fbpx
Wikipedia

Mancha solar

Una mancha solar es una región del Sol que tiene una temperatura más baja que sus alrededores, y con una intensa actividad magnética. Una mancha solar típica consiste en una región central oscura, llamada "umbra", rodeada por una "penumbra" más clara. Una sola mancha puede llegar a medir hasta 12.000 km (casi tan grande como el diámetro de la Tierra), pero un grupo de manchas puede alcanzar 120.000 km de extensión e incluso algunas veces más.

Un primer plano de mancha solar en luz ultravioleta, tomada por la nave espacial TRACE.
Una mancha solar visible a simple vista y tomada sin ningún equipo especial.

La penumbra está constituida por una estructura de filamentos claros y oscuros que se extienden más o menos radialmente desde la umbra. Ambas (umbra y penumbra) parecen oscuras por contraste con la fotosfera, simplemente porque están más frías que la temperatura media de la fotosfera; así la umbra tiene una temperatura de 4000 K, mientras que la penumbra alcanza los 5600 K, evidentemente inferiores a los aproximadamente 6000 K que tienen los gránulos de la fotosfera.

Por la ley de Stefan-Boltzmann, en que la energía total radiada por un cuerpo negro (como una estrella) es proporcional a la cuarta potencia de su temperatura efectiva (E = σT4, donde σ=5,67•10–8 W/m²K4; véase constante de Stefan-Boltzmann), la umbra emite aproximadamente un 32 % de la luz emitida por un área igual de la fotosfera y análogamente la penumbra tiene un brillo de un 71 % de la fotosfera.

La oscuridad de una mancha solar es solamente un efecto de contraste; si pudiéramos ver una mancha tipo, con una umbra del tamaño de la Tierra, aislada y a la misma distancia que el Sol, brillaría unas 50 veces más que la Luna llena. Las manchas están relativamente inmóviles con respecto a la fotosfera y participan de la rotación solar. El área de la superficie solar cubierta por las manchas se mide en términos de millonésimas de hemisferio solar visible.

La historia

Las primeras observaciones sistemáticas de manchas solares fueron hechas por astrónomos chinos a partir del 28 a. C., si bien existen noticias puntuales anteriores desde el siglo IV a. C. Entre los años 28 a. C. y 1638 d. C. registraron un total de 112 manchas.[1]​ Probablemente podían ver los grupos de manchas más grandes cuando la intensa luz del sol era filtrada por el polvo que el viento había llevado desde los desiertos del Asia central.

En Occidente la noticia más antigua sobre una mancha solar aparece en la Vida de Carlomagno, escrita en 807 d. C. En los siglos siguientes las observaron astrónomos musulmanes como Averroes y, ya en el siglo XV, también italianos.[1]

En 1610 los astrónomos David Fabricius y su hijo Johannes observaron manchas mediante telescopios. David publicó una descripción en junio de 1611. Galileo Galilei les enseñó manchas solares a astrónomos en Roma, y Schneider las observó probablemente durante dos o tres meses. La amarga disputa subsiguiente por la prioridad del descubrimiento entre Galileo y Schneider, ninguno de los cuales sabía del trabajo de los Fabricius, fue por tanto vana.

Las manchas solares tenían mucha importancia en el debate sobre la naturaleza del sistema solar. Se demostraba que el Sol giraba y sufría cambios, contrariamente a la enseñanza de Aristóteles. Los detalles de su claro movimiento no tenían una explicación sencilla excepto en el sistema heliocéntrico de Copérnico.

La evolución de una mancha solar

Las manchas solares aparecen, crecen, cambian de dimensiones y de aspecto y luego desaparecen tras haber existido tras una o dos rotaciones solares, es decir durante uno o dos meses, aunque su vida media es aproximadamente dos semanas.

Suelen aparecer por parejas. Primero se observa una formación brillante, la fácula, y luego un poro, un intersticio entre la granulación de la fotosfera que empieza a oscurecerse. Al día siguiente ya hay una pequeña mancha, mientras en el poro gemelo a unos pocos grados de distancia aparece otra mancha. A los pocos días ambas manchas tienen el aspecto característico: una región central oscura llamada sombra con temperaturas alrededor de 2500 K y brillo un 20 % de la fotoesfera, rodeada de una zona grisácea y con aspecto filamentoso, la penumbra, con temperaturas alrededor de 3300 K y brillo un 75 % de la fotoesfera. Los filamentos claros y oscuros tienen una dirección radial. Los gránulos de la penumbra tienen también forma alargada de tamaños 0,5” a 2” y sus tiempos de vida son mucho mayores que los gránulos ordinarios desde 40 minutos a 3 horas. Junto a estas dos manchas principales aparecen otras más pequeñas. Todas las manchas tienen movimientos propios con velocidades de hasta centenares de kilómetros por hora. El grupo de manchas alcanza su máxima complejidad hacia el décimo día.

Las dos manchas principales de cada grupo se comportan como si fuesen los polos de un enorme y potente imán ya que entre ambos existe un campo magnético con una intensidad entre 0,2 y 0,4 T mientras que el campo magnético terrestre tiene una intensidad de solo 0,05 mT. La mancha que está al oeste solar se llama conductora y la que está al este solar conducida. En casi todos los grupos el eje entre las dos manchas no se dispone en la dirección este-oeste, sino que la mancha conductora está en ambos hemisferios más cercana al ecuador.

Se ha observado que a bajas altitudes existe un flujo de materia desde la sombra hacia la penumbra a una velocidad de 2000 m/s (efecto Evershed) y de fuera hacia adentro en altitudes mayores como la cromosfera (efecto Evershed inverso).

Clasificación de las manchas

El esquema McIntoch ha reemplazado al esquema Zúrich en la clasificación de las manchas. Se utiliza un código de tres letras que describe la clase del grupo de mancha (sencilla, doble, compleja), el desarrollo penumbral de la mancha mayor y la compacidad del grupo. La letra A se reserva para los poros. La mayor parte de estos solo llegan al estadio B. Las manchas que llegan a desarrollarse alcanzan su mayor área al cabo de una decena de días y luego empiezan a degenerar de modo que la mancha seguidora desaparece por regla general primero. El esquema de Monte Wilson se utiliza para describir el campo magnético que puede ser sencillo, bipolar o complejo.

Las manchas y la rotación solar

La medición del desplazamiento de las manchas solares sobre el disco ha permitido deducir que el Sol tiene un periodo de rotación de aproximadamente 27 días. No todo el Sol gira a la misma velocidad, puesto que no es un cuerpo rígido, así en el ecuador el periodo es de 25 días, a 40° de latitud es de 28 días y en los polos es aún mayor. A esto se le conoce como rotación diferencial.

Variación de la actividad solar

 
400 años de actividad solar.
 
Reconstrucción de 11 000 años de manchas solares.

El número de manchas solares ha sido medido desde 1700 y hay estimaciones de 11 000 años atrás. La tendencia reciente es ascendente desde 1900 a los años sesenta.

Heinrich Schwabe fue el primero que observó la variación cíclica del número de manchas solar entre 1826 y 1843 y llevó a Rudolf Wolf a hacer observaciones sistemáticas que comienzan en 1848. El retraso en reconocer esta periodicidad del Sol se debe al comportamiento muy raro del Sol durante el siglo XVII. El número de Wolf es una expresión que combina manchas individuales y grupos de manchas y que permite tabular la actividad solar.

Wolf también estudió el registro histórico en un esfuerzo por establecer una base de datos con las variaciones cíclicas del pasado. Estableció una base de datos del ciclo hasta 1700. Aparte del ciclo de 11 años se ha comprobado la existencia de un ciclo de unos 80 años durante la mitad del cual el número de manchas es bastante superior a la otra mitad.

Wolf estableció una base de datos del ciclo hasta 1700, aunque la tecnología y técnicas para las observaciones solares cuidadosas estaban ya disponibles en 1610. Gustav Spörer pensó que la razón para que Wolf fuera incapaz en extender el ciclo era que había un período de 70 años entre 1640 y 1715 en el que raramente se observaron manchas solares. Los registros históricos de manchas solares indican que después de su descubrimiento en 1611 hubo dos máximos separados 30 años y luego la actividad declinó hasta un nivel muy bajo hacia 1640 y así se mantuvo hasta 1715, en que hemos recuperado el ciclo tal como lo conocemos.

No se pudo apreciar el significado de la ausencia porque tras el descubrimiento de las manchas solares hubo 34 años de actividad y luego 70 sin ella, ¿quién podía decir lo que era normal? La investigación sobre las manchas solares estaba inactiva durante los siglos XVII y principios del XVIII debido al Mínimo de Maunder durante el cual ninguna mancha solar fue visible; pero después de la reasunción de la actividad solar, Heinrich Schwabe en 1843 descubrió cambio periódico undecenal en el número de manchas solar.

Edward Maunder en 1895 y 1922 realizó estudios cuidadosos para descubrir que el problema no era la falta de datos observacionales sino la ausencia real de manchas. Para ello agregó al cuadro la ausencia durante el mismo periodo de auroras polares ligadas siempre a los ciclos de actividad solar. Las auroras que son normales en las Islas Británicas y en Escandinavia desaparecieron durante los 70 años de inactividad de modo que al reaparecer en 1715 causaron admiración y consternación en Copenhague y Estocolmo.

Puesto que las manchas solares son más oscuras es natural suponer que más manchas solares signifiquen menos radiación solar. Sin embargo, las áreas circundantes son más luminosas y el efecto global es que más manchas solares se asocian a un sol más luminoso. La variación es pequeña (del orden del 0,1 %) y solo se estableció por medidas por satélite de la variación solar a partir de los años ochenta. Durante el mínimo de Maunder hubo unos inviernos anormalmente fríos e intensas nevadas tal como lo demuestran los registros históricos. La Tierra pudo haber refrescado casi 1 K.

En 1920 Douglas hizo un trabajo pionero sobre la datación con los anillos de los árboles. Observó una tendencia general cíclica en la velocidad de crecimiento cada una o dos décadas. Al estudiar maderas de la segunda mitad del siglo XVII observó la ausencia de la periodicidad. Douglas leyó en 1922 el artículo de Maunder y le escribió para comunicarle su hallazgo.

Los anillos de los árboles demuestran este enfriamiento pues son más delgados durante los periodos fríos y muestran concentraciones anormalmente altas de carbono radioactivo (14C). Este tipo particular de carbono se produce a grandes alturas sobre la atmósfera terrestre, debido a la radiación cósmica procedente de la galaxia. Sabemos que durante un mínimo solar, el campo magnético del sol protege menos a la tierra de la radiación cósmica que a la vez hace que los niveles de carbono-14 suban.[2]​ Se ha sugerido que algunas de las glaciaciones fueron el resultado de prolongados periodos de falta de actividad solar.

Evolución de las manchas en un ciclo: diagrama de mariposa

 
 
Diagrama de mariposa mostrando la ley de Spörer.

Todas las manchas solares aparecen en ambos hemisferios en latitudes que van desde los 5° a los 40°. La actividad solar ocurre en ciclos de aproximadamente once años. El punto de actividad solar más alta durante este ciclo es conocido como el máximo solar, y el punto de actividad más baja es el mínimo solar. Al principio de un ciclo, las manchas solares tienden a aparecer en las latitudes más altas (unos 40°) y a medida que el ciclo se acerca el máximo aparecen manchas con mayor frecuencia y cada vez a menos latitud (cerca del ecuador), hasta que se alcanza el máximo. Mientras esto ocurre, aparecen las primeras manchas del ciclo siguiente a una latitud de unos 40°. A esto se llama la ley de Spörer.

Hoy se sabe que hay varios períodos en el índice de la mancha solar (número de Wolf) el más importante tiene 11 años de duración media. Este período también se observa en la mayoría de las otras expresiones de la actividad solar y se une profundamente a una variación en el campo magnético solar que cambia la polaridad con este período.

George Ellery Hale une los campos magnéticos y las manchas solares para dar una comprensión moderna de la aparición de las manchas solares. Hale sugirió que el período de ciclo de mancha solar es de 22 años, cubriendo dos inversiones del campo del dipolo magnético solar. Horace W. Babcock propuso un modelo cualitativo después para la dinámica de las capas exteriores solares. El Modelo Babcock explica la conducta descrita por la ley de Spörer, así como otros efectos, debido a campos magnéticos que se retuercen por la rotación del Sol.

Origen de las manchas solares

En las manchas hay un campo magnético con una intensidad de 0,3 T. Aunque los detalles de la creación de las manchas solares todavía son cuestión de investigación, está bastante claro que las manchas solares son el aspecto visible del tubo de flujo magnético que se forma debajo de la fotoesfera. En ellos la presión y densidad son menores y por esto se elevan y enfrían. Cuando el tubo de fuerza rompe la superficie de la fotoesfera aparece la fácula que es una región un 10 % más brillante que el resto. Por convección hay un flujo de energía desde el interior del sol. El tubo magnético se enrosca por la rotación diferencial. Si la tensión en el flujo del tubo alcanza cierto límite, el tubo magnético se riza como lo haría una venda de caucho. La transmisión del flujo de energía desde el interior del sol se inhibe, y con él la temperatura de la superficie. A continuación aparecen en la superficie dos manchas con polaridad magnética opuesta en los puntos en las que el tubo de fuerza corta a la fotoesfera.

Las recientes observaciones del satélite (SOHO) usando las ondas sonoras que viajan a través de la fotosfera del Sol permiten formar una imagen detallada de la estructura interior de las manchas solar, debajo cada mancha solar se forma un vórtice giratorio, esto hace que se concentren las líneas del campo magnético. Las manchas solares se comportan en algunos aspectos de modo similar a los huracanes terrestres.

Las manchas suelen presentarse en grupos bipolares cuyos componentes tienen polaridades magnéticas opuestas. El efecto Zeeman que consiste en un desdoblamiento de las rayas espectrales debido al campo magnético, ha permitido calcular la intensidad del campo magnético en las manchas y en el centro puede ser de unas décimas de tesla.

El número de manchas solares sigue un ciclo de unos 11 años al final del cual la polaridad de las manchas y del Sol se invierten pasando de norte-sur y de sur-norte. Así pues el periodo magnético del Sol es de 22 años.

El efecto Wilson nos dice que las manchas solares son realmente depresiones delante de la superficie del Sol.

La observación de las manchas por los aficionados

 
Un grupo grande de manchas solares en 2004; puede verse muy claramente el área gris alrededor de las manchas; también se puede ver la granulación de la superficie del Sol.

Las manchas solares se observan fácilmente incluso con un telescopio pequeño mediante proyección. En algunas circunstancias (los ocasos) pueden observarse las manchas solares a simple vista. Cabe destacar que los rayos solares pueden causar graves daños en los ojos (incluyendo ceguera permanente). Jamás se debe mirar directamente al Sol: puede causar un daño permanente en la retina, incluso antes de notar ningún daño. Lo mejor es proyectar la imagen del Sol sobre una pantalla. También es válido utilizar un filtro solar, pero tiene que ser un filtro de mylar que abarque todo el objetivo del telescopio y no solo el filtro ocular pues estos últimos se calientan mucho y se pueden romper espontáneamente.

Relación de las manchas solares y fenómenos terrestres

Se han efectuado intentos de relacionar el ciclo de 11 años de las manchas solares con fenómenos cíclicos de la Tierra, como variaciones del clima, periodos de lluvia y sequía, variación en la longitud del día. Ya hemos visto una correlación clara entre el crecimiento de los anillos de los árboles y la actividad solar. Aparte de esta, las pocas correlaciones de este tipo que son razonablemente fiables parecen deberse a ligeras variaciones del flujo de energía total emitido por el Sol y a las tremendas perturbaciones magnéticas que podrían afectar a la parte superior de nuestra atmósfera. Esto podría influir en el clima terrestre.

Más clara es su relación con el estado de la ionosfera. Ello puede ayudar a predecir las condiciones de propagación de la onda corta o las comunicaciones por satélite. Se puede por tanto hablar de un clima espacial.

Sucesos destacables

  • El 1 de septiembre de 1859 el Sol emitió una señal luminosa sumamente poderosa, que en la Tierra interrumpió el servicio telegráfico. La aurora boreal causada en nuestra atmósfera fue visible en lugares tan al sur como La Habana, Hawái, y Roma. Una actividad similar se percibió en el hemisferio sur.
  • La señal luminosa más poderosa observada por el instrumental de un satélite empezó el 4 de noviembre de 2003 a las 19:29 UTC, y saturó los instrumentos durante 11 minutos. La Región 486 parece haber producido un flujo de rayos X. Las observaciones holográficas y visuales indican actividad continuada en el Sol.

Véase también

Referencias

  1. Temple, Robert K.G. (octubre de 1988). «Inventos y hallazgos de una antigua civilización». El Correo. Consultado el 25 de noviembre de 2012. 
  2. «Solar activity reconstructed over a millennium». ethz.ch (en inglés). Consultado el 20 de enero de 2021. 

Enlaces externos

  •   Wikimedia Commons alberga una galería multimedia sobre Mancha solar.
  • SIDC.OMA.be el 3 de agosto de 2017 en Wayback Machine. (Centro Mundial de Datos en Bélgica: índice de manchas solares).
  • (historia de la atmósfera; en inglés).
  • SpaceWeather.com (condiciones actuales; en inglés).
  • (el ciclo solar actual, la progresión del ciclo solar; en inglés).
  • Web.CT.Astro.it (Observatorio de Catania; en inglés).
  • GCMD.Nasa.gov el 2 de noviembre de 2015 en Wayback Machine. (reconstrucción del número de manchas solares en los últimos 11 000 años).
  •   Datos: Q6582994
  •   Multimedia: Sunspots / Q6582994

mancha, solar, mancha, solar, región, tiene, temperatura, más, baja, alrededores, intensa, actividad, magnética, mancha, solar, típica, consiste, región, central, oscura, llamada, umbra, rodeada, penumbra, más, clara, sola, mancha, puede, llegar, medir, hasta,. Una mancha solar es una region del Sol que tiene una temperatura mas baja que sus alrededores y con una intensa actividad magnetica Una mancha solar tipica consiste en una region central oscura llamada umbra rodeada por una penumbra mas clara Una sola mancha puede llegar a medir hasta 12 000 km casi tan grande como el diametro de la Tierra pero un grupo de manchas puede alcanzar 120 000 km de extension e incluso algunas veces mas Un primer plano de mancha solar en luz ultravioleta tomada por la nave espacial TRACE Una mancha solar visible a simple vista y tomada sin ningun equipo especial La penumbra esta constituida por una estructura de filamentos claros y oscuros que se extienden mas o menos radialmente desde la umbra Ambas umbra y penumbra parecen oscuras por contraste con la fotosfera simplemente porque estan mas frias que la temperatura media de la fotosfera asi la umbra tiene una temperatura de 4000 K mientras que la penumbra alcanza los 5600 K evidentemente inferiores a los aproximadamente 6000 K que tienen los granulos de la fotosfera Por la ley de Stefan Boltzmann en que la energia total radiada por un cuerpo negro como una estrella es proporcional a la cuarta potencia de su temperatura efectiva E sT4 donde s 5 67 10 8 W m K4 vease constante de Stefan Boltzmann la umbra emite aproximadamente un 32 de la luz emitida por un area igual de la fotosfera y analogamente la penumbra tiene un brillo de un 71 de la fotosfera La oscuridad de una mancha solar es solamente un efecto de contraste si pudieramos ver una mancha tipo con una umbra del tamano de la Tierra aislada y a la misma distancia que el Sol brillaria unas 50 veces mas que la Luna llena Las manchas estan relativamente inmoviles con respecto a la fotosfera y participan de la rotacion solar El area de la superficie solar cubierta por las manchas se mide en terminos de millonesimas de hemisferio solar visible Indice 1 La historia 2 La evolucion de una mancha solar 3 Clasificacion de las manchas 4 Las manchas y la rotacion solar 5 Variacion de la actividad solar 6 Evolucion de las manchas en un ciclo diagrama de mariposa 7 Origen de las manchas solares 8 La observacion de las manchas por los aficionados 9 Relacion de las manchas solares y fenomenos terrestres 9 1 Sucesos destacables 10 Vease tambien 11 Referencias 12 Enlaces externosLa historia EditarLas primeras observaciones sistematicas de manchas solares fueron hechas por astronomos chinos a partir del 28 a C si bien existen noticias puntuales anteriores desde el siglo IV a C Entre los anos 28 a C y 1638 d C registraron un total de 112 manchas 1 Probablemente podian ver los grupos de manchas mas grandes cuando la intensa luz del sol era filtrada por el polvo que el viento habia llevado desde los desiertos del Asia central En Occidente la noticia mas antigua sobre una mancha solar aparece en la Vida de Carlomagno escrita en 807 d C En los siglos siguientes las observaron astronomos musulmanes como Averroes y ya en el siglo XV tambien italianos 1 En 1610 los astronomos David Fabricius y su hijo Johannes observaron manchas mediante telescopios David publico una descripcion en junio de 1611 Galileo Galilei les enseno manchas solares a astronomos en Roma y Schneider las observo probablemente durante dos o tres meses La amarga disputa subsiguiente por la prioridad del descubrimiento entre Galileo y Schneider ninguno de los cuales sabia del trabajo de los Fabricius fue por tanto vana Las manchas solares tenian mucha importancia en el debate sobre la naturaleza del sistema solar Se demostraba que el Sol giraba y sufria cambios contrariamente a la ensenanza de Aristoteles Los detalles de su claro movimiento no tenian una explicacion sencilla excepto en el sistema heliocentrico de Copernico La evolucion de una mancha solar EditarLas manchas solares aparecen crecen cambian de dimensiones y de aspecto y luego desaparecen tras haber existido tras una o dos rotaciones solares es decir durante uno o dos meses aunque su vida media es aproximadamente dos semanas Suelen aparecer por parejas Primero se observa una formacion brillante la facula y luego un poro un intersticio entre la granulacion de la fotosfera que empieza a oscurecerse Al dia siguiente ya hay una pequena mancha mientras en el poro gemelo a unos pocos grados de distancia aparece otra mancha A los pocos dias ambas manchas tienen el aspecto caracteristico una region central oscura llamada sombra con temperaturas alrededor de 2500 K y brillo un 20 de la fotoesfera rodeada de una zona grisacea y con aspecto filamentoso la penumbra con temperaturas alrededor de 3300 K y brillo un 75 de la fotoesfera Los filamentos claros y oscuros tienen una direccion radial Los granulos de la penumbra tienen tambien forma alargada de tamanos 0 5 a 2 y sus tiempos de vida son mucho mayores que los granulos ordinarios desde 40 minutos a 3 horas Junto a estas dos manchas principales aparecen otras mas pequenas Todas las manchas tienen movimientos propios con velocidades de hasta centenares de kilometros por hora El grupo de manchas alcanza su maxima complejidad hacia el decimo dia Las dos manchas principales de cada grupo se comportan como si fuesen los polos de un enorme y potente iman ya que entre ambos existe un campo magnetico con una intensidad entre 0 2 y 0 4 T mientras que el campo magnetico terrestre tiene una intensidad de solo 0 05 mT La mancha que esta al oeste solar se llama conductora y la que esta al este solar conducida En casi todos los grupos el eje entre las dos manchas no se dispone en la direccion este oeste sino que la mancha conductora esta en ambos hemisferios mas cercana al ecuador Se ha observado que a bajas altitudes existe un flujo de materia desde la sombra hacia la penumbra a una velocidad de 2000 m s efecto Evershed y de fuera hacia adentro en altitudes mayores como la cromosfera efecto Evershed inverso Clasificacion de las manchas EditarEl esquema McIntoch ha reemplazado al esquema Zurich en la clasificacion de las manchas Se utiliza un codigo de tres letras que describe la clase del grupo de mancha sencilla doble compleja el desarrollo penumbral de la mancha mayor y la compacidad del grupo La letra A se reserva para los poros La mayor parte de estos solo llegan al estadio B Las manchas que llegan a desarrollarse alcanzan su mayor area al cabo de una decena de dias y luego empiezan a degenerar de modo que la mancha seguidora desaparece por regla general primero El esquema de Monte Wilson se utiliza para describir el campo magnetico que puede ser sencillo bipolar o complejo Las manchas y la rotacion solar EditarLa medicion del desplazamiento de las manchas solares sobre el disco ha permitido deducir que el Sol tiene un periodo de rotacion de aproximadamente 27 dias No todo el Sol gira a la misma velocidad puesto que no es un cuerpo rigido asi en el ecuador el periodo es de 25 dias a 40 de latitud es de 28 dias y en los polos es aun mayor A esto se le conoce como rotacion diferencial Variacion de la actividad solar Editar 400 anos de actividad solar Reconstruccion de 11 000 anos de manchas solares El numero de manchas solares ha sido medido desde 1700 y hay estimaciones de 11 000 anos atras La tendencia reciente es ascendente desde 1900 a los anos sesenta Heinrich Schwabe fue el primero que observo la variacion ciclica del numero de manchas solar entre 1826 y 1843 y llevo a Rudolf Wolf a hacer observaciones sistematicas que comienzan en 1848 El retraso en reconocer esta periodicidad del Sol se debe al comportamiento muy raro del Sol durante el siglo XVII El numero de Wolf es una expresion que combina manchas individuales y grupos de manchas y que permite tabular la actividad solar Wolf tambien estudio el registro historico en un esfuerzo por establecer una base de datos con las variaciones ciclicas del pasado Establecio una base de datos del ciclo hasta 1700 Aparte del ciclo de 11 anos se ha comprobado la existencia de un ciclo de unos 80 anos durante la mitad del cual el numero de manchas es bastante superior a la otra mitad Wolf establecio una base de datos del ciclo hasta 1700 aunque la tecnologia y tecnicas para las observaciones solares cuidadosas estaban ya disponibles en 1610 Gustav Sporer penso que la razon para que Wolf fuera incapaz en extender el ciclo era que habia un periodo de 70 anos entre 1640 y 1715 en el que raramente se observaron manchas solares Los registros historicos de manchas solares indican que despues de su descubrimiento en 1611 hubo dos maximos separados 30 anos y luego la actividad declino hasta un nivel muy bajo hacia 1640 y asi se mantuvo hasta 1715 en que hemos recuperado el ciclo tal como lo conocemos No se pudo apreciar el significado de la ausencia porque tras el descubrimiento de las manchas solares hubo 34 anos de actividad y luego 70 sin ella quien podia decir lo que era normal La investigacion sobre las manchas solares estaba inactiva durante los siglos XVII y principios del XVIII debido al Minimo de Maunder durante el cual ninguna mancha solar fue visible pero despues de la reasuncion de la actividad solar Heinrich Schwabe en 1843 descubrio cambio periodico undecenal en el numero de manchas solar Edward Maunder en 1895 y 1922 realizo estudios cuidadosos para descubrir que el problema no era la falta de datos observacionales sino la ausencia real de manchas Para ello agrego al cuadro la ausencia durante el mismo periodo de auroras polares ligadas siempre a los ciclos de actividad solar Las auroras que son normales en las Islas Britanicas y en Escandinavia desaparecieron durante los 70 anos de inactividad de modo que al reaparecer en 1715 causaron admiracion y consternacion en Copenhague y Estocolmo Puesto que las manchas solares son mas oscuras es natural suponer que mas manchas solares signifiquen menos radiacion solar Sin embargo las areas circundantes son mas luminosas y el efecto global es que mas manchas solares se asocian a un sol mas luminoso La variacion es pequena del orden del 0 1 y solo se establecio por medidas por satelite de la variacion solar a partir de los anos ochenta Durante el minimo de Maunder hubo unos inviernos anormalmente frios e intensas nevadas tal como lo demuestran los registros historicos La Tierra pudo haber refrescado casi 1 K En 1920 Douglas hizo un trabajo pionero sobre la datacion con los anillos de los arboles Observo una tendencia general ciclica en la velocidad de crecimiento cada una o dos decadas Al estudiar maderas de la segunda mitad del siglo XVII observo la ausencia de la periodicidad Douglas leyo en 1922 el articulo de Maunder y le escribio para comunicarle su hallazgo Los anillos de los arboles demuestran este enfriamiento pues son mas delgados durante los periodos frios y muestran concentraciones anormalmente altas de carbono radioactivo 14C Este tipo particular de carbono se produce a grandes alturas sobre la atmosfera terrestre debido a la radiacion cosmica procedente de la galaxia Sabemos que durante un minimo solar el campo magnetico del sol protege menos a la tierra de la radiacion cosmica que a la vez hace que los niveles de carbono 14 suban 2 Se ha sugerido que algunas de las glaciaciones fueron el resultado de prolongados periodos de falta de actividad solar Evolucion de las manchas en un ciclo diagrama de mariposa Editar Diagrama de mariposa mostrando la ley de Sporer Todas las manchas solares aparecen en ambos hemisferios en latitudes que van desde los 5 a los 40 La actividad solar ocurre en ciclos de aproximadamente once anos El punto de actividad solar mas alta durante este ciclo es conocido como el maximo solar y el punto de actividad mas baja es el minimo solar Al principio de un ciclo las manchas solares tienden a aparecer en las latitudes mas altas unos 40 y a medida que el ciclo se acerca el maximo aparecen manchas con mayor frecuencia y cada vez a menos latitud cerca del ecuador hasta que se alcanza el maximo Mientras esto ocurre aparecen las primeras manchas del ciclo siguiente a una latitud de unos 40 A esto se llama la ley de Sporer Hoy se sabe que hay varios periodos en el indice de la mancha solar numero de Wolf el mas importante tiene 11 anos de duracion media Este periodo tambien se observa en la mayoria de las otras expresiones de la actividad solar y se une profundamente a una variacion en el campo magnetico solar que cambia la polaridad con este periodo George Ellery Hale une los campos magneticos y las manchas solares para dar una comprension moderna de la aparicion de las manchas solares Hale sugirio que el periodo de ciclo de mancha solar es de 22 anos cubriendo dos inversiones del campo del dipolo magnetico solar Horace W Babcock propuso un modelo cualitativo despues para la dinamica de las capas exteriores solares El Modelo Babcock explica la conducta descrita por la ley de Sporer asi como otros efectos debido a campos magneticos que se retuercen por la rotacion del Sol Origen de las manchas solares EditarEn las manchas hay un campo magnetico con una intensidad de 0 3 T Aunque los detalles de la creacion de las manchas solares todavia son cuestion de investigacion esta bastante claro que las manchas solares son el aspecto visible del tubo de flujo magnetico que se forma debajo de la fotoesfera En ellos la presion y densidad son menores y por esto se elevan y enfrian Cuando el tubo de fuerza rompe la superficie de la fotoesfera aparece la facula que es una region un 10 mas brillante que el resto Por conveccion hay un flujo de energia desde el interior del sol El tubo magnetico se enrosca por la rotacion diferencial Si la tension en el flujo del tubo alcanza cierto limite el tubo magnetico se riza como lo haria una venda de caucho La transmision del flujo de energia desde el interior del sol se inhibe y con el la temperatura de la superficie A continuacion aparecen en la superficie dos manchas con polaridad magnetica opuesta en los puntos en las que el tubo de fuerza corta a la fotoesfera Las recientes observaciones del satelite SOHO usando las ondas sonoras que viajan a traves de la fotosfera del Sol permiten formar una imagen detallada de la estructura interior de las manchas solar debajo cada mancha solar se forma un vortice giratorio esto hace que se concentren las lineas del campo magnetico Las manchas solares se comportan en algunos aspectos de modo similar a los huracanes terrestres Las manchas suelen presentarse en grupos bipolares cuyos componentes tienen polaridades magneticas opuestas El efecto Zeeman que consiste en un desdoblamiento de las rayas espectrales debido al campo magnetico ha permitido calcular la intensidad del campo magnetico en las manchas y en el centro puede ser de unas decimas de tesla El numero de manchas solares sigue un ciclo de unos 11 anos al final del cual la polaridad de las manchas y del Sol se invierten pasando de norte sur y de sur norte Asi pues el periodo magnetico del Sol es de 22 anos El efecto Wilson nos dice que las manchas solares son realmente depresiones delante de la superficie del Sol La observacion de las manchas por los aficionados Editar Un grupo grande de manchas solares en 2004 puede verse muy claramente el area gris alrededor de las manchas tambien se puede ver la granulacion de la superficie del Sol Las manchas solares se observan facilmente incluso con un telescopio pequeno mediante proyeccion En algunas circunstancias los ocasos pueden observarse las manchas solares a simple vista Cabe destacar que los rayos solares pueden causar graves danos en los ojos incluyendo ceguera permanente Jamas se debe mirar directamente al Sol puede causar un dano permanente en la retina incluso antes de notar ningun dano Lo mejor es proyectar la imagen del Sol sobre una pantalla Tambien es valido utilizar un filtro solar pero tiene que ser un filtro de mylar que abarque todo el objetivo del telescopio y no solo el filtro ocular pues estos ultimos se calientan mucho y se pueden romper espontaneamente Relacion de las manchas solares y fenomenos terrestres EditarSe han efectuado intentos de relacionar el ciclo de 11 anos de las manchas solares con fenomenos ciclicos de la Tierra como variaciones del clima periodos de lluvia y sequia variacion en la longitud del dia Ya hemos visto una correlacion clara entre el crecimiento de los anillos de los arboles y la actividad solar Aparte de esta las pocas correlaciones de este tipo que son razonablemente fiables parecen deberse a ligeras variaciones del flujo de energia total emitido por el Sol y a las tremendas perturbaciones magneticas que podrian afectar a la parte superior de nuestra atmosfera Esto podria influir en el clima terrestre Mas clara es su relacion con el estado de la ionosfera Ello puede ayudar a predecir las condiciones de propagacion de la onda corta o las comunicaciones por satelite Se puede por tanto hablar de un clima espacial Sucesos destacables Editar El 1 de septiembre de 1859 el Sol emitio una senal luminosa sumamente poderosa que en la Tierra interrumpio el servicio telegrafico La aurora boreal causada en nuestra atmosfera fue visible en lugares tan al sur como La Habana Hawai y Roma Una actividad similar se percibio en el hemisferio sur La senal luminosa mas poderosa observada por el instrumental de un satelite empezo el 4 de noviembre de 2003 a las 19 29 UTC y saturo los instrumentos durante 11 minutos La Region 486 parece haber producido un flujo de rayos X Las observaciones holograficas y visuales indican actividad continuada en el Sol Vease tambien EditarMancha Solar AR 1618Referencias Editar a b Temple Robert K G octubre de 1988 Inventos y hallazgos de una antigua civilizacion El Correo Consultado el 25 de noviembre de 2012 Solar activity reconstructed over a millennium ethz ch en ingles Consultado el 20 de enero de 2021 Enlaces externos Editar Wikimedia Commons alberga una galeria multimedia sobre Mancha solar SIDC OMA be Archivado el 3 de agosto de 2017 en Wayback Machine Centro Mundial de Datos en Belgica indice de manchas solares TVWeather com historia de la atmosfera en ingles SpaceWeather com condiciones actuales en ingles SEC NOAA gov el ciclo solar actual la progresion del ciclo solar en ingles Web CT Astro it Observatorio de Catania en ingles GCMD Nasa gov Archivado el 2 de noviembre de 2015 en Wayback Machine reconstruccion del numero de manchas solares en los ultimos 11 000 anos Datos Q6582994 Multimedia Sunspots Q6582994 Obtenido de https es wikipedia org w index php title Mancha solar amp oldid 148853278, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos