fbpx
Wikipedia

Reacción química

Una reacción química, también llamada cambio químico o fenómeno químico, es todo proceso termodinámico en el cual dos o más especies químicas o sustancias (llamadas reactantes o reactivos), se transforman, cambiando su estructura molecular y sus enlaces, en otras sustancias llamadas productos.[1]​ Los reactantes pueden ser elementos o compuestos. Un ejemplo de reacción química es la formación de óxido de hierro producida al reaccionar el oxígeno del aire con el hierro de forma natural, o una cinta de magnesio al colocarla en una llama se convierte en óxido de magnesio, como un ejemplo de reacción inducida.

La reacción química también se puede definir desde dos enfoques, el macroscópico que la define como «un proceso en el cual una o varias sustancias se forman a partir de otra u otras» y el nanoscópico cuya definición sería: «redistribución de átomos e iones, formándose otras estructuras (moléculas o redes.[2]

Las reacciones químicas ocurren porque las moléculas se están moviendo y cuando se golpean con energía suficiente una contra otras, los enlaces se rompen y los átomos se intercambian para formar nuevas moléculas. También una molécula que está vibrando con energía suficiente puede romperse en moléculas más pequeñas.[3]

A la representación simbólica de cada una de las reacciones se le denomina ecuación química.[4]

Los productos obtenidos a partir de ciertos tipos de reactivos dependen de las condiciones bajo las que se da la reacción química. No obstante, tras un estudio cuidadoso se comprueba que, aunque los productos pueden variar según cambien las condiciones, determinadas cantidades permanecen constantes en cualquier reacción química. Estas cantidades constantes, las magnitudes conservadas, incluyen el número de cada tipo de átomo presente, la carga eléctrica y la masa total.

Fenómeno químico

Se llama fenómeno químico a los sucesos observables y posibles de ser medidos en los cuales las sustancias intervinientes cambian su composición química al combinarse entre sí.[5]​ Las reacciones químicas implican una interacción que se produce a nivel de los electrones de valencia de las sustancias intervinientes. Dicha interacción es el enlace químico.

En estos fenómenos, no se conserva la sustancia original, que se transforma su estructura química, manifiesta energía, no se observa a simple vista y son irreversibles,[6]​ en su mayoría.

La sustancia sufre modificaciones irreversibles. Por ejemplo, al quemarse, un papel no puede volver a su estado original. Las cenizas resultantes formaron parte del papel original, y sufrieron una alteración química.

Clases de reacciones

Reacciones de la química inorgánica

Desde un punto de vista de la química inorgánica se pueden postular dos grandes modelos para las reacciones químicas de los compuestos inorgánicos: reacciones ácido-base o de neutralización (sin cambios en los estados de oxidación) y reacciones redox (con cambios en los estados de oxidación).[7]​ Sin embargo podemos clasificarlas de acuerdo con los siguientes tres criterios:

Reacciones según estructura
Nombre Descripción Representación Ejemplo
De síntesis o de combinación Donde los reactivos se combinan entre sí para originar un producto diferente[8]
A + B → C
(siendo A y B reactivos cualesquiera y C el producto formado)
2 Na (s) + Cl2 (g) → 2 NaCl (s)
De descomposición[8] Descomposición simple Una sustancia compuesta se desdobla en sus componentes
A → B + C
(inversa de la síntesis, y A es un compuesto que se descompone en los reactivos que lo componen, B y C).

CO2 (g) → CO2 (g) C(s) + O2 (g)

Mediante un reactivo Una sustancia requiere un reactivo, para su descomposición.
AB + C → AC + BC
(el compuesto AB reacciona con el reactivo C, para originar los compuestos AC y BC)
2 ZnS (S) + 3 O2 (g) → 2 ZnO (S) + 2 SO2 (g)
De sustitución o desplazamiento[8] Una sustancia sustituye el lugar de alguno de los componentes de los reactivos, de tal manera que el componente sustituido queda libre.
AB +C → AC + B
(donde el compuesto AB reacciona con el reactivo C para formar el compuesto AC y liberar B)
2 NaI + Br2 → 2 NaBr + I2
De doble sustitución (o de doble desplazamiento) Se presenta un intercambio entre los elementos químicos o grupos de elementos químicos de las sustancias que intervienen en la reacción química.
AB + CD → AC + BD
Pb (NO3)2 (ac) + 2 KI (ac) → Pbl2 (s) + 2 KNO3 (ac)
Reacciones según la energía intercambiada
Criterio Descripción Ejemplo
Intercambio en forma de calor[9] Reacciones exotérmicas que desprenden calor del sistema de reacción Combustión
Reacciones endotérmicas reacciones en las que se absorbe o se requiere calor para llevarse a cabo. Calcinación
Intercambio en forma de luz[9] Reacciones endoluminosas que requieren el aporte de energía luminosa o luz al sistema para llevarse a cabo. Fotosíntesis
Reacciones exoluminosas reacciones que al llevarse a cabo manifiestan una emisión luminosa Combustión del magnesio:

2Mg+O2 + ΔH → 2MgO + Luz

Intercambio en forma de energía eléctrica[9] Reacciones endoeléctricas que requieren el aporte de energía eléctrica para que puedan tener lugar. Electrólisis del agua
Reacciones exoeléctricas aquellas reacciones químicas en las que el sistema transfiere al exterior energía eléctrica. Celda galvánica (pila o batería eléctrica)
 
Combustión (azul) y calcinación (naranja)
 
Reacción de fotosíntesis
 
Electrolisis del agua
 
Reacción de pila comercial
Reacciones según la partícula intercambiada
Nombre Descripción Ejemplo
Reacciones ácido-base Aquellas reacciones donde se transfieren protones HCl(aq) + NaOH(aq) → H2O(l) + NaCl(aq)
Reacciones de oxidación-reducción Son las reacciones donde hay una transferencia de electrones entre las especies químicas Mn2(aq) + BiO3- (s) → Bi3(aq) + MnO4-(aq)

Reacciones de la química orgánica

Respecto a las reacciones de la química orgánica, nos referimos a ellas teniendo como base a diferentes tipos de compuestos como alcanos, alquenos, alquinos, alcoholes, aldehídos, cetonas, entre otras; que encuentran su clasificación, reactividad y/o propiedades químicas en el grupo funcional que contienen y este último será el responsable de los cambios en la estructura y composición de la materia. Entre los grupos funcionales más importantes tenemos a los dobles y triples enlaces y a los grupos hidroxilo, carbonilo y nitro.

Factores que afectan la velocidad de reacción

  • Naturaleza de la reacción: Algunas reacciones son, por su propia naturaleza, más rápidas que otras. El número de especies reaccionantes, su estado físico las partículas que forman sólidos se mueven más lentamente que las de gases o de las que están en solución, la complejidad de la reacción, y otros factores pueden influir enormemente en la velocidad de una reacción. Por ejemplo, la reacción de los metales alcalinos con sustancias como el oxígeno o el agua es inmediata al ser los primeros mencionados bastante reactivos.
  • Concentración: La velocidad de reacción aumenta con la concentración, como está descrito por la ley de velocidad y explicada por la teoría de colisiones. Al incrementarse la concentración de los reactantes, la frecuencia de colisión también se incrementa.
  • Presión: La velocidad de las reacciones gaseosas se incrementa muy significativamente con la presión, que es, en efecto, equivalente a incrementar la concentración del gas. Para las reacciones en fase condensada, la dependencia en la presión es débil, y solo se hace importante cuando la presión es muy alta.
  • Orden: El orden de la reacción controla cómo afecta la concentración (o presión) a la velocidad de reacción.
  • Temperatura: Generalmente, al llevar a cabo una reacción a una temperatura más alta provee más energía al sistema, por lo que se incrementa la velocidad de reacción al ocasionar que haya más colisiones entre partículas, como lo explica la teoría de colisiones. Sin embargo, la principal razón porque un aumento de temperatura aumenta la velocidad de reacción es que hay un mayor número de partículas en colisión que tienen la energía de activación necesaria para que suceda la reacción, resultando en más colisiones exitosas. La influencia de la temperatura está descrita por la ecuación de Arrhenius. Como una regla de cajón, las velocidades de reacción para muchas reacciones se duplican por cada aumento de 10 °C en la temperatura,[10]​ aunque el efecto de la temperatura puede ser mucho mayor o mucho menor que esto. Por ejemplo, el carbón arde en un lugar en presencia de oxígeno, pero no lo hace cuando es almacenado a temperatura ambiente. La reacción es espontánea a temperaturas altas y bajas, pero a temperatura ambiente la velocidad de reacción es tan baja que es despreciable. El aumento de temperatura, que puede ser creado por una cerilla, permite que la reacción inicie y se caliente a sí misma, debido a que es exotérmica. Esto es válido para muchos otros combustibles, como el metano, butano, hidrógeno, etc.

La velocidad de reacción puede ser independiente de la temperatura (no Arrhenius) o disminuir con el aumento de la temperatura (anti Arrhenius). Las reacciones sin una barrera de activación (por ejemplo, algunas reacciones de radicales) tienden a tener una dependencia de la temperatura de tipo anti Arrhenius: la constante de velocidad disminuye al aumentar la temperatura.

  • Solvente: Muchas reacciones tienen lugar en solución, y las propiedades del solvente afectan la velocidad de reacción. La fuerza iónica también tiene efecto en la velocidad de reacción.
  • Radiación electromagnética e intensidad de luz: La radiación electromagnética es una forma de energía. Como tal, puede aumentar la velocidad o incluso hacer que la reacción sea espontánea, al proveer de más energía a las partículas de los reactantes. Esta energía es almacenada, en una forma u otra, en las partículas reactantes (puede romper enlaces, promover moléculas a estados excitados electrónicos o vibracionales, etc.), creando especies intermediarias que reaccionan fácilmente. Al aumentar la intensidad de la luz, las partículas absorben más energía, por lo que la velocidad de reacción aumenta. Por ejemplo, cuando el metano reacciona con cloro gaseoso en la oscuridad, la velocidad de reacción es muy lenta. Puede ser acelerada cuando la mezcla es irradiada bajo luz difusa. En luz solar brillante, la reacción es explosiva.
  • Catalizador: La presencia de un catalizador incrementa la velocidad de reacción (tanto de las reacciones directa e inversa) al proveer de una trayectoria alternativa con una menor energía de activación. Por ejemplo, el platino cataliza la combustión del hidrógeno con el oxígeno a temperatura ambiente. La catálisis es homogénea si el catalizador está en una fase similar a los reactivos y heterogénea si está en una fase diferente.
  • Isótopos: El efecto isotópico cinético consiste en una velocidad de reacción diferente para la misma molécula si tiene isótopos diferentes, generalmente isótopos de hidrógeno, debido a la diferencia de masa entre el hidrógeno y el deuterio, ya que el átomo más pesado conlleva generalmente a menor frecuencia vibracional de estos, por lo que es requerida mayor cantidad de energía para hacer frente a la mayor energía de activación para romper el enlace.
  • Superficie de contacto: En las reacciones en superficies, que se dan por ejemplo durante catálisis heterogénea, la velocidad de reacción aumenta cuando el área de la superficie de contacto aumenta. Esto es debido al hecho de que más partículas del sólido están expuestas y pueden ser alcanzadas por moléculas reactantes.
  • Mezclado: El mezclado puede tener un efecto fuerte en la velocidad de reacción para las reacciones en fase homogénea y heterogénea.

Rendimiento químico

La cantidad de producto que se suele obtener de una reacción química, es menor que la cantidad teórica. Esto depende de varios factores, como la pureza del reactivo y las reacciones secundarias que puedan tener lugar (es posible que no todos los productos reaccionen), cabe mencionar que la recuperación del 100 % de la muestra es prácticamente imposible.

El rendimiento de una reacción se calcula mediante la siguiente fórmula:

 

Cuando uno de los reactivos esté en exceso, el rendimiento deberá calcularse respecto al reactivo limitante. Y el rendimiento depende del calor que expone la reacción.

Grado de avance de la reacción y afinidad

Una reacción se puede representar mediante la siguiente expresión matemática:

 

donde   son los coeficientes estequiométricos de la reacción, que pueden ser positivos (productos) o negativos (reactivos). La ecuación presenta dos formas posibles de estar químicamente en la naturaleza (como suma de productos o como suma de reactivos).

Si   es la masa del producto que aparece, o del reactivo que desaparece, resulta que:

 

constante  .   sería la masa molecular del compuesto correspondiente y   se denomina grado de avance. Este concepto es importante pues es el único grado de libertad en la reacción.

Cuando existe un equilibrio en la reacción, la energía libre de Gibbs es un mínimo, por lo que:

 

permite entender que la afinidad química es nula.

Véase también

Referencias

  1. Gayé, Jesús Biel (1997). Curso sobre formalismo y los métodos de la termodinámica. Reverte. ISBN 9788429143430. Consultado el 4 de marzo de 2018. 
  2. Raviolo, Andrés; Garritz, Andoni; Sosa, Plinio (2011). «Sustancia y reacción química como conceptos centrales en química. Una discusión conceptual, histórica y didáctica». Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 8 (3): 240-254. Consultado el 1 de julio de 2019. 
  3. Gillespie, Ronald James (1997). «The great ideas of chemistry». Journal of Chemical Education 74 (7). 
  4. Loyola, María Dolores de la Llata (2001). Química inórganica. Editorial Progreso. ISBN 9789706413512. Consultado el 4 de marzo de 2018. 
  5. Regalado, Víctor Manuel Ramírez (2016). Química 1. Grupo Editorial Patria. ISBN 9786077444640. Consultado el 4 de marzo de 2018. 
  6. Baldor, F. A.; Baldor, F. J. (1 de enero de 2002). Nomenclatura química inorgánica. SELECTOR. ISBN 9684031319. Consultado el 4 de marzo de 2018. 
  7. Moeller, Therald (1981). Química inorgánica. Reverte. ISBN 9788429173901. Consultado el 4 de marzo de 2018. 
  8. Tortora, Gerard J.; Funke, Berdell R.; Case, Christine L. (2007). Introducción a la microbiología. Ed. Médica Panamericana. ISBN 9789500607407. Consultado el 4 de marzo de 2018. 
  9. Andrés, Dulce María; Guerra, Francisco Javier (2015-06). Formación Profesional Básica - Ciencias aplicadas II. Editex. ISBN 9788490785508. Consultado el 4 de marzo de 2018. 
  10. Connors, Kenneth. Chemical Kinetics, 1990, VCH Publishers, pág. 14.

Enlaces externos

  • Ejemplos de reacciones químicas
  •   Datos: Q36534
  •   Multimedia: Chemical reactions
  •   Citas célebres: Reacción química

reacción, química, reacción, química, también, llamada, cambio, químico, fenómeno, químico, todo, proceso, termodinámico, cual, más, especies, químicas, sustancias, llamadas, reactantes, reactivos, transforman, cambiando, estructura, molecular, enlaces, otras,. Una reaccion quimica tambien llamada cambio quimico o fenomeno quimico es todo proceso termodinamico en el cual dos o mas especies quimicas o sustancias llamadas reactantes o reactivos se transforman cambiando su estructura molecular y sus enlaces en otras sustancias llamadas productos 1 Los reactantes pueden ser elementos o compuestos Un ejemplo de reaccion quimica es la formacion de oxido de hierro producida al reaccionar el oxigeno del aire con el hierro de forma natural o una cinta de magnesio al colocarla en una llama se convierte en oxido de magnesio como un ejemplo de reaccion inducida La reaccion quimica tambien se puede definir desde dos enfoques el macroscopico que la define como un proceso en el cual una o varias sustancias se forman a partir de otra u otras y el nanoscopico cuya definicion seria redistribucion de atomos e iones formandose otras estructuras moleculas o redes 2 Las reacciones quimicas ocurren porque las moleculas se estan moviendo y cuando se golpean con energia suficiente una contra otras los enlaces se rompen y los atomos se intercambian para formar nuevas moleculas Tambien una molecula que esta vibrando con energia suficiente puede romperse en moleculas mas pequenas 3 A la representacion simbolica de cada una de las reacciones se le denomina ecuacion quimica 4 Los productos obtenidos a partir de ciertos tipos de reactivos dependen de las condiciones bajo las que se da la reaccion quimica No obstante tras un estudio cuidadoso se comprueba que aunque los productos pueden variar segun cambien las condiciones determinadas cantidades permanecen constantes en cualquier reaccion quimica Estas cantidades constantes las magnitudes conservadas incluyen el numero de cada tipo de atomo presente la carga electrica y la masa total Indice 1 Fenomeno quimico 2 Clases de reacciones 2 1 Reacciones de la quimica inorganica 2 2 Reacciones de la quimica organica 3 Factores que afectan la velocidad de reaccion 4 Rendimiento quimico 5 Grado de avance de la reaccion y afinidad 6 Vease tambien 7 Referencias 8 Enlaces externosFenomeno quimico EditarSe llama fenomeno quimico a los sucesos observables y posibles de ser medidos en los cuales las sustancias intervinientes cambian su composicion quimica al combinarse entre si 5 Las reacciones quimicas implican una interaccion que se produce a nivel de los electrones de valencia de las sustancias intervinientes Dicha interaccion es el enlace quimico En estos fenomenos no se conserva la sustancia original que se transforma su estructura quimica manifiesta energia no se observa a simple vista y son irreversibles 6 en su mayoria La sustancia sufre modificaciones irreversibles Por ejemplo al quemarse un papel no puede volver a su estado original Las cenizas resultantes formaron parte del papel original y sufrieron una alteracion quimica Veanse tambien Combustiony Corrosion Clases de reacciones EditarReacciones de la quimica inorganica Editar Desde un punto de vista de la quimica inorganica se pueden postular dos grandes modelos para las reacciones quimicas de los compuestos inorganicos reacciones acido base o de neutralizacion sin cambios en los estados de oxidacion y reacciones redox con cambios en los estados de oxidacion 7 Sin embargo podemos clasificarlas de acuerdo con los siguientes tres criterios Reacciones segun estructura Nombre Descripcion Representacion EjemploDe sintesis o de combinacion Donde los reactivos se combinan entre si para originar un producto diferente 8 A B C siendo A y B reactivos cualesquiera y C el producto formado 2 Na s Cl2 g 2 NaCl s De descomposicion 8 Descomposicion simple Una sustancia compuesta se desdobla en sus componentes A B C inversa de la sintesis y A es un compuesto que se descompone en los reactivos que lo componen B y C CO2 g CO2 g C s O2 g Mediante un reactivo Una sustancia requiere un reactivo para su descomposicion AB C AC BC el compuesto AB reacciona con el reactivo C para originar los compuestos AC y BC 2 ZnS S 3 O2 g 2 ZnO S 2 SO2 g De sustitucion o desplazamiento 8 Una sustancia sustituye el lugar de alguno de los componentes de los reactivos de tal manera que el componente sustituido queda libre AB C AC B donde el compuesto AB reacciona con el reactivo C para formar el compuesto AC y liberar B 2 NaI Br2 2 NaBr I2De doble sustitucion o de doble desplazamiento Se presenta un intercambio entre los elementos quimicos o grupos de elementos quimicos de las sustancias que intervienen en la reaccion quimica AB CD AC BD Pb NO3 2 ac 2 KI ac Pbl2 s 2 KNO3 ac Reacciones segun la energia intercambiada Criterio Descripcion EjemploIntercambio en forma de calor 9 Reacciones exotermicas que desprenden calor del sistema de reaccion CombustionReacciones endotermicas reacciones en las que se absorbe o se requiere calor para llevarse a cabo CalcinacionIntercambio en forma de luz 9 Reacciones endoluminosas que requieren el aporte de energia luminosa o luz al sistema para llevarse a cabo FotosintesisReacciones exoluminosas reacciones que al llevarse a cabo manifiestan una emision luminosa Combustion del magnesio 2Mg O2 DH 2MgO LuzIntercambio en forma de energia electrica 9 Reacciones endoelectricas que requieren el aporte de energia electrica para que puedan tener lugar Electrolisis del aguaReacciones exoelectricas aquellas reacciones quimicas en las que el sistema transfiere al exterior energia electrica Celda galvanica pila o bateria electrica Combustion azul y calcinacion naranja Reaccion de fotosintesis Electrolisis del agua Reaccion de pila comercialReacciones segun la particula intercambiada Nombre Descripcion EjemploReacciones acido base Aquellas reacciones donde se transfieren protones HCl aq NaOH aq H2O l NaCl aq Reacciones de oxidacion reduccion Son las reacciones donde hay una transferencia de electrones entre las especies quimicas Mn2 aq BiO3 s Bi3 aq MnO4 aq Reacciones de la quimica organica Editar Articulo principal Reaccion organica Respecto a las reacciones de la quimica organica nos referimos a ellas teniendo como base a diferentes tipos de compuestos como alcanos alquenos alquinos alcoholes aldehidos cetonas entre otras que encuentran su clasificacion reactividad y o propiedades quimicas en el grupo funcional que contienen y este ultimo sera el responsable de los cambios en la estructura y composicion de la materia Entre los grupos funcionales mas importantes tenemos a los dobles y triples enlaces y a los grupos hidroxilo carbonilo y nitro Factores que afectan la velocidad de reaccion EditarArticulo principal Velocidad de reaccion Naturaleza de la reaccion Algunas reacciones son por su propia naturaleza mas rapidas que otras El numero de especies reaccionantes su estado fisico las particulas que forman solidos se mueven mas lentamente que las de gases o de las que estan en solucion la complejidad de la reaccion y otros factores pueden influir enormemente en la velocidad de una reaccion Por ejemplo la reaccion de los metales alcalinos con sustancias como el oxigeno o el agua es inmediata al ser los primeros mencionados bastante reactivos Concentracion La velocidad de reaccion aumenta con la concentracion como esta descrito por la ley de velocidad y explicada por la teoria de colisiones Al incrementarse la concentracion de los reactantes la frecuencia de colision tambien se incrementa Presion La velocidad de las reacciones gaseosas se incrementa muy significativamente con la presion que es en efecto equivalente a incrementar la concentracion del gas Para las reacciones en fase condensada la dependencia en la presion es debil y solo se hace importante cuando la presion es muy alta Orden El orden de la reaccion controla como afecta la concentracion o presion a la velocidad de reaccion Temperatura Generalmente al llevar a cabo una reaccion a una temperatura mas alta provee mas energia al sistema por lo que se incrementa la velocidad de reaccion al ocasionar que haya mas colisiones entre particulas como lo explica la teoria de colisiones Sin embargo la principal razon porque un aumento de temperatura aumenta la velocidad de reaccion es que hay un mayor numero de particulas en colision que tienen la energia de activacion necesaria para que suceda la reaccion resultando en mas colisiones exitosas La influencia de la temperatura esta descrita por la ecuacion de Arrhenius Como una regla de cajon las velocidades de reaccion para muchas reacciones se duplican por cada aumento de 10 C en la temperatura 10 aunque el efecto de la temperatura puede ser mucho mayor o mucho menor que esto Por ejemplo el carbon arde en un lugar en presencia de oxigeno pero no lo hace cuando es almacenado a temperatura ambiente La reaccion es espontanea a temperaturas altas y bajas pero a temperatura ambiente la velocidad de reaccion es tan baja que es despreciable El aumento de temperatura que puede ser creado por una cerilla permite que la reaccion inicie y se caliente a si misma debido a que es exotermica Esto es valido para muchos otros combustibles como el metano butano hidrogeno etc La velocidad de reaccion puede ser independiente de la temperatura no Arrhenius o disminuir con el aumento de la temperatura anti Arrhenius Las reacciones sin una barrera de activacion por ejemplo algunas reacciones de radicales tienden a tener una dependencia de la temperatura de tipo anti Arrhenius la constante de velocidad disminuye al aumentar la temperatura Solvente Muchas reacciones tienen lugar en solucion y las propiedades del solvente afectan la velocidad de reaccion La fuerza ionica tambien tiene efecto en la velocidad de reaccion Radiacion electromagnetica e intensidad de luz La radiacion electromagnetica es una forma de energia Como tal puede aumentar la velocidad o incluso hacer que la reaccion sea espontanea al proveer de mas energia a las particulas de los reactantes Esta energia es almacenada en una forma u otra en las particulas reactantes puede romper enlaces promover moleculas a estados excitados electronicos o vibracionales etc creando especies intermediarias que reaccionan facilmente Al aumentar la intensidad de la luz las particulas absorben mas energia por lo que la velocidad de reaccion aumenta Por ejemplo cuando el metano reacciona con cloro gaseoso en la oscuridad la velocidad de reaccion es muy lenta Puede ser acelerada cuando la mezcla es irradiada bajo luz difusa En luz solar brillante la reaccion es explosiva Catalizador La presencia de un catalizador incrementa la velocidad de reaccion tanto de las reacciones directa e inversa al proveer de una trayectoria alternativa con una menor energia de activacion Por ejemplo el platino cataliza la combustion del hidrogeno con el oxigeno a temperatura ambiente La catalisis es homogenea si el catalizador esta en una fase similar a los reactivos y heterogenea si esta en una fase diferente Isotopos El efecto isotopico cinetico consiste en una velocidad de reaccion diferente para la misma molecula si tiene isotopos diferentes generalmente isotopos de hidrogeno debido a la diferencia de masa entre el hidrogeno y el deuterio ya que el atomo mas pesado conlleva generalmente a menor frecuencia vibracional de estos por lo que es requerida mayor cantidad de energia para hacer frente a la mayor energia de activacion para romper el enlace Superficie de contacto En las reacciones en superficies que se dan por ejemplo durante catalisis heterogenea la velocidad de reaccion aumenta cuando el area de la superficie de contacto aumenta Esto es debido al hecho de que mas particulas del solido estan expuestas y pueden ser alcanzadas por moleculas reactantes Mezclado El mezclado puede tener un efecto fuerte en la velocidad de reaccion para las reacciones en fase homogenea y heterogenea Rendimiento quimico EditarArticulo principal Rendimiento quimico La cantidad de producto que se suele obtener de una reaccion quimica es menor que la cantidad teorica Esto depende de varios factores como la pureza del reactivo y las reacciones secundarias que puedan tener lugar es posible que no todos los productos reaccionen cabe mencionar que la recuperacion del 100 de la muestra es practicamente imposible El rendimiento de una reaccion se calcula mediante la siguiente formula r e n d i m i e n t o c a n t i d a d r e a l d e p r o d u c t o c a n t i d a d i d e a l d e p r o d u c t o 100 displaystyle mathrm rendimiento frac cantidad real de producto cantidad ideal de producto cdot 100 Cuando uno de los reactivos este en exceso el rendimiento debera calcularse respecto al reactivo limitante Y el rendimiento depende del calor que expone la reaccion Grado de avance de la reaccion y afinidad EditarUna reaccion se puede representar mediante la siguiente expresion matematica i 1 N n i C i 0 displaystyle sum i 1 N nu i C i 0 donde n i displaystyle nu i son los coeficientes estequiometricos de la reaccion que pueden ser positivos productos o negativos reactivos La ecuacion presenta dos formas posibles de estar quimicamente en la naturaleza como suma de productos o como suma de reactivos Si d m i displaystyle mathrm d m i es la masa del producto que aparece o del reactivo que desaparece resulta que 1 M i d m i n i i 1 N d 3 displaystyle left frac 1 M i frac dm i nu i right i 1 N mathrm d xi constante i displaystyle forall i M i displaystyle M i seria la masa molecular del compuesto correspondiente y 3 displaystyle xi se denomina grado de avance Este concepto es importante pues es el unico grado de libertad en la reaccion Cuando existe un equilibrio en la reaccion la energia libre de Gibbs es un minimo por lo que d G k m k n k d 3 A d 3 0 displaystyle delta G sum k mu k nu k mathrm d xi mathcal A mathrm d xi 0 permite entender que la afinidad quimica es nula Vease tambien EditarCinetica quimica Ensayo quimico Equilibrio quimico Estequiometria Leyes estequiometricas Propiedades quimicas Termoquimica Ecuacion quimicaReferencias Editar Gaye Jesus Biel 1997 Curso sobre formalismo y los metodos de la termodinamica Reverte ISBN 9788429143430 Consultado el 4 de marzo de 2018 Raviolo Andres Garritz Andoni Sosa Plinio 2011 Sustancia y reaccion quimica como conceptos centrales en quimica Una discusion conceptual historica y didactica Revista Eureka sobre Ensenanza y Divulgacion de las Ciencias 8 3 240 254 Consultado el 1 de julio de 2019 Gillespie Ronald James 1997 The great ideas of chemistry Journal of Chemical Education 74 7 Loyola Maria Dolores de la Llata 2001 Quimica inorganica Editorial Progreso ISBN 9789706413512 Consultado el 4 de marzo de 2018 Regalado Victor Manuel Ramirez 2016 Quimica 1 Grupo Editorial Patria ISBN 9786077444640 Consultado el 4 de marzo de 2018 Baldor F A Baldor F J 1 de enero de 2002 Nomenclatura quimica inorganica SELECTOR ISBN 9684031319 Consultado el 4 de marzo de 2018 Moeller Therald 1981 Quimica inorganica Reverte ISBN 9788429173901 Consultado el 4 de marzo de 2018 a b c Tortora Gerard J Funke Berdell R Case Christine L 2007 Introduccion a la microbiologia Ed Medica Panamericana ISBN 9789500607407 Consultado el 4 de marzo de 2018 a b c Andres Dulce Maria Guerra Francisco Javier 2015 06 Formacion Profesional Basica Ciencias aplicadas II Editex ISBN 9788490785508 Consultado el 4 de marzo de 2018 Connors Kenneth Chemical Kinetics 1990 VCH Publishers pag 14 Enlaces externos EditarEjemplos de reacciones quimicas Wikimedia Commons alberga una categoria multimedia sobre Reaccion quimica Datos Q36534 Multimedia Chemical reactions Citas celebres Reaccion quimicaObtenido de https es wikipedia org w index php title Reaccion quimica amp oldid 138149592, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos