fbpx
Wikipedia

Magnetar

Un magnetar o magnetoestrella es un tipo de estrella de neutrones alimentada con un campo magnético extremadamente fuerte. Se trata de una variedad de púlsar cuya característica principal es la expulsión, en un breve período (equivalente a la duración de un relámpago), de enormes cantidades de alta energía en forma de rayos X y rayos gamma. El campo magnético deteriora la potencia de emisión de la radiación electromagnética de alta energía, principalmente los rayos X y los rayos gamma.

Representación artística de un magnetar.

Los rayos gamma están formados por fotones pertenecientes al extremo más energético del espectro electromagnético, seguidos de los rayos X y, a continuación, de los rayos ultravioleta. Si los rayos X expulsados por el magnetar son de alta intensidad recibe entonces el nombre de Púlsar Anómalo de Rayos X, (del inglés: Anomalous X-ray Pulsars, o su acrónimo AXPs). Si los rayos expulsados pertenecen al espectro gamma de más alta intensidad, reciben el nombre de Repetidores de Gamma Suave, (o SGRs siglas del inglés de: Soft Gamma Repeater).

Los rayos gamma ordinarios conocidos como GRBs brotes de rayos gamma, del inglés gamma-ray bursts, ya eran conocidos en las postrimerías de los años 1960. El descubrimiento de estos rayos tremendamente energéticos provenientes del espacio, se efectuó en plena Guerra Fría, cuando las dos superpotencias, EE. UU. y la URSS, se espiaban mutuamente tratando de controlar su arsenal nuclear. Con el fin de verificar el tratado de no proliferación de armas nucleares, EE. UU. lanzó una flota de satélites conocidos como Proyecto Vela. Con estos satélites, dotados especialmente para la captación de rayos X y rayos gamma, se descubrieron en 1967 aleatorias explosiones de estos últimos que, a modo de flashes, parecían venir desde distintas direcciones del universo. El hallazgo se mantuvo en secreto hasta que, en 1973, fue dado a conocer a la opinión pública por Ray Klebesabel y su equipo del Laboratorio Nacional de Los Álamos.

Descripción

Poco se conoce acerca de la estructura física de los magnetares, ya que ninguno de ellos se halla lo suficientemente próximo a la Tierra para ser estudiado correctamente. Al igual que otras de estrellas de neutrones, los magnetares poseen un diámetro aproximado de 20 kilómetros. Concretamente el SGR 1806-20, del diámetro mencionado tiene una masa de casi 4x1025 kg, lo cual le da una densidad media que se acerca a 10 billones de kg/m³, lo que quiere decir que es casi diez mil millones de veces más denso que el agua. Aun así, la masa del Sol es unas 50 000 veces mayor que la del magnetar mencionado. La sustancia que forma el magnetar, en ocasiones es referida como neutronio (teóricamente formada solo por neutrones). Los magnetares son diferenciados del resto de estrellas de neutrones por tener campos magnéticos más fuertes, y por rotar comparativamente más despacio, con la mayoría de los magnetares tardando entre uno y diez segundos para realizar una rotación completa, mientras a una estrella de neutrones promedio le toma menos de un segundo. La vida activa de un magnetar es corta; sus potentes campos magnéticos se desmoronan pasados los 10 000 años, perdiendo consecuentemente su vigorosa emisión de rayos X. Dado el número de magnetares observables hoy en día, un cálculo eleva el número de magnetares inactivos en la Vía Láctea a unos treinta millones.

Los sismos producidos en la superficie de un magnetar causan gran volatilidad en la estrella y en el campo magnético que le rodea, lo que generalmente acarrea emisiones extremadamente poderosas de rayos gamma, las cuales han sido registradas en la Tierra en 1979, 1998 y 2004.

Formación y evolución

La teoría acerca de estos objetos fue formulada en 1992 por Robert C. Duncan de la Universidad de Texas en Austin y Christopher Thompson del Instituto Canadiense de Física Teórica. Posteriormente, esta teoría ha sido ampliamente aceptada por el resto de la comunidad científica como una explicación física que satisface hasta el momento las observaciones realizadas sobre estos objetos.

Actualmente, se considera que de cada diez explosiones de supernovas, solamente una da origen al nacimiento de un magnetar. Si la supernova posee entre 6 y 12 masas solares, se convierte en una estrella de neutrones de no más de 10 a 20 km de diámetro. Según la hipótesis de los científicos mencionados anteriormente, los requisitos previos para convertirse en magnetar son una rotación rápida y un campo magnético intenso antes de la explosión. Este campo magnético sería creado por un generador eléctrico (efecto dinamo) que utiliza la convección de materia nuclear que dura los diez primeros segundos alrededor de la vida de una estrella de neutrones. Si esta última gira lo suficientemente rápido, las corrientes de convección se vuelven globales y transfieren su energía al campo magnético. Cuando la rotación es demasiado lenta, las corrientes de convección solo se forman en regiones locales. Un púlsar sería, pues, una estrella de neutrones que, en su nacimiento, no habría girado lo suficientemente deprisa durante un corto lapso de tiempo para generar este efecto dinamo. El magnetar posee un campo lo suficientemente poderoso como para aspirar la materia de los alrededores de la estrella hacia su interior y comprimirla; esto conlleva que se disipe una cantidad significativa de energía magnética durante un periodo aproximado de unos 10 000 años.

Con el tiempo, el poder magnético decae tras expulsar ingentes cantidades de energía en forma de rayos X y gamma. Las tensiones que causan el colapso se producen a veces en las capas externas de los magnetares, constituidos por plasma de elementos pesados (principalmente de hierro). Estas vibraciones intermitentes muy energéticas producen vientos de rayos X y gamma, de ahí el nombre de repetidoras de rayos gamma suaves.

El 27 de diciembre de 2004, se registró un estallido de rayos gamma proveniente del magnetar denominado SGR 1806-20 situado en la Vía Láctea. El origen estaba situado a unos 50 000 años luz. En la opinión de eminentes astrónomos, si se hubiera producido a tan solo 10 años luz de la Tierra, —distancia que nos separa de alguna de las estrellas más cercanas—, hubiera peligrado seriamente la vida en nuestro planeta al destruir la capa de ozono, alterando el clima global y destruyendo la atmósfera. Esta explosión resultó ser unas cien veces más potente que cualquier otro estallido registrado hasta ahora. La energía liberada en dos centésimas de segundo fue superior a la producida por el Sol en 250 000 años.

A continuación se puede ver una pequeña comparación entre distintas intensidades de campos magnéticos:

  • Brújula movida por el campo magnético de la Tierra: 0,6 Gauss;
  • Pequeño imán, como los sujetapapeles de los frigoríficos: 100 Gauss;
  • Campo generado en la Tierra por los electroimanes más potentes: 4,5×105 Gauss (450 000 Gauss);
  • Campo máximo atribuido a una de las denominadas estrellas blancas: 1×108 Gauss (100 millones de Gauss);
  • Magnetares (SGRs y AXPs): 1014 ~ 1015 Gauss.

Véase también

Enlaces externos

  •   Wikimedia Commons alberga una galería multimedia sobre Magnetar.
  •   Wikcionario tiene definiciones y otra información sobre magnetar.
  • Magnetares, extenso artículo sobre las estrellas magnetares.
  • Catálogo de Magnetar en línea McGill (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).
  •   Datos: Q190426
  •   Multimedia: Magnetars

magnetar, magnetar, magnetoestrella, tipo, estrella, neutrones, alimentada, campo, magnético, extremadamente, fuerte, trata, variedad, púlsar, cuya, característica, principal, expulsión, breve, período, equivalente, duración, relámpago, enormes, cantidades, al. Un magnetar o magnetoestrella es un tipo de estrella de neutrones alimentada con un campo magnetico extremadamente fuerte Se trata de una variedad de pulsar cuya caracteristica principal es la expulsion en un breve periodo equivalente a la duracion de un relampago de enormes cantidades de alta energia en forma de rayos X y rayos gamma El campo magnetico deteriora la potencia de emision de la radiacion electromagnetica de alta energia principalmente los rayos X y los rayos gamma Representacion artistica de un magnetar Los rayos gamma estan formados por fotones pertenecientes al extremo mas energetico del espectro electromagnetico seguidos de los rayos X y a continuacion de los rayos ultravioleta Si los rayos X expulsados por el magnetar son de alta intensidad recibe entonces el nombre de Pulsar Anomalo de Rayos X del ingles Anomalous X ray Pulsars o su acronimo AXPs Si los rayos expulsados pertenecen al espectro gamma de mas alta intensidad reciben el nombre de Repetidores de Gamma Suave o SGRs siglas del ingles de Soft Gamma Repeater Los rayos gamma ordinarios conocidos como GRBs brotes de rayos gamma del ingles gamma ray bursts ya eran conocidos en las postrimerias de los anos 1960 El descubrimiento de estos rayos tremendamente energeticos provenientes del espacio se efectuo en plena Guerra Fria cuando las dos superpotencias EE UU y la URSS se espiaban mutuamente tratando de controlar su arsenal nuclear Con el fin de verificar el tratado de no proliferacion de armas nucleares EE UU lanzo una flota de satelites conocidos como Proyecto Vela Con estos satelites dotados especialmente para la captacion de rayos X y rayos gamma se descubrieron en 1967 aleatorias explosiones de estos ultimos que a modo de flashes parecian venir desde distintas direcciones del universo El hallazgo se mantuvo en secreto hasta que en 1973 fue dado a conocer a la opinion publica por Ray Klebesabel y su equipo del Laboratorio Nacional de Los Alamos Indice 1 Descripcion 2 Formacion y evolucion 3 Vease tambien 4 Enlaces externosDescripcion EditarPoco se conoce acerca de la estructura fisica de los magnetares ya que ninguno de ellos se halla lo suficientemente proximo a la Tierra para ser estudiado correctamente Al igual que otras de estrellas de neutrones los magnetares poseen un diametro aproximado de 20 kilometros Concretamente el SGR 1806 20 del diametro mencionado tiene una masa de casi 4x1025 kg lo cual le da una densidad media que se acerca a 10 billones de kg m lo que quiere decir que es casi diez mil millones de veces mas denso que el agua Aun asi la masa del Sol es unas 50 000 veces mayor que la del magnetar mencionado La sustancia que forma el magnetar en ocasiones es referida como neutronio teoricamente formada solo por neutrones Los magnetares son diferenciados del resto de estrellas de neutrones por tener campos magneticos mas fuertes y por rotar comparativamente mas despacio con la mayoria de los magnetares tardando entre uno y diez segundos para realizar una rotacion completa mientras a una estrella de neutrones promedio le toma menos de un segundo La vida activa de un magnetar es corta sus potentes campos magneticos se desmoronan pasados los 10 000 anos perdiendo consecuentemente su vigorosa emision de rayos X Dado el numero de magnetares observables hoy en dia un calculo eleva el numero de magnetares inactivos en la Via Lactea a unos treinta millones Los sismos producidos en la superficie de un magnetar causan gran volatilidad en la estrella y en el campo magnetico que le rodea lo que generalmente acarrea emisiones extremadamente poderosas de rayos gamma las cuales han sido registradas en la Tierra en 1979 1998 y 2004 Formacion y evolucion EditarLa teoria acerca de estos objetos fue formulada en 1992 por Robert C Duncan de la Universidad de Texas en Austin y Christopher Thompson del Instituto Canadiense de Fisica Teorica Posteriormente esta teoria ha sido ampliamente aceptada por el resto de la comunidad cientifica como una explicacion fisica que satisface hasta el momento las observaciones realizadas sobre estos objetos Actualmente se considera que de cada diez explosiones de supernovas solamente una da origen al nacimiento de un magnetar Si la supernova posee entre 6 y 12 masas solares se convierte en una estrella de neutrones de no mas de 10 a 20 km de diametro Segun la hipotesis de los cientificos mencionados anteriormente los requisitos previos para convertirse en magnetar son una rotacion rapida y un campo magnetico intenso antes de la explosion Este campo magnetico seria creado por un generador electrico efecto dinamo que utiliza la conveccion de materia nuclear que dura los diez primeros segundos alrededor de la vida de una estrella de neutrones Si esta ultima gira lo suficientemente rapido las corrientes de conveccion se vuelven globales y transfieren su energia al campo magnetico Cuando la rotacion es demasiado lenta las corrientes de conveccion solo se forman en regiones locales Un pulsar seria pues una estrella de neutrones que en su nacimiento no habria girado lo suficientemente deprisa durante un corto lapso de tiempo para generar este efecto dinamo El magnetar posee un campo lo suficientemente poderoso como para aspirar la materia de los alrededores de la estrella hacia su interior y comprimirla esto conlleva que se disipe una cantidad significativa de energia magnetica durante un periodo aproximado de unos 10 000 anos Con el tiempo el poder magnetico decae tras expulsar ingentes cantidades de energia en forma de rayos X y gamma Las tensiones que causan el colapso se producen a veces en las capas externas de los magnetares constituidos por plasma de elementos pesados principalmente de hierro Estas vibraciones intermitentes muy energeticas producen vientos de rayos X y gamma de ahi el nombre de repetidoras de rayos gamma suaves El 27 de diciembre de 2004 se registro un estallido de rayos gamma proveniente del magnetar denominado SGR 1806 20 situado en la Via Lactea El origen estaba situado a unos 50 000 anos luz En la opinion de eminentes astronomos si se hubiera producido a tan solo 10 anos luz de la Tierra distancia que nos separa de alguna de las estrellas mas cercanas hubiera peligrado seriamente la vida en nuestro planeta al destruir la capa de ozono alterando el clima global y destruyendo la atmosfera Esta explosion resulto ser unas cien veces mas potente que cualquier otro estallido registrado hasta ahora La energia liberada en dos centesimas de segundo fue superior a la producida por el Sol en 250 000 anos A continuacion se puede ver una pequena comparacion entre distintas intensidades de campos magneticos Brujula movida por el campo magnetico de la Tierra 0 6 Gauss Pequeno iman como los sujetapapeles de los frigorificos 100 Gauss Campo generado en la Tierra por los electroimanes mas potentes 4 5 105 Gauss 450 000 Gauss Campo maximo atribuido a una de las denominadas estrellas blancas 1 108 Gauss 100 millones de Gauss Magnetares SGRs y AXPs 1014 1015 Gauss Vease tambien EditarEstrella de neutrones Estrella compacta Agujeros negrosEnlaces externos Editar Wikimedia Commons alberga una galeria multimedia sobre Magnetar Wikcionario tiene definiciones y otra informacion sobre magnetar Magnetares extenso articulo sobre las estrellas magnetares Catalogo de Magnetar en linea McGill enlace roto disponible en Internet Archive vease el historial la primera version y la ultima Datos Q190426 Multimedia MagnetarsObtenido de https es wikipedia org w index php title Magnetar amp oldid 132750920, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos