sangre es responsable de la mitad del CO2 transportado por esta Esto es debido porque el 10 del CO2 total de la sangre se pierde a traves de los pulmones en cada ciclo circulatorio Efectos de la cooperatividad EditarEl efecto Bohr depende de las interacciones cooperativas entre los grupos hemo tetramero de la hemoglobina Esto se evidencia por el hecho de que la mioglobina un monomero sin cooperatividad no muestra el efecto Bohr Mutantes de la hemoglobina con cooperatividad mas debil pueden mostrar un efecto Bohr reducido En la hemoglobina Hiroshima variante de la hemoglobina la cooperatividad de la hemoglobina es reducida y el efecto Bohr tambien Durante los periodos de ejercicio la hemoglobina mutante tiene una mayor afinidad por el oxigeno y los tejidos pueden sufrir falta de oxigeno Vease tambien EditarEfecto HaldaneReferencias Editar Murray Robert K Darryl K Granner Peter A Mayes Victor W Rodwell 2003 Harper s Illustrated Biochemistry LANGE Basic Science 26th ed McGraw Hill Medical p 44 45 Olson JS Gibson QH Nagel RL Hamilton HB December 1972 The ligand binding properties of hemoglobin Hiroshima 2 2 146asp The Journal of Biological Chemistry 247 23 7485 93 PMID 4636319 Voet Donald Judith G Voet Charlotte W Pratt 2008 Fundamentals of Biochemistry Life at the Molecular Level 3rd ed John Wiley amp Sons p 189 190 Enlaces externos EditarJournal of Applied Physiology Vol 52 Issue 6 1524 1529 Datos Q890877 Multimedia Bohr effectObtenido de https es wikipedia org w index php title Efecto Bohr amp oldid 135624219, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos