fbpx
Wikipedia

Fisión nuclear

En física nuclear, la fisión es la división de un núcleo en núcleos más livianos,[1][2]​ además de algunos subproductos como neutrones libres, fotones (generalmente rayos gamma) y otros fragmentos del núcleo como partículas alfa (núcleos de helio) y beta (electrones y positrones de alta energía) además de gran cantidad de energía.[3]​ Su descubrimiento se debe a Otto Hahn y Lise Meitner, aunque fue el primero el único en recibir el premio Nobel por el mismo.[4]

Fisión nuclear de un átomo de uranio-235.

La fisión nuclear de los elementos pesados fue descubierta el 17 de diciembre de 1938 por el alemán Otto Hahn y su ayudante Fritz Strassmann a propuesta de la física austro-sueca Lise Meitner que la explicó teóricamente en enero de 1939 junto con su sobrino Otto Robert Frisch. Frisch dio nombre al proceso por analogía con la fisión binaria de las células vivas. En el caso de los nucleidos pesados, se trata de una reacción exotérmica que puede liberar grandes cantidades de energía, tanto en forma de radiación electromagnética como de energía cinética de los fragmentos. Al igual que la fusión nuclear, para que la fisión produzca energía, la energía de enlace total de los elementos resultantes debe ser mayor que la del elemento inicial.

La fisión es una forma de transmutación nuclear porque los fragmentos resultantes (o átomos hijos) no son el mismo elemento que el átomo padre original. Los dos (o más) núcleos producidos suelen ser de tamaños comparables pero ligeramente diferentes, normalmente con una relación de masas de los productos de aproximadamente 3 a 2, para fisibles comunes, isótopo común.[5][6]​ La mayoría de las fisiones son binarias (producen dos fragmentos cargados), pero ocasionalmente (de 2 a 4 veces por cada 1000 eventos), se producen tres fragmentos cargados positivamente, en una fisión ternaria. El más pequeño de estos fragmentos en los procesos ternarios varía en tamaño desde un protón hasta un núcleo de argón.

Aparte de la fisión inducida por un neutrón, aprovechada y explotada por el ser humano, una forma natural de desintegración radiactiva espontánea (que no requiere un neutrón) también se denomina fisión, y se produce especialmente en isótopos de muy alto número de masa. La fisión espontánea fue descubierta en 1940 por Flyorov, Petrzhak, e Kurchatov[7]​ en Moscú, en un experimento que pretendía confirmar que, sin bombardeo de neutrones, la tasa de fisión del uranio era despreciable, tal y como había predicho Niels Bohr; no era despreciable. [7]

La composición impredecible de los productos (que varían de forma ampliamente probabilística y algo caótica) distingue la fisión de los procesos puramente de efecto túnel como la emisión de protones, la desintegración alfa y la desintegración en racimo, que dan los mismos productos cada vez. La fisión nuclear produce energía para la energía nuclear e impulsa la explosión de armas nucleares. Ambos usos son posibles porque ciertas sustancias llamadas combustible nuclears sufren la fisión cuando son golpeadas por los neutrones de fisión, y a su vez emiten neutrones cuando se rompen. Esto hace posible una reacción nuclear en cadena autosostenida, que libera energía a un ritmo controlado en un reactor nuclear o a un ritmo muy rápido e incontrolado en un arma nuclear.

La cantidad de energía libre contenida en el combustible nuclear es millones de veces superior a la cantidad de energía libre contenida en una masa similar de combustible químico como la gasolina, lo que hace de la fisión nuclear una fuente de energía muy densa. Sin embargo, los productos de la fisión nuclear son, por término medio, mucho más radiactivos que los elementos pesados que normalmente se fisionan como combustible, y permanecen así durante mucho tiempo, dando lugar a un problema de residuos nucleares. La preocupación por la acumulación de residuos nucleares y el potencial destructivo de las armas nucleares se contrapone al deseo pacífico de utilizar la fisión como fuente de energía.

Mecanismo

 
Representación visual de un evento de fisión nuclear inducida donde un neutrón de movimiento lento es absorbido por el núcleo de un átomo de uranio-235, que se fisiona en dos elementos más ligeros de movimiento rápido (productos de fisión) y neutrones adicionales. La mayor parte de la energía liberada está en forma de velocidades cinéticas de los productos de fisión y los neutrones.
 
Rendimientos de producto de fisión en masa para la fisión de neutrones térmicos de U-235, Pu-239, una combinación de los dos típicos de los reactores de energía nuclear actuales, y U-233 utilizado en el ciclo del torio

La fisión de núcleos pesados es un proceso exotérmico, lo que supone que se liberan cantidades sustanciales de energía. El proceso genera mucha más energía que la liberada en las reacciones químicas convencionales, en las que están implicadas las cortezas electrónicas; la energía se emite, tanto en forma de radiación gamma como de energía cinética de los fragmentos de la fisión, que calentarán la materia que se encuentre alrededor del espacio donde se produzca la fisión.

La fisión se puede inducir por varios métodos, incluyendo el bombardeo del núcleo de un átomo fisionable con una partícula de la energía correcta; la partícula es generalmente un neutrón libre. Este neutrón libre es absorbido por el núcleo, haciéndolo inestable[8]​ (a modo de ejemplo, se podría pensar en la inestabilidad de una pirámide de naranjas en el supermercado, al lanzarse una naranja contra ella a la velocidad correcta). El núcleo inestable entonces se partirá en dos o más pedazos: los productos de la fisión que incluyen dos núcleos más pequeños, hasta siete neutrones libres (con una media de dos y medio por reacción), y algunos fotones.

Los núcleos atómicos lanzados como productos de la fisión pueden ser varios elementos químicos. Los elementos que se producen son resultado del azar, pero estadísticamente el resultado más probable es encontrar núcleos con la mitad de protones y neutrones del átomo fisionado original.

Los productos de la fisión son generalmente altamente radiactivos, no son isótopos estables;[9]​ estos isótopos entonces decaen, mediante cadenas de desintegración.

Descomposición radiactiva

La fisión nuclear puede producirse sin bombardeo de neutrones como un tipo de desintegración radiactiva. Este tipo de fisión (llamada fisión espontánea) es poco frecuente, excepto en algunos isótopos pesados.

Reacción nuclear

En los dispositivos nucleares de ingeniería, esencialmente toda la fisión nuclear se produce como una "reacción nuclear", un proceso impulsado por un bombardeo que resulta de la colisión de dos partículas subatómicas. En las reacciones nucleares, una partícula subatómica colisiona con un núcleo atómico y provoca cambios en él. Las reacciones nucleares son, por tanto, impulsadas por la mecánica del bombardeo, y no por el decaimiento exponencial relativamente constante y la vida media característica de los procesos radiactivos espontáneos.

Actualmente se conocen muchos tipos de reacciones nucleares. La fisión nuclear se diferencia de forma importante de otros tipos de reacciones nucleares, en que puede ser amplificada y a veces controlada mediante una reacción nuclear en cadena (un tipo de reacción en cadena general). En una reacción de este tipo, los neutrones libres liberados por cada evento de fisión pueden desencadenar aún más eventos, que a su vez liberan más neutrones y causan más fisiones.

Los elementos químicos isótopos que pueden mantener una reacción de fisión en cadena se llaman combustible nuclear y se dice que son fisionables. Los combustibles nucleares más comunes son el 235U (el isótopo de uranio con número de masa 235 y de uso en reactores nucleares) y 239Pu (el isótopo del plutonio con número de masa 239). Estos combustibles se descomponen en una gama bimodal de elementos químicos con masas atómicas centradas cerca de 95 y 135 u ( productos de fisión). La mayoría de los combustibles nucleares se someten a la fisión espontánea sólo muy lentamente, decayendo en su lugar principalmente a través de una alfa-beta durante períodos de milenios a eones. En un reactor nuclear o en un arma nuclear, la inmensa mayoría de los eventos de fisión son inducidos por el bombardeo con otra partícula, un neutrón, que a su vez es producido por eventos de fisión anteriores.

La fisión nuclear en los combustibles fisionables es el resultado de la energía de excitación nuclear producida cuando un núcleo fisionable captura un neutrón. Esta energía, resultante de la captura del neutrón, es el resultado de la fuerza nuclear atractiva que actúa entre el neutrón y el núcleo. Es suficiente para deformar el núcleo en una "gota" de doble lóbulo, hasta el punto de que los fragmentos nucleares superan las distancias a las que la fuerza nuclear puede mantener unidos dos grupos de nucleones cargados y, cuando esto ocurre, los dos fragmentos completan su separación y luego se separan aún más por sus cargas mutuamente repulsivas, en un proceso que se hace irreversible con una distancia cada vez mayor. Un proceso similar ocurre en los isótopos fisionables (como el uranio-238), pero para poder fisionar, estos isótopos requieren energía adicional proporcionada por los neutrones rápidos (como los producidos por la fusión nuclear en las armas termonucleares).

El modelo de gota líquida del núcleo atómico predice productos de fisión de igual tamaño como resultado de la deformación nuclear. El más sofisticado modelo de capas nuclear es necesario para explicar mecánicamente la ruta hacia el resultado energéticamente más favorable, en el que un producto de fisión es ligeramente más pequeño que el otro. Una teoría de la fisión basada en el modelo de cáscara ha sido formulada por Maria Goeppert Mayer.

El proceso de fisión más común es la fisión binaria, y produce los productos de fisión señalados anteriormente, a 95±15 y 135±15 u. Sin embargo, el proceso binario se produce simplemente porque es el más probable. En cualquier lugar de 2 a 4 fisiones por 1000 en un reactor nuclear, un proceso llamado fisión ternaria produce tres fragmentos cargados positivamente (más neutrones) y el más pequeño de ellos puede variar desde una carga y masa tan pequeña como un protón (Z = 1), hasta un fragmento tan grande como el argón (Z = 18). Sin embargo, los fragmentos pequeños más comunes se componen en un 90% de núcleos de helio-4 con más energía que las partículas alfa de la desintegración alfa (los llamados "alfas de largo alcance" a ~ 16 MeV), además de núcleos de helio-6, y tritones (los núcleos de tritio). El proceso ternario es menos común, pero sigue produciendo una importante acumulación de gas de helio-4 y tritio en las barras de combustible de los reactores nucleares modernos.[10]

Fisión fría y rotura de pares de nucleones

La mayor parte de las investigaciones sobre fisión nuclear se basan en la distribución de masa y energía cinética de los fragmentos de fisión. Sin embargo, esta distribución es perturbada por la emisión de neutrones por parte de los fragmentos antes de llegar a los detectores.

Aunque con muy baja probabilidad, en los experimentos se han detectado eventos de fisión fría, es decir fragmentos con tan baja energía de excitación que no emiten neutrones. Sin embargo, aun en esos casos, se observa la rotura de pares de nucleones, la que se manifiesta como igual probabilidad de obtener fragmentos con número par o impar de nucleones. Los resultados de estos experimentos permiten comprender mejor la dinámica de la fisión nuclear hasta el punto de escisión, es decir, antes de que se desvanezca la fuerza nuclear entre los fragmentos.

Energéticos

Aporte

 
Etapas de la fisión binaria en un modelo de gota líquida. La entrada de energía deforma el núcleo en forma de "cigarro" grueso, luego en forma de "maní", seguida de fisión binaria cuando los dos lóbulos exceden la distancia de atracción de fuerza nuclear de corto alcance , luego se separan y se alejan por su carga eléctrica. En el modelo de gota de líquido, se predice que los dos fragmentos de fisión tendrán el mismo tamaño. El modelo de capa nuclear permite que difieran en tamaño, como se suele observar experimentalmente.

La fisión de un núcleo pesado requiere una energía total de entrada de unos 7 a 8 millones de electronvoltios (MeV) para superar inicialmente la fuerza nuclear que mantiene el núcleo en una forma esférica o casi esférica, y a partir de ahí, deformarlo en una forma de dos lóbulos ("cacahuete") en la que los lóbulos son capaces de seguir separándose entre sí, empujados por su carga positiva mutua, en el proceso más común de fisión binaria (dos productos de fisión con carga positiva + neutrones). Una vez que los lóbulos nucleares han sido empujados hasta una distancia crítica, más allá de la cual la fuerza fuerte de corto alcance ya no puede mantenerlos unidos, el proceso de su separación procede de la energía de la electromagnética de repulsión entre los fragmentos. El resultado son dos fragmentos de fisión que se alejan el uno del otro, a alta energía.

Alrededor de 6 MeV de la energía de entrada de la fisión es suministrada por la simple unión de un neutrón extra al núcleo pesado a través de la fuerza fuerte; sin embargo, en muchos isótopos fisionables, esta cantidad de energía no es suficiente para la fisión. El uranio-238, por ejemplo, tiene una sección transversal de fisión casi nula para neutrones de energía inferior a un MeV. Si no se aporta energía adicional por ningún otro mecanismo, el núcleo no se fisionará, sino que se limitará a absorber el neutrón, como ocurre cuando el U-238 absorbe neutrones lentos e incluso alguna fracción de neutrones rápidos, para convertirse en U-239. La energía restante para iniciar la fisión puede ser suministrada por otros dos mecanismos: uno de ellos es más energía cinética del neutrón entrante, que es cada vez más capaz de fisionar un núcleo pesado fisionables a medida que supera una energía cinética de un MeV o más (los llamados neutrones rápidos). Estos neutrones de alta energía son capaces de fisionar directamente el U-238 (véase la aplicación del arma termonuclear, donde los neutrones rápidos son suministrados por la fusión nuclear). Sin embargo, este proceso no puede darse en gran medida en un reactor nuclear, ya que una fracción demasiado pequeña de los neutrones de fisión producidos por cualquier tipo de fisión tiene suficiente energía para fisionar eficientemente el U-238 (los neutrones de fisión tienen una energía modal de 2 MeV, pero una mediana de sólo 0,75 MeV, lo que significa que la mitad de ellos tienen menos de esta energía insuficiente).[11]

Entre los elementos pesados actínidos, sin embargo, aquellos isótopos que tienen un número impar de neutrones (como el U-235 con 143 neutrones) enlazan un neutrón extra con 1 a 2 MeV adicionales de energía sobre un isótopo del mismo elemento con un número par de neutrones (como el U-238 con 146 neutrones). Esta energía de enlace adicional está disponible como resultado del mecanismo de los efectos de emparejamiento de neutrones. Esta energía extra es el resultado del principio de exclusión de Pauli que permite que un neutrón extra ocupe el mismo orbital nuclear que el último neutrón del núcleo, de manera que ambos forman un par. Por lo tanto, en estos isótopos no se necesita energía cinética de los neutrones, ya que toda la energía necesaria es suministrada por la absorción de cualquier neutrón, ya sea de la variedad lenta o rápida (los primeros se utilizan en los reactores nucleares moderados, y los segundos en los reactores de neutrones rápidos y en las armas). Como se ha señalado anteriormente, el subgrupo de elementos fisionables que pueden fisionarse eficazmente con sus propios neutrones de fisión (provocando así potencialmente una reacción en cadena nuclear en cantidades relativamente pequeñas del material puro) se denominan fisionables. Ejemplos de isótopos fisibles son el uranio-235 y el plutonio-239.

Producción

Los eventos de fisión típicos liberan unos doscientos millones de eV (200 MeV) de energía, el equivalente a aproximadamente >2 billones de Kelvin, en cada evento de fisión. El isótopo exacto que se fisiona, y si es o no fisionable o fisible, sólo tiene un pequeño impacto en la cantidad de energía liberada. Esto puede verse fácilmente examinando la curva de energía de enlace (imagen inferior), y observando que la energía de enlace media de los núclidos actínidos que empiezan por el uranio es de unos 7,6 MeV por nucleón. Mirando más a la izquierda en la curva de energía de enlace, donde se agrupan los productos de fisión|, se observa fácilmente que la energía de enlace de los productos de fisión tiende a centrarse alrededor de 8,5 MeV por nucleón. Así, en cualquier evento de fisión de un isótopo en el rango de masa de los actínidos, se liberan aproximadamente 0,9 MeV por nucleón del elemento de partida. La fisión del U235 por un neutrón lento produce una energía casi idéntica a la fisión del U238 por un neutrón rápido. Este perfil de liberación de energía también es válido para el torio y los diversos actínidos menores.[12]

Por el contrario, la mayoría de las químicas oxidación, como la quema de carbón o TNT, liberan como mucho unos pocos eVs por evento. Por tanto, el combustible nuclear contiene al menos diez millones de veces más energía utilizable por unidad de masa que el combustible químico. La energía de la fisión nuclear se libera como energía cinética de los productos de fisión y de los fragmentos, y como radiación electromagnética en forma de rayos gamma; en un reactor nuclear, la energía se convierte en calor cuando las partículas y los rayos gamma chocan con los átomos que componen el reactor y su fluido de trabajo, normalmente agua u ocasionalmente agua pesada o sal fundida.

 
Animación de una explosión de Coulomb en el caso de un grupo de núcleos cargados positivamente, similar a un grupo de fragmentos de fisión. El nivel de matiz de color es proporcional a la carga del núcleo (más grande). Los electrones (más pequeños) en esta escala de tiempo se ven solo de forma estroboscópica y el nivel de tono es su energía cinética.

Cuando un núcleo de uranio se fisiona en dos fragmentos de núcleos hijos, aproximadamente el 0,1 por ciento de la masa del núcleo de uranio[13]​ aparece como la energía de fisión de ~200 MeV. Para el uranio-235 (energía de fisión media total de 202,79 MeV[14]​), típicamente ~169 MeV aparece como la energía cinética de los núcleos hijos, que se separan a un 3% de la velocidad de la luz, debido a la repulsión de Coulomb. Además, se emite una media de 2,5 neutrones, con una media de energía cinética por neutrón de ~2 MeV (total de 4,8 MeV).[15]​ La reacción de fisión también libera ~7 MeV en rayos gamma inmediatos fotones. Esta última cifra significa que una explosión de fisión nuclear o un accidente de criticidad emite alrededor del 3,5% de su energía en forma de rayos gamma, menos del 2,5% de su energía en forma de neutrones rápidos (total de ambos tipos de radiación ~ 6%), y el resto en forma de energía cinética de los fragmentos de fisión (ésta aparece casi inmediatamente cuando los fragmentos impactan con la materia circundante, como simple calor).[16][17]​ En una bomba atómica, este calor puede servir para elevar la temperatura del núcleo de la bomba a 100 millones de kelvin y provocar la emisión secundaria de rayos X blandos, que convierten parte de esta energía en radiación ionizante. Sin embargo, en los reactores nucleares, la energía cinética de los fragmentos de fisión permanece en forma de calor de baja temperatura, que en sí mismo causa poca o ninguna ionización.

Se han construido las llamadas bombas de neutrones (armas de radiación mejorada) que liberan una mayor fracción de su energía como radiación ionizante (concretamente, neutrones), pero todos estos son dispositivos termonucleares que dependen de la etapa de fusión nuclear para producir la radiación extra. La dinámica energética de las bombas de fisión pura se mantiene siempre en torno al 6% del rendimiento total en radiación, como resultado inmediato de la fisión.

La energía total de la "fisión inmediata" asciende a unos 181 MeV, es decir, a un 89% de la energía total que finalmente se libera por fisión a lo largo del tiempo. El restante ~ 11% se libera en desintegraciones beta que tienen varias vidas medias, pero que comienzan como un proceso en los productos de fisión inmediatamente; y en emisiones gamma retardadas asociadas a estas desintegraciones beta. Por ejemplo, en el uranio-235 esta energía retardada se divide en unos 6,5 MeV en betas, 8,8 MeV en antineutrinos (liberados al mismo tiempo que los betas), y finalmente, unos 6,3 MeV adicionales en emisiones gamma retardadas de los productos de desintegración beta excitados (para un total medio de ~10 emisiones de rayos gamma por fisión, en total). Por lo tanto, alrededor del 6,5% de la energía total de la fisión se libera algún tiempo después del evento, como radiación ionizante no inmediata o retardada, y la energía ionizante retardada se divide casi por igual entre energía de rayos gamma y beta.

En un reactor que ha estado funcionando durante algún tiempo, los productos de fisión radiactivos se habrán acumulado hasta alcanzar concentraciones de estado estacionario tales que su tasa de desintegración es igual a su tasa de formación, de modo que su contribución fraccional total al calor del reactor (a través de la desintegración beta) es la misma que estas contribuciones fraccionales radioisotópicas a la energía de fisión. En estas condiciones, el 6,5% de la fisión que aparece como radiación ionizante retardada (gammas y betas retardados de los productos de fisión radiactivos) contribuye a la producción de calor del reactor en estado estacionario bajo potencia. Esta fracción de producción es la que permanece cuando el reactor se apaga repentinamente (sufre un SCRAM). Por esta razón, la producción de calor de desintegración del reactor comienza con un 6,5% de la potencia de fisión en estado estacionario, una vez que el reactor se apaga. Sin embargo, a las pocas horas, debido a la desintegración de estos isótopos, la potencia de desintegración es mucho menor.

El resto de la energía retardada (8,8 MeV/202,5 MeV = 4,3% de la energía total de fisión) se emite como antineutrinos, que en la práctica no se consideran "radiación ionizante". La razón es que la energía liberada como antineutrinos no es captada por el material del reactor en forma de calor, y escapa directamente a través de todos los materiales (incluida la Tierra) a casi la velocidad de la luz, y al espacio interplanetario (la cantidad absorbida es minúscula). La radiación de neutrinos no se clasifica normalmente como radiación ionizante, porque no se absorbe casi en su totalidad y, por tanto, no produce efectos (aunque el rarísimo evento de neutrinos es ionizante). Casi todo el resto de la radiación (el 6,5% de la radiación beta y gamma retardada) se acaba convirtiendo en calor en el núcleo de un reactor o en su blindaje.

Algunos procesos en los que intervienen los neutrones se caracterizan por absorber o producir finalmente energía: por ejemplo, la energía cinética de los neutrones no produce calor inmediatamente si el neutrón es capturado por un átomo de uranio-238 para generar plutonio-239, pero esta energía se emite si el plutonio-239 se fisiona posteriormente. Por otra parte, los llamados neutrones retardados emitidos como productos de desintegración radiactiva con vidas medias de hasta varios minutos, procedentes de las hijas de la fisión, son muy importantes para la control de los reactores, porque dan un tiempo de "reacción" característico para que la reacción nuclear total se duplique, si la reacción se lleva a cabo en una zona de criticidad retardada que depende deliberadamente de estos neutrones para una reacción en cadena supercrítica (en la que cada ciclo de fisión produce más neutrones de los que absorbe). Sin su existencia, la reacción nuclear en cadena sería prontamente crítica y aumentaría de tamaño más rápido de lo que podría ser controlado por la intervención humana. En este caso, los primeros reactores atómicos experimentales se habrían precipitado a una peligrosa y desordenada "reacción crítica inmediata" antes de que sus operadores hubieran podido apagarlos manualmente (por esta razón, el diseñador Enrico Fermi incluyó barras de control con contador de radiación, suspendidas por electroimanes, que podían caer automáticamente en el centro de la Chicago Pile-1). Si estos neutrones retardados se capturan sin producir fisiones, también producen calor.[18]

Inducción de la fisión

La fisión nuclear de los átomos fue descubierta en 1938 por los investigadores Otto Hahn y Fritz Strassmann a partir del trabajo desarrollado por el propio Hahn junto a Lise Meitner durante años anteriores. Por este descubrimiento recibió en 1944 el Premio Nobel de química. El estudio de la fisión nuclear se considera parte de los campos de la química nuclear y la física. [4]

  • Aunque la fisión es prácticamente la desintegración de materia radiactiva, comenzada a menudo de la manera más fácil posible (inducido), que es la absorción de un neutrón libre, puede también ser inducida lanzando otras cosas en un núcleo fisionable. Estas otras cosas pueden incluir protones, otros núcleos, o aún los fotones de gran energía en cantidades muy altas (porciones de rayos gamma).
  • Muy rara vez, un núcleo fisionable experimentará la fisión nuclear espontánea sin un neutrón entrante.
  • Cuanto más pesado es un elemento más fácil es inducir su fisión. La fisión en cualquier elemento más pesado que el hierro produce energía, y la fisión en cualquier elemento más liviano que el hierro requiere energía. Lo contrario también es verdad en las reacciones de fusión nuclear (la fusión de los elementos más livianos que el hierro produce energía y la fusión de los elementos más pesados que el hierro requiere energía).
  • Los elementos más frecuentemente usados para producir la fisión nuclear son el uranio y el plutonio. El uranio es el elemento natural más pesado; el plutonio experimenta desintegraciones espontáneas y tiene un período de vida limitado. Así pues, aunque otros elementos pueden ser utilizados, estos tienen la mejor combinación de abundancia y facilidad de fisión.

Reacción en cadena

 
Reacción en cadena de fisión nuclear esquemática. 1. Un átomo de uranio-235 absorbe un neutrón y se fisiona en dos nuevos átomos (fragmentos de fisión), liberando tres nuevos neutrones y algo de energía de enlace. 2. Uno de esos neutrones es absorbido por un átomo de uranio-238 y no continúa la reacción. Otro neutrón simplemente se pierde y no choca con nada, tampoco continúa la reacción. Sin embargo, el único neutrón choca con un átomo de uranio-235, que luego se fisiona y libera dos neutrones y algo de energía de enlace. 3. Ambos neutrones chocan con átomos de uranio-235, cada uno de los cuales se fisiona y libera entre uno y tres neutrones, que luego pueden continuar la reacción.

Una reacción en cadena ocurre como sigue: un acontecimiento de fisión empieza lanzando 2 o 3 neutrones en promedio como subproductos. Estos neutrones se escapan en direcciones al azar y golpean otros núcleos, incitando a estos núcleos a experimentar fisión. Puesto que cada acontecimiento de fisión lanza 2 o más neutrones, y estos neutrones inducen otras fisiones, el proceso se acelera rápidamente y causa la reacción en cadena. El número de neutrones que escapan de una cantidad de uranio depende de su área superficial. Solamente los materiales fisibles son capaces de sostener una reacción en cadena sin una fuente de neutrones externa. Para que la reacción en cadena de fisión se lleve a cabo es necesario adecuar la velocidad de los neutrones libres, ya que si impactan con gran velocidad sobre el núcleo del elemento fisible, puede que simplemente lo atraviese o lo impacte, y que este no lo absorba.

Masa crítica

La masa crítica es la mínima cantidad de material requerida para que el material experimente una reacción nuclear en cadena. La masa crítica de un elemento fisionable depende de su densidad y de su forma física (barra larga, cubo, esfera, etc.). Puesto que los neutrones de la fisión se emiten en direcciones al azar, para maximizar las ocasiones de una reacción en cadena, los neutrones deberán viajar tan lejos como sea posible y de esa forma maximizar las posibilidades de que cada neutrón choque con otro núcleo. Así, una esfera es la mejor forma y la peor es probablemente una hoja aplanada, puesto que la mayoría de los neutrones volarían de la superficie de la hoja y no chocarían con otros núcleos.

También es importante la densidad del material. Si el material es gaseoso, es poco probable que los neutrones choquen con otro núcleo porque hay demasiado espacio vacío entre los átomos y un neutrón volaría probablemente entre ellos sin golpear nada. Si el material se pone bajo alta presión, los átomos estarán mucho más cercanos y la probabilidad de una reacción en cadena es mucho más alta. La alta compresión puede ser alcanzada poniendo el material en el centro de una implosión, o lanzando un pedazo de ella contra otro pedazo de ella muy fuertemente (con una carga explosiva, por ejemplo). Una masa crítica del material que ha comenzado una reacción en cadena se dice que se convierte en supercrítica.

Moderadores

Únicamente con juntar mucho uranio en un solo lugar no es suficiente como para comenzar una reacción en cadena. Los neutrones son emitidos por un núcleo en fisión a una velocidad muy elevada. Esto significa que los neutrones escaparán del núcleo antes de que tengan oportunidad de golpear cualquier otro núcleo (debido a un efecto relativista).

Un neutrón de movimiento lento se llama neutrón térmico y solamente esta velocidad del neutrón puede inducir una reacción de fisión. Así pues, tenemos cuatro velocidades de neutrones:

  • Un neutrón (no-térmico) rápidamente se escapará del material sin interacción.
  • Un neutrón de velocidad mediana será capturado por el núcleo y transformará el material en un isótopo (pero no induciría la fisión).
  • Un neutrón de movimiento lento (térmico) inducirá a un núcleo a que experimente la fisión.
  • Un neutrón móvil realmente lento será capturado o escapará, pero no causará fisión.

Algunos años antes del descubrimiento de la fisión, la manera acostumbrada de retrasar los neutrones era hacerlos pasar a través de un material de peso atómico bajo, tal como un material hidrogenoso. El proceso de retraso o de moderación es simplemente una secuencia de colisiones elásticas entre las partículas de alta velocidad y las partículas prácticamente en reposo. Cuanto más parecidas sean las masas del neutrón y de la partícula golpeada, mayor es la pérdida de energía cinética por el neutrón. Por lo tanto los elementos ligeros son los más eficaces como moderadores de neutrones.

A unos cuantos físicos en los años 30 se les ocurrió la posibilidad de mezclar el uranio con un moderador: si fuesen mezclados correctamente, los neutrones de alta velocidad de la fisión podrían ser retrasados al rebotar en un moderador, con la velocidad correcta, para inducir la fisión en otros átomos de uranio. Las características de un buen moderador son: peso atómico bajo y baja o nula tendencia a absorber los neutrones. Los moderadores posibles son entonces el hidrógeno, helio, litio, berilio, boro y carbono. El litio y el boro absorben los neutrones fácilmente, así que se excluyen. El helio es difícil de utilizar porque es un gas y no forma ningún compuesto. La opción de moderadores estaría entonces entre el hidrógeno, deuterio, el berilio y el carbono. Fueron Enrico Fermi y Leó Szilárd quienes propusieron primero el uso de grafito (una forma de carbono) como moderador para una reacción en cadena. El deuterio es el mejor tecnológicamente (introducido en el agua pesada), sin embargo el grafito es mucho más económico.

Efectos de los isótopos

El uranio natural se compone de tres isótopos: 234U (0,006%), 235U (0,7%), y 238U (99,3%). La velocidad requerida para que se produzca un acontecimiento de fisión y no un acontecimiento de captura es diferente para cada isótopo.

El uranio-238 tiende a capturar neutrones de velocidad intermedia, creando 239U, que decae sin fisión a plutonio-239, que sí es fisible. Debido a su capacidad de producir material fisible, a este tipo de materiales se les suele llamar fértiles.

Los neutrones de alta velocidad (52.000 km/s), como los producidos en una reacción de fusión tritio-deuterio, pueden fisionar el uranio-238. Sin embargo los producidos por la fisión del uranio-235, de hasta 28 000 km/s, tienden a rebotar inelásticamente con él, lo cual los desacelera. En un reactor nuclear, el 238U tiende, pues, tanto a desacelerar los neutrones de alta velocidad provenientes de la fisión del uranio-235 como a capturarlos (con la consiguiente transmutación a plutonio-239) cuando su velocidad se modera.

El uranio-235 fisiona con una gama mucho más amplia de velocidades de neutrones que el 238U. Puesto que el uranio-238 afecta a muchos neutrones sin inducir la fisión, tenerlo en la mezcla es contraproducente para promover la fisión. De hecho, la probabilidad de la fisión del 235U con neutrones de velocidad alta puede ser lo suficientemente elevada como para hacer que el uso de un moderador sea innecesario una vez que se haya suprimido el 238U.

Sin embargo, el 235U está presente en el uranio natural en cantidades muy reducidas (una parte por cada 140). La diferencia relativamente pequeña en masa entre los dos isótopos hace, además, que su separación sea difícil. La posibilidad de separar el 235U fue descubierta con bastante rapidez en el proyecto Manhattan, lo que tuvo gran importancia para su éxito.

Referencias

  1. Cortés, Enrique Amorocho; Villamizar, Germán Oliveros (2000). Apuntes sobre energía y recursos energéticos. UNAB. ISBN 9789589682111. Consultado el 4 de febrero de 2018. 
  2. Tsokos, K. A. (2005). Physics for the I.B. Diploma (Fourth Edition edición). United Kingdom: Cambridge University Press. p. 363. ISBN 9780521604055. 
  3. «MONOGRAFÍA La energía nuclear». 
  4. Ron, José Manuel Sánchez (2010). Descubrimientos: Innovación y tecnología siglos XX y XXI. Editorial CSIC - CSIC Press. ISBN 9788400092115. Consultado el 4 de febrero de 2018. 
  5. {{cite book |autor1=M. G. Arora |autor2=M. Singh |name-list-style=amp |year= 1994 |title= Nuclear Chemistry |page= 202 |publisher= Anmol Publications |isbn= 81-261-1763-X |url= https://books.google.com/books?id=G3JA5pYeQcgC&pg=PA202}
  6. Gopal B. Saha (1 de noviembre de 2010). id=bEXqI4ACk-AC&pg=PA11 Fundamentals of Nuclear Pharmacy. Springer. pp. 11-. ISBN 978-1-4419-5860-0. 
  7. Петржак, Константин (1989). «Как было открыто спонтанное деление». Краткий Миг Торжества - О том, как делаются научные открытия-Cómo se descubrió la fisión espontánea [Brief Moment of Triumph - About making scientific discoveries] (en ruso). Наука. pp. 108-112. ISBN 5-02-007779-8.  Texto «editor » ignorado (ayuda)
  8. R, Alvaro Tucci (2010-03). ObtenciÃ3n de Imágenes Médicas. Lulu.com. ISBN 9780557265688. Consultado el 9 de febrero de 2018. 
  9. Mª, CLARAMUNT VALLESPÍ Rosa; Pilar, CORNAGO RAMÍREZ; Soledad, ESTEBAN SANTOS; Angeles, FARRÁN MORALES; Marta, PÉREZ TORRALBA; Dionisia, SANZ DEL CASTILLO (7 de julio de 2015). PRINCIPALES COMPUESTOS QUÍMICOS. Editorial UNED. ISBN 9788436269161. Consultado el 9 de febrero de 2018. 
  10. S. Vermote, et al. (2008) "Comparative study of the ternary particle emission in 243-Cm (nth,f) and 244-Cm(SF)" en Dynamical aspects of nuclear fission: proceedings of the 6th International Conference. J. Kliman, M. G. Itkis, S. Gmuca (eds.). World Scientific Publishing Co. Pte. Ltd. Singapur. ISBN 9812837523.
  11. J. Byrne (2011) Neutrones, núcleos y materia, Dover Publications, Mineola, NY, p. 259, ISBN 978-0-486-48238-5.
  12. Marion Brünglinghaus. . European Nuclear Society. Archivado desde el original el 17 de enero de 2013. Consultado el 4 de enero de 2013. 
  13. Hans A. Bethe (abril de 1950), "The Hydrogen Bomb", Bulletin of the Atomic Scientists, p. 99.
  14. V, Kopeikin; L, Mikaelyan y; V, Sinev (2004). «Reactor como fuente de antineutrinos: Energía de fisión térmica». Physics of Atomic Nuclei 67 (10): 1892. Bibcode:1892K 2004PAN....67. 1892K. S2CID 18521811. arXiv:hep-ph/0410100. doi:10.1134/1.1811196. 
  15. Estos neutrones de fisión tienen un amplio espectro de energía, con un rango de 0 a 14 MeV, con una media de 2 MeV y una moda de 0,75 Mev. Véase Byrne, op. cit.
  16. . Universidad Técnica de Viena. Archivado desde el original el 15 de mayo de 2018. 
  17. . National Physical Laboratory. Archivado desde el original el 5 de marzo de 2010. Consultado el 4 de enero de 2013. 

Enlaces externos

  •   Wikilibros alberga un libro o manual sobre Fisión nuclear.
  •   Datos: Q11429
  •   Multimedia: Nuclear fission

fisión, nuclear, este, artículo, sección, necesita, referencias, aparezcan, publicación, acreditada, este, aviso, puesto, enero, 2021, fisión, redirige, aquí, para, otras, acepciones, véase, fisión, desambiguación, física, nuclear, fisión, división, núcleo, nú. Este articulo o seccion necesita referencias que aparezcan en una publicacion acreditada Este aviso fue puesto el 6 de enero de 2021 Fision redirige aqui Para otras acepciones vease Fision desambiguacion En fisica nuclear la fision es la division de un nucleo en nucleos mas livianos 1 2 ademas de algunos subproductos como neutrones libres fotones generalmente rayos gamma y otros fragmentos del nucleo como particulas alfa nucleos de helio y beta electrones y positrones de alta energia ademas de gran cantidad de energia 3 Su descubrimiento se debe a Otto Hahn y Lise Meitner aunque fue el primero el unico en recibir el premio Nobel por el mismo 4 Fision nuclear de un atomo de uranio 235 La fision nuclear de los elementos pesados fue descubierta el 17 de diciembre de 1938 por el aleman Otto Hahn y su ayudante Fritz Strassmann a propuesta de la fisica austro sueca Lise Meitner que la explico teoricamente en enero de 1939 junto con su sobrino Otto Robert Frisch Frisch dio nombre al proceso por analogia con la fision binaria de las celulas vivas En el caso de los nucleidos pesados se trata de una reaccion exotermica que puede liberar grandes cantidades de energia tanto en forma de radiacion electromagnetica como de energia cinetica de los fragmentos Al igual que la fusion nuclear para que la fision produzca energia la energia de enlace total de los elementos resultantes debe ser mayor que la del elemento inicial La fision es una forma de transmutacion nuclear porque los fragmentos resultantes o atomos hijos no son el mismo elemento que el atomo padre original Los dos o mas nucleos producidos suelen ser de tamanos comparables pero ligeramente diferentes normalmente con una relacion de masas de los productos de aproximadamente 3 a 2 para fisibles comunes isotopo comun 5 6 La mayoria de las fisiones son binarias producen dos fragmentos cargados pero ocasionalmente de 2 a 4 veces por cada 1000 eventos se producen tres fragmentos cargados positivamente en una fision ternaria El mas pequeno de estos fragmentos en los procesos ternarios varia en tamano desde un proton hasta un nucleo de argon Aparte de la fision inducida por un neutron aprovechada y explotada por el ser humano una forma natural de desintegracion radiactiva espontanea que no requiere un neutron tambien se denomina fision y se produce especialmente en isotopos de muy alto numero de masa La fision espontanea fue descubierta en 1940 por Flyorov Petrzhak e Kurchatov 7 en Moscu en un experimento que pretendia confirmar que sin bombardeo de neutrones la tasa de fision del uranio era despreciable tal y como habia predicho Niels Bohr no era despreciable 7 La composicion impredecible de los productos que varian de forma ampliamente probabilistica y algo caotica distingue la fision de los procesos puramente de efecto tunel como la emision de protones la desintegracion alfa y la desintegracion en racimo que dan los mismos productos cada vez La fision nuclear produce energia para la energia nuclear e impulsa la explosion de armas nucleares Ambos usos son posibles porque ciertas sustancias llamadas combustible nuclears sufren la fision cuando son golpeadas por los neutrones de fision y a su vez emiten neutrones cuando se rompen Esto hace posible una reaccion nuclear en cadena autosostenida que libera energia a un ritmo controlado en un reactor nuclear o a un ritmo muy rapido e incontrolado en un arma nuclear La cantidad de energia libre contenida en el combustible nuclear es millones de veces superior a la cantidad de energia libre contenida en una masa similar de combustible quimico como la gasolina lo que hace de la fision nuclear una fuente de energia muy densa Sin embargo los productos de la fision nuclear son por termino medio mucho mas radiactivos que los elementos pesados que normalmente se fisionan como combustible y permanecen asi durante mucho tiempo dando lugar a un problema de residuos nucleares La preocupacion por la acumulacion de residuos nucleares y el potencial destructivo de las armas nucleares se contrapone al deseo pacifico de utilizar la fision como fuente de energia Indice 1 Mecanismo 1 1 Descomposicion radiactiva 1 2 Reaccion nuclear 2 Fision fria y rotura de pares de nucleones 3 Energeticos 3 1 Aporte 3 2 Produccion 4 Induccion de la fision 5 Reaccion en cadena 6 Masa critica 7 Moderadores 8 Efectos de los isotopos 9 Referencias 10 Enlaces externosMecanismo Editar Representacion visual de un evento de fision nuclear inducida donde un neutron de movimiento lento es absorbido por el nucleo de un atomo de uranio 235 que se fisiona en dos elementos mas ligeros de movimiento rapido productos de fision y neutrones adicionales La mayor parte de la energia liberada esta en forma de velocidades cineticas de los productos de fision y los neutrones Rendimientos de producto de fision en masa para la fision de neutrones termicos de U 235 Pu 239 una combinacion de los dos tipicos de los reactores de energia nuclear actuales y U 233 utilizado en el ciclo del torio La fision de nucleos pesados es un proceso exotermico lo que supone que se liberan cantidades sustanciales de energia El proceso genera mucha mas energia que la liberada en las reacciones quimicas convencionales en las que estan implicadas las cortezas electronicas la energia se emite tanto en forma de radiacion gamma como de energia cinetica de los fragmentos de la fision que calentaran la materia que se encuentre alrededor del espacio donde se produzca la fision La fision se puede inducir por varios metodos incluyendo el bombardeo del nucleo de un atomo fisionable con una particula de la energia correcta la particula es generalmente un neutron libre Este neutron libre es absorbido por el nucleo haciendolo inestable 8 a modo de ejemplo se podria pensar en la inestabilidad de una piramide de naranjas en el supermercado al lanzarse una naranja contra ella a la velocidad correcta El nucleo inestable entonces se partira en dos o mas pedazos los productos de la fision que incluyen dos nucleos mas pequenos hasta siete neutrones libres con una media de dos y medio por reaccion y algunos fotones Los nucleos atomicos lanzados como productos de la fision pueden ser varios elementos quimicos Los elementos que se producen son resultado del azar pero estadisticamente el resultado mas probable es encontrar nucleos con la mitad de protones y neutrones del atomo fisionado original Los productos de la fision son generalmente altamente radiactivos no son isotopos estables 9 estos isotopos entonces decaen mediante cadenas de desintegracion Descomposicion radiactiva Editar La fision nuclear puede producirse sin bombardeo de neutrones como un tipo de desintegracion radiactiva Este tipo de fision llamada fision espontanea es poco frecuente excepto en algunos isotopos pesados Reaccion nuclear Editar En los dispositivos nucleares de ingenieria esencialmente toda la fision nuclear se produce como una reaccion nuclear un proceso impulsado por un bombardeo que resulta de la colision de dos particulas subatomicas En las reacciones nucleares una particula subatomica colisiona con un nucleo atomico y provoca cambios en el Las reacciones nucleares son por tanto impulsadas por la mecanica del bombardeo y no por el decaimiento exponencial relativamente constante y la vida media caracteristica de los procesos radiactivos espontaneos Actualmente se conocen muchos tipos de reacciones nucleares La fision nuclear se diferencia de forma importante de otros tipos de reacciones nucleares en que puede ser amplificada y a veces controlada mediante una reaccion nuclear en cadena un tipo de reaccion en cadena general En una reaccion de este tipo los neutrones libres liberados por cada evento de fision pueden desencadenar aun mas eventos que a su vez liberan mas neutrones y causan mas fisiones Los elementos quimicos isotopos que pueden mantener una reaccion de fision en cadena se llaman combustible nuclear y se dice que son fisionables Los combustibles nucleares mas comunes son el 235U el isotopo de uranio con numero de masa 235 y de uso en reactores nucleares y 239Pu el isotopo del plutonio con numero de masa 239 Estos combustibles se descomponen en una gama bimodal de elementos quimicos con masas atomicas centradas cerca de 95 y 135 u productos de fision La mayoria de los combustibles nucleares se someten a la fision espontanea solo muy lentamente decayendo en su lugar principalmente a traves de una alfa beta durante periodos de milenios a eones En un reactor nuclear o en un arma nuclear la inmensa mayoria de los eventos de fision son inducidos por el bombardeo con otra particula un neutron que a su vez es producido por eventos de fision anteriores La fision nuclear en los combustibles fisionables es el resultado de la energia de excitacion nuclear producida cuando un nucleo fisionable captura un neutron Esta energia resultante de la captura del neutron es el resultado de la fuerza nuclear atractiva que actua entre el neutron y el nucleo Es suficiente para deformar el nucleo en una gota de doble lobulo hasta el punto de que los fragmentos nucleares superan las distancias a las que la fuerza nuclear puede mantener unidos dos grupos de nucleones cargados y cuando esto ocurre los dos fragmentos completan su separacion y luego se separan aun mas por sus cargas mutuamente repulsivas en un proceso que se hace irreversible con una distancia cada vez mayor Un proceso similar ocurre en los isotopos fisionables como el uranio 238 pero para poder fisionar estos isotopos requieren energia adicional proporcionada por los neutrones rapidos como los producidos por la fusion nuclear en las armas termonucleares El modelo de gota liquida del nucleo atomico predice productos de fision de igual tamano como resultado de la deformacion nuclear El mas sofisticado modelo de capas nuclear es necesario para explicar mecanicamente la ruta hacia el resultado energeticamente mas favorable en el que un producto de fision es ligeramente mas pequeno que el otro Una teoria de la fision basada en el modelo de cascara ha sido formulada por Maria Goeppert Mayer El proceso de fision mas comun es la fision binaria y produce los productos de fision senalados anteriormente a 95 15 y 135 15 u Sin embargo el proceso binario se produce simplemente porque es el mas probable En cualquier lugar de 2 a 4 fisiones por 1000 en un reactor nuclear un proceso llamado fision ternaria produce tres fragmentos cargados positivamente mas neutrones y el mas pequeno de ellos puede variar desde una carga y masa tan pequena como un proton Z 1 hasta un fragmento tan grande como el argon Z 18 Sin embargo los fragmentos pequenos mas comunes se componen en un 90 de nucleos de helio 4 con mas energia que las particulas alfa de la desintegracion alfa los llamados alfas de largo alcance a 16 MeV ademas de nucleos de helio 6 y tritones los nucleos de tritio El proceso ternario es menos comun pero sigue produciendo una importante acumulacion de gas de helio 4 y tritio en las barras de combustible de los reactores nucleares modernos 10 Fision fria y rotura de pares de nucleones EditarLa mayor parte de las investigaciones sobre fision nuclear se basan en la distribucion de masa y energia cinetica de los fragmentos de fision Sin embargo esta distribucion es perturbada por la emision de neutrones por parte de los fragmentos antes de llegar a los detectores Aunque con muy baja probabilidad en los experimentos se han detectado eventos de fision fria es decir fragmentos con tan baja energia de excitacion que no emiten neutrones Sin embargo aun en esos casos se observa la rotura de pares de nucleones la que se manifiesta como igual probabilidad de obtener fragmentos con numero par o impar de nucleones Los resultados de estos experimentos permiten comprender mejor la dinamica de la fision nuclear hasta el punto de escision es decir antes de que se desvanezca la fuerza nuclear entre los fragmentos Energeticos EditarAporte Editar Etapas de la fision binaria en un modelo de gota liquida La entrada de energia deforma el nucleo en forma de cigarro grueso luego en forma de mani seguida de fision binaria cuando los dos lobulos exceden la distancia de atraccion de fuerza nuclear de corto alcance luego se separan y se alejan por su carga electrica En el modelo de gota de liquido se predice que los dos fragmentos de fision tendran el mismo tamano El modelo de capa nuclear permite que difieran en tamano como se suele observar experimentalmente La fision de un nucleo pesado requiere una energia total de entrada de unos 7 a 8 millones de electronvoltios MeV para superar inicialmente la fuerza nuclear que mantiene el nucleo en una forma esferica o casi esferica y a partir de ahi deformarlo en una forma de dos lobulos cacahuete en la que los lobulos son capaces de seguir separandose entre si empujados por su carga positiva mutua en el proceso mas comun de fision binaria dos productos de fision con carga positiva neutrones Una vez que los lobulos nucleares han sido empujados hasta una distancia critica mas alla de la cual la fuerza fuerte de corto alcance ya no puede mantenerlos unidos el proceso de su separacion procede de la energia de la electromagnetica de repulsion entre los fragmentos El resultado son dos fragmentos de fision que se alejan el uno del otro a alta energia Alrededor de 6 MeV de la energia de entrada de la fision es suministrada por la simple union de un neutron extra al nucleo pesado a traves de la fuerza fuerte sin embargo en muchos isotopos fisionables esta cantidad de energia no es suficiente para la fision El uranio 238 por ejemplo tiene una seccion transversal de fision casi nula para neutrones de energia inferior a un MeV Si no se aporta energia adicional por ningun otro mecanismo el nucleo no se fisionara sino que se limitara a absorber el neutron como ocurre cuando el U 238 absorbe neutrones lentos e incluso alguna fraccion de neutrones rapidos para convertirse en U 239 La energia restante para iniciar la fision puede ser suministrada por otros dos mecanismos uno de ellos es mas energia cinetica del neutron entrante que es cada vez mas capaz de fisionar un nucleo pesado fisionables a medida que supera una energia cinetica de un MeV o mas los llamados neutrones rapidos Estos neutrones de alta energia son capaces de fisionar directamente el U 238 vease la aplicacion del arma termonuclear donde los neutrones rapidos son suministrados por la fusion nuclear Sin embargo este proceso no puede darse en gran medida en un reactor nuclear ya que una fraccion demasiado pequena de los neutrones de fision producidos por cualquier tipo de fision tiene suficiente energia para fisionar eficientemente el U 238 los neutrones de fision tienen una energia modal de 2 MeV pero una mediana de solo 0 75 MeV lo que significa que la mitad de ellos tienen menos de esta energia insuficiente 11 Entre los elementos pesados actinidos sin embargo aquellos isotopos que tienen un numero impar de neutrones como el U 235 con 143 neutrones enlazan un neutron extra con 1 a 2 MeV adicionales de energia sobre un isotopo del mismo elemento con un numero par de neutrones como el U 238 con 146 neutrones Esta energia de enlace adicional esta disponible como resultado del mecanismo de los efectos de emparejamiento de neutrones Esta energia extra es el resultado del principio de exclusion de Pauli que permite que un neutron extra ocupe el mismo orbital nuclear que el ultimo neutron del nucleo de manera que ambos forman un par Por lo tanto en estos isotopos no se necesita energia cinetica de los neutrones ya que toda la energia necesaria es suministrada por la absorcion de cualquier neutron ya sea de la variedad lenta o rapida los primeros se utilizan en los reactores nucleares moderados y los segundos en los reactores de neutrones rapidos y en las armas Como se ha senalado anteriormente el subgrupo de elementos fisionables que pueden fisionarse eficazmente con sus propios neutrones de fision provocando asi potencialmente una reaccion en cadena nuclear en cantidades relativamente pequenas del material puro se denominan fisionables Ejemplos de isotopos fisibles son el uranio 235 y el plutonio 239 Produccion Editar Los eventos de fision tipicos liberan unos doscientos millones de eV 200 MeV de energia el equivalente a aproximadamente gt 2 billones de Kelvin en cada evento de fision El isotopo exacto que se fisiona y si es o no fisionable o fisible solo tiene un pequeno impacto en la cantidad de energia liberada Esto puede verse facilmente examinando la curva de energia de enlace imagen inferior y observando que la energia de enlace media de los nuclidos actinidos que empiezan por el uranio es de unos 7 6 MeV por nucleon Mirando mas a la izquierda en la curva de energia de enlace donde se agrupan los productos de fision se observa facilmente que la energia de enlace de los productos de fision tiende a centrarse alrededor de 8 5 MeV por nucleon Asi en cualquier evento de fision de un isotopo en el rango de masa de los actinidos se liberan aproximadamente 0 9 MeV por nucleon del elemento de partida La fision del U235 por un neutron lento produce una energia casi identica a la fision del U238 por un neutron rapido Este perfil de liberacion de energia tambien es valido para el torio y los diversos actinidos menores 12 Por el contrario la mayoria de las quimicas oxidacion como la quema de carbon o TNT liberan como mucho unos pocos eVs por evento Por tanto el combustible nuclear contiene al menos diez millones de veces mas energia utilizable por unidad de masa que el combustible quimico La energia de la fision nuclear se libera como energia cinetica de los productos de fision y de los fragmentos y como radiacion electromagnetica en forma de rayos gamma en un reactor nuclear la energia se convierte en calor cuando las particulas y los rayos gamma chocan con los atomos que componen el reactor y su fluido de trabajo normalmente agua u ocasionalmente agua pesada o sal fundida Animacion de una explosion de Coulomb en el caso de un grupo de nucleos cargados positivamente similar a un grupo de fragmentos de fision El nivel de matiz de color es proporcional a la carga del nucleo mas grande Los electrones mas pequenos en esta escala de tiempo se ven solo de forma estroboscopica y el nivel de tono es su energia cinetica Cuando un nucleo de uranio se fisiona en dos fragmentos de nucleos hijos aproximadamente el 0 1 por ciento de la masa del nucleo de uranio 13 aparece como la energia de fision de 200 MeV Para el uranio 235 energia de fision media total de 202 79 MeV 14 tipicamente 169 MeV aparece como la energia cinetica de los nucleos hijos que se separan a un 3 de la velocidad de la luz debido a la repulsion de Coulomb Ademas se emite una media de 2 5 neutrones con una media de energia cinetica por neutron de 2 MeV total de 4 8 MeV 15 La reaccion de fision tambien libera 7 MeV en rayos gamma inmediatos fotones Esta ultima cifra significa que una explosion de fision nuclear o un accidente de criticidad emite alrededor del 3 5 de su energia en forma de rayos gamma menos del 2 5 de su energia en forma de neutrones rapidos total de ambos tipos de radiacion 6 y el resto en forma de energia cinetica de los fragmentos de fision esta aparece casi inmediatamente cuando los fragmentos impactan con la materia circundante como simple calor 16 17 En una bomba atomica este calor puede servir para elevar la temperatura del nucleo de la bomba a 100 millones de kelvin y provocar la emision secundaria de rayos X blandos que convierten parte de esta energia en radiacion ionizante Sin embargo en los reactores nucleares la energia cinetica de los fragmentos de fision permanece en forma de calor de baja temperatura que en si mismo causa poca o ninguna ionizacion Se han construido las llamadas bombas de neutrones armas de radiacion mejorada que liberan una mayor fraccion de su energia como radiacion ionizante concretamente neutrones pero todos estos son dispositivos termonucleares que dependen de la etapa de fusion nuclear para producir la radiacion extra La dinamica energetica de las bombas de fision pura se mantiene siempre en torno al 6 del rendimiento total en radiacion como resultado inmediato de la fision La energia total de la fision inmediata asciende a unos 181 MeV es decir a un 89 de la energia total que finalmente se libera por fision a lo largo del tiempo El restante 11 se libera en desintegraciones beta que tienen varias vidas medias pero que comienzan como un proceso en los productos de fision inmediatamente y en emisiones gamma retardadas asociadas a estas desintegraciones beta Por ejemplo en el uranio 235 esta energia retardada se divide en unos 6 5 MeV en betas 8 8 MeV en antineutrinos liberados al mismo tiempo que los betas y finalmente unos 6 3 MeV adicionales en emisiones gamma retardadas de los productos de desintegracion beta excitados para un total medio de 10 emisiones de rayos gamma por fision en total Por lo tanto alrededor del 6 5 de la energia total de la fision se libera algun tiempo despues del evento como radiacion ionizante no inmediata o retardada y la energia ionizante retardada se divide casi por igual entre energia de rayos gamma y beta En un reactor que ha estado funcionando durante algun tiempo los productos de fision radiactivos se habran acumulado hasta alcanzar concentraciones de estado estacionario tales que su tasa de desintegracion es igual a su tasa de formacion de modo que su contribucion fraccional total al calor del reactor a traves de la desintegracion beta es la misma que estas contribuciones fraccionales radioisotopicas a la energia de fision En estas condiciones el 6 5 de la fision que aparece como radiacion ionizante retardada gammas y betas retardados de los productos de fision radiactivos contribuye a la produccion de calor del reactor en estado estacionario bajo potencia Esta fraccion de produccion es la que permanece cuando el reactor se apaga repentinamente sufre un SCRAM Por esta razon la produccion de calor de desintegracion del reactor comienza con un 6 5 de la potencia de fision en estado estacionario una vez que el reactor se apaga Sin embargo a las pocas horas debido a la desintegracion de estos isotopos la potencia de desintegracion es mucho menor El resto de la energia retardada 8 8 MeV 202 5 MeV 4 3 de la energia total de fision se emite como antineutrinos que en la practica no se consideran radiacion ionizante La razon es que la energia liberada como antineutrinos no es captada por el material del reactor en forma de calor y escapa directamente a traves de todos los materiales incluida la Tierra a casi la velocidad de la luz y al espacio interplanetario la cantidad absorbida es minuscula La radiacion de neutrinos no se clasifica normalmente como radiacion ionizante porque no se absorbe casi en su totalidad y por tanto no produce efectos aunque el rarisimo evento de neutrinos es ionizante Casi todo el resto de la radiacion el 6 5 de la radiacion beta y gamma retardada se acaba convirtiendo en calor en el nucleo de un reactor o en su blindaje Algunos procesos en los que intervienen los neutrones se caracterizan por absorber o producir finalmente energia por ejemplo la energia cinetica de los neutrones no produce calor inmediatamente si el neutron es capturado por un atomo de uranio 238 para generar plutonio 239 pero esta energia se emite si el plutonio 239 se fisiona posteriormente Por otra parte los llamados neutrones retardados emitidos como productos de desintegracion radiactiva con vidas medias de hasta varios minutos procedentes de las hijas de la fision son muy importantes para la control de los reactores porque dan un tiempo de reaccion caracteristico para que la reaccion nuclear total se duplique si la reaccion se lleva a cabo en una zona de criticidad retardada que depende deliberadamente de estos neutrones para una reaccion en cadena supercritica en la que cada ciclo de fision produce mas neutrones de los que absorbe Sin su existencia la reaccion nuclear en cadena seria prontamente critica y aumentaria de tamano mas rapido de lo que podria ser controlado por la intervencion humana En este caso los primeros reactores atomicos experimentales se habrian precipitado a una peligrosa y desordenada reaccion critica inmediata antes de que sus operadores hubieran podido apagarlos manualmente por esta razon el disenador Enrico Fermi incluyo barras de control con contador de radiacion suspendidas por electroimanes que podian caer automaticamente en el centro de la Chicago Pile 1 Si estos neutrones retardados se capturan sin producir fisiones tambien producen calor 18 Induccion de la fision EditarLa fision nuclear de los atomos fue descubierta en 1938 por los investigadores Otto Hahn y Fritz Strassmann a partir del trabajo desarrollado por el propio Hahn junto a Lise Meitner durante anos anteriores Por este descubrimiento recibio en 1944 el Premio Nobel de quimica El estudio de la fision nuclear se considera parte de los campos de la quimica nuclear y la fisica 4 Aunque la fision es practicamente la desintegracion de materia radiactiva comenzada a menudo de la manera mas facil posible inducido que es la absorcion de un neutron libre puede tambien ser inducida lanzando otras cosas en un nucleo fisionable Estas otras cosas pueden incluir protones otros nucleos o aun los fotones de gran energia en cantidades muy altas porciones de rayos gamma Muy rara vez un nucleo fisionable experimentara la fision nuclear espontanea sin un neutron entrante Cuanto mas pesado es un elemento mas facil es inducir su fision La fision en cualquier elemento mas pesado que el hierro produce energia y la fision en cualquier elemento mas liviano que el hierro requiere energia Lo contrario tambien es verdad en las reacciones de fusion nuclear la fusion de los elementos mas livianos que el hierro produce energia y la fusion de los elementos mas pesados que el hierro requiere energia Los elementos mas frecuentemente usados para producir la fision nuclear son el uranio y el plutonio El uranio es el elemento natural mas pesado el plutonio experimenta desintegraciones espontaneas y tiene un periodo de vida limitado Asi pues aunque otros elementos pueden ser utilizados estos tienen la mejor combinacion de abundancia y facilidad de fision Reaccion en cadena Editar Reaccion en cadena de fision nuclear esquematica 1 Un atomo de uranio 235 absorbe un neutron y se fisiona en dos nuevos atomos fragmentos de fision liberando tres nuevos neutrones y algo de energia de enlace 2 Uno de esos neutrones es absorbido por un atomo de uranio 238 y no continua la reaccion Otro neutron simplemente se pierde y no choca con nada tampoco continua la reaccion Sin embargo el unico neutron choca con un atomo de uranio 235 que luego se fisiona y libera dos neutrones y algo de energia de enlace 3 Ambos neutrones chocan con atomos de uranio 235 cada uno de los cuales se fisiona y libera entre uno y tres neutrones que luego pueden continuar la reaccion Articulo principal Reaccion en cadena Una reaccion en cadena ocurre como sigue un acontecimiento de fision empieza lanzando 2 o 3 neutrones en promedio como subproductos Estos neutrones se escapan en direcciones al azar y golpean otros nucleos incitando a estos nucleos a experimentar fision Puesto que cada acontecimiento de fision lanza 2 o mas neutrones y estos neutrones inducen otras fisiones el proceso se acelera rapidamente y causa la reaccion en cadena El numero de neutrones que escapan de una cantidad de uranio depende de su area superficial Solamente los materiales fisibles son capaces de sostener una reaccion en cadena sin una fuente de neutrones externa Para que la reaccion en cadena de fision se lleve a cabo es necesario adecuar la velocidad de los neutrones libres ya que si impactan con gran velocidad sobre el nucleo del elemento fisible puede que simplemente lo atraviese o lo impacte y que este no lo absorba Masa critica EditarArticulo principal Masa critica La masa critica es la minima cantidad de material requerida para que el material experimente una reaccion nuclear en cadena La masa critica de un elemento fisionable depende de su densidad y de su forma fisica barra larga cubo esfera etc Puesto que los neutrones de la fision se emiten en direcciones al azar para maximizar las ocasiones de una reaccion en cadena los neutrones deberan viajar tan lejos como sea posible y de esa forma maximizar las posibilidades de que cada neutron choque con otro nucleo Asi una esfera es la mejor forma y la peor es probablemente una hoja aplanada puesto que la mayoria de los neutrones volarian de la superficie de la hoja y no chocarian con otros nucleos Tambien es importante la densidad del material Si el material es gaseoso es poco probable que los neutrones choquen con otro nucleo porque hay demasiado espacio vacio entre los atomos y un neutron volaria probablemente entre ellos sin golpear nada Si el material se pone bajo alta presion los atomos estaran mucho mas cercanos y la probabilidad de una reaccion en cadena es mucho mas alta La alta compresion puede ser alcanzada poniendo el material en el centro de una implosion o lanzando un pedazo de ella contra otro pedazo de ella muy fuertemente con una carga explosiva por ejemplo Una masa critica del material que ha comenzado una reaccion en cadena se dice que se convierte en supercritica Moderadores EditarArticulo principal Moderador nuclear Unicamente con juntar mucho uranio en un solo lugar no es suficiente como para comenzar una reaccion en cadena Los neutrones son emitidos por un nucleo en fision a una velocidad muy elevada Esto significa que los neutrones escaparan del nucleo antes de que tengan oportunidad de golpear cualquier otro nucleo debido a un efecto relativista Un neutron de movimiento lento se llama neutron termico y solamente esta velocidad del neutron puede inducir una reaccion de fision Asi pues tenemos cuatro velocidades de neutrones Un neutron no termico rapidamente se escapara del material sin interaccion Un neutron de velocidad mediana sera capturado por el nucleo y transformara el material en un isotopo pero no induciria la fision Un neutron de movimiento lento termico inducira a un nucleo a que experimente la fision Un neutron movil realmente lento sera capturado o escapara pero no causara fision Algunos anos antes del descubrimiento de la fision la manera acostumbrada de retrasar los neutrones era hacerlos pasar a traves de un material de peso atomico bajo tal como un material hidrogenoso El proceso de retraso o de moderacion es simplemente una secuencia de colisiones elasticas entre las particulas de alta velocidad y las particulas practicamente en reposo Cuanto mas parecidas sean las masas del neutron y de la particula golpeada mayor es la perdida de energia cinetica por el neutron Por lo tanto los elementos ligeros son los mas eficaces como moderadores de neutrones A unos cuantos fisicos en los anos 30 se les ocurrio la posibilidad de mezclar el uranio con un moderador si fuesen mezclados correctamente los neutrones de alta velocidad de la fision podrian ser retrasados al rebotar en un moderador con la velocidad correcta para inducir la fision en otros atomos de uranio Las caracteristicas de un buen moderador son peso atomico bajo y baja o nula tendencia a absorber los neutrones Los moderadores posibles son entonces el hidrogeno helio litio berilio boro y carbono El litio y el boro absorben los neutrones facilmente asi que se excluyen El helio es dificil de utilizar porque es un gas y no forma ningun compuesto La opcion de moderadores estaria entonces entre el hidrogeno deuterio el berilio y el carbono Fueron Enrico Fermi y Leo Szilard quienes propusieron primero el uso de grafito una forma de carbono como moderador para una reaccion en cadena El deuterio es el mejor tecnologicamente introducido en el agua pesada sin embargo el grafito es mucho mas economico Efectos de los isotopos EditarEl uranio natural se compone de tres isotopos 234U 0 006 235U 0 7 y 238U 99 3 La velocidad requerida para que se produzca un acontecimiento de fision y no un acontecimiento de captura es diferente para cada isotopo El uranio 238 tiende a capturar neutrones de velocidad intermedia creando 239U que decae sin fision a plutonio 239 que si es fisible Debido a su capacidad de producir material fisible a este tipo de materiales se les suele llamar fertiles Los neutrones de alta velocidad 52 000 km s como los producidos en una reaccion de fusion tritio deuterio pueden fisionar el uranio 238 Sin embargo los producidos por la fision del uranio 235 de hasta 28 000 km s tienden a rebotar inelasticamente con el lo cual los desacelera En un reactor nuclear el 238U tiende pues tanto a desacelerar los neutrones de alta velocidad provenientes de la fision del uranio 235 como a capturarlos con la consiguiente transmutacion a plutonio 239 cuando su velocidad se modera El uranio 235 fisiona con una gama mucho mas amplia de velocidades de neutrones que el 238U Puesto que el uranio 238 afecta a muchos neutrones sin inducir la fision tenerlo en la mezcla es contraproducente para promover la fision De hecho la probabilidad de la fision del 235U con neutrones de velocidad alta puede ser lo suficientemente elevada como para hacer que el uso de un moderador sea innecesario una vez que se haya suprimido el 238U Sin embargo el 235U esta presente en el uranio natural en cantidades muy reducidas una parte por cada 140 La diferencia relativamente pequena en masa entre los dos isotopos hace ademas que su separacion sea dificil La posibilidad de separar el 235U fue descubierta con bastante rapidez en el proyecto Manhattan lo que tuvo gran importancia para su exito Referencias Editar Cortes Enrique Amorocho Villamizar German Oliveros 2000 Apuntes sobre energia y recursos energeticos UNAB ISBN 9789589682111 Consultado el 4 de febrero de 2018 Tsokos K A 2005 Physics for the I B Diploma Fourth Edition edicion United Kingdom Cambridge University Press p 363 ISBN 9780521604055 MONOGRAFIA La energia nuclear a b Ron Jose Manuel Sanchez 2010 Descubrimientos Innovacion y tecnologia siglos XX y XXI Editorial CSIC CSIC Press ISBN 9788400092115 Consultado el 4 de febrero de 2018 cite book autor1 M G Arora autor2 M Singh name list style amp year 1994 title Nuclear Chemistry page 202 publisher Anmol Publications isbn 81 261 1763 X url https books google com books id G3JA5pYeQcgC amp pg PA202 Gopal B Saha 1 de noviembre de 2010 id bEXqI4ACk AC amp pg PA11 Fundamentals of Nuclear Pharmacy Springer pp 11 ISBN 978 1 4419 5860 0 a b Petrzhak Konstantin 1989 Kak bylo otkryto spontannoe delenie Kratkij Mig Torzhestva O tom kak delayutsya nauchnye otkrytiya Como se descubrio la fision espontanea Brief Moment of Triumph About making scientific discoveries en ruso Nauka pp 108 112 ISBN 5 02 007779 8 Texto editor ignorado ayuda R Alvaro Tucci 2010 03 ObtenciA3n de ImA genes MA c dicas Lulu com ISBN 9780557265688 Consultado el 9 de febrero de 2018 Mª CLARAMUNT VALLESPI Rosa Pilar CORNAGO RAMIREZ Soledad ESTEBAN SANTOS Angeles FARRAN MORALES Marta PEREZ TORRALBA Dionisia SANZ DEL CASTILLO 7 de julio de 2015 PRINCIPALES COMPUESTOS QUIMICOS Editorial UNED ISBN 9788436269161 Consultado el 9 de febrero de 2018 S Vermote et al 2008 Comparative study of the ternary particle emission in 243 Cm nth f and 244 Cm SF en Dynamical aspects of nuclear fission proceedings of the 6th International Conference J Kliman M G Itkis S Gmuca eds World Scientific Publishing Co Pte Ltd Singapur ISBN 9812837523 J Byrne 2011 Neutrones nucleos y materia Dover Publications Mineola NY p 259 ISBN 978 0 486 48238 5 Marion Brunglinghaus Fision nuclear European Nuclear Society Archivado desde el original el 17 de enero de 2013 Consultado el 4 de enero de 2013 Hans A Bethe abril de 1950 The Hydrogen Bomb Bulletin of the Atomic Scientists p 99 V Kopeikin L Mikaelyan y V Sinev 2004 Reactor como fuente de antineutrinos Energia de fision termica Physics of Atomic Nuclei 67 10 1892 Bibcode 1892K 2004PAN 67 1892K S2CID 18521811 arXiv hep ph 0410100 doi 10 1134 1 1811196 Estos neutrones de fision tienen un amplio espectro de energia con un rango de 0 a 14 MeV con una media de 2 MeV y una moda de 0 75 Mev Vease Byrne op cit EVENTOS NUCLEARES Y SUS CONSECUENCIAS por el instituto Borden aproximadamente el 82 de la energia de fision se libera como energia cinetica de los dos grandes fragmentos de fision Estos fragmentos al ser particulas masivas y altamente cargadas interactuan facilmente con la materia Transfieren su energia rapidamente a los materiales circundantes del arma que se calientan rapidamente pdf Vision general de la ingenieria nuclear Las diferentes energias emitidas por evento de fision pg 4 167 MeV se emite por medio de la energia electrostatica repulsiva entre los 2 nucleos hijos que toma la forma de la energia cinetica de los productos de fision esta energia cinetica da lugar a los efectos de explosion y termicos posteriores Se liberan 5 MeV en radiacion gamma inmediata o inicial 5 MeV en radiacion neutronica inmediata 99 36 del total 7 MeV en energia neutronica retardada 0 64 y 13 MeV en desintegracion beta y desintegracion gamma radiacion residual Universidad Tecnica de Viena Archivado desde el original el 15 de mayo de 2018 Fision y fusion nucleares e interacciones nucleares National Physical Laboratory Archivado desde el original el 5 de marzo de 2010 Consultado el 4 de enero de 2013 Enlaces externos Editar Wikilibros alberga un libro o manual sobre Fision nuclear Datos Q11429 Multimedia Nuclear fissionObtenido de https es wikipedia org w index php title Fision nuclear amp oldid 137604337, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos