fbpx
Wikipedia

Exergía

La exergía es una propiedad termodinámica de una sustancia en un entorno que permite determinar el potencial de trabajo útil de una determinada cantidad de energía que se puede alcanzar por la interacción espontánea entre un sistema y su entorno. Informa de la utilidad potencial del sistema como fuente de trabajo. Es una propiedad termodinámica, por lo que es una magnitud cuya variación solo depende de los estados inicial y final del proceso y no de los detalles del mismo, pero sí depende de las condiciones del entorno (presión y temperatura ambiente) donde está inmersa la sustancia.

Dado un 'sistema combinado' formado por un sistema cerrado y el ambiente (con un volumen total constante y una frontera que solo permite interacciones de trabajo), la exergía (denotada como A) se define como el máximo trabajo teórico que puede realizar el sistema combinado cuando el sistema cerrado evoluciona hasta alcanzar el equilibrio con el ambiente (i.e. hasta su estado muerto).[1]

Definida de otra forma la exergía es la porción de la energía que puede ser transformada en trabajo mecánico.

La exergía determina de forma cuantitativa el valor termodinámico de cualquier recurso, y permite analizar rigurosamente el desperdicio de los recursos en las actividades de la sociedad, estableciendo pautas para su ahorro y uso eficiente.

Por ejemplo, un compuesto de combustible y aire, si se quema el combustible obteniendo una mezcla de aire y productos de combustión ligeramente calientes, aunque la energía asociada al sistema sea la misma, la exergía del sistema inicial es mucho mayor, ya que potencialmente es mucho más útil a la hora de obtener trabajo, de donde se deduce que la exergia al contrario que la energía no se conserva sino que se pierde por la evolución hacia el estado de equilibrio. Otro ejemplo es el agua de refrigeración de las centrales térmicas. Aunque la central cede una gran cantidad de energía al agua, esta solo eleva su temperatura unos grados por encima de la temperatura de su entorno, por tanto su utilidad potencial para obtener trabajo es prácticamente nula o lo que es lo mismo en términos técnicos, tiene una exergía asociada baja.

Estado muerto

Dos sistemas en condiciones termodinámicas diferentes, que entren en contacto, evolucionarán espontáneamente, por medio de transferencias de masa y energía, hacia un estado intermedio de equilibrio (el que tenga mínima exergía y entropía máxima). A este estado de equilibrio se le denomina estado muerto. Cuanto mayor sean las diferencias entre sus magnitudes termodinámicas (presión, temperatura...) más trabajo podremos obtener de la interacción entre sistema y entorno.

La energía utilizable o exergía está asociada al desequilibrio entre un sistema y su entorno, es decir que depende de la variable de dos sistemas como mínimo.

Un ejemplo de ello para entender lo anterior es: supóngase una lámina metálica que se encuentra a 80 °C, y es sumergida en agua a 4 °C, es decir relativamente mucho más fría, en este caso la reacción, manifestación y el nivel de exergía será mayor que si la lámina hubiese sido sumergida en agua que se encuentra a 80 °C, es decir que la temperatura del sistema (lámina metálica) y de su entorno (agua) es la misma (80 °C), en este caso no pasaría nada y este estado se denomina estado muerto ya que tenemos cero exergía y máxima entropía. Esto también es aplicable a otros desequilibrios como pueden ser de presión y otros.

Balances

En realidad un balance de exergía no es más que la combinación de un balance de energía y de entropía, que derivan a su vez del primer y segundo principio de la termodinámica. No es por tanto un resultado independiente, pero puede utilizarse como formulación alternativa de la segunda ley de la termodinámica.

Como alternativa al principio de incremento de entropía, se puede formular la segunda ley estableciendo que, los únicos procesos que puede experimentar un sistema aislado son aquellos en los que la exergía del sistema disminuye.

El balance de exergía es un método de análisis muy útil a la hora de valorar el rendimiento energético de una instalación, nos da una visión más amplia que el rendimiento térmico. Permite valorar las pérdidas de energía en un proceso, la energía que sería aprovechable de flujos salientes en sistemas abiertos y las ventajas de métodos regenerativos en instalaciones térmicas. Para todo esto la principal herramienta son los diagramas de Sankey (enlace a Wikipedia en inglés).

Balance en sistemas cerrados

Un sistema cerrado puede interaccionar con el entorno mediante transferencias de energía en forma de calor o trabajo, que implican una transferencia de exergía entre el sistema y el entorno. Esta exergía transferida no coincide necesariamente con la variación de exergía del sistema, ya que la exergía también se destruye como consecuencia de la generación de entropía (todos los procesos reales con transferencia de energía en forma de calor conllevan, además de una transferencia de entropía, una generación de entropía debida a procesos irreversibles dentro del sistema).

 

La variación de exergía del sistema cerrado es igual a la transferencia de exergía con el entorno, menos la destrucción de exergía  , donde   representa la generación de entropía, que por el segundo principio, no puede ser negativa.

Balance en sistemas abiertos

Para sistemas abiertos, en los que hay transferencia de masa, se maneja el concepto de exergía de flujo, que no es más que la exergía asociada a una corriente material que atraviesa un volumen de control determinado. Adaptando la expresión y utilizando magnitudes específicas (por unidad de masa) se tiene:

  donde h, s, C, y z son entalpía, entropía, velocidad, altura del flujo respectivamente.  son las propiedades evaluadas en el estado muerto. g es la aceleración de la gravedad.

El balance de exergía en un sistema abierto como:

 

Esto es, la variación de exergía acumulada dentro del sistema por unidad de tiempo es igual a:   la transferencia de exergía asociada a la transmisión de energía en forma de calor, donde   representa la velocidad de transferencia de calor a través de una parte de la frontera a temperatura  ,menos  la velocidad de intercambio de exergía por trabajo, excluyendo el trabajo de flujo, más   es la transferencia de exergía asociada a la transferencia de masa entre el sistema y el entorno y   menos la destrucción de exergía por unidad de tiempo causada por irreversibilidades internas del volumen de control.

Que el término   recuerde al rendimiento máximo calculado por Carnot en sus teoremas no es casualidad. Representa precisamente la potencialidad a la hora de obtener trabajo de focos térmicos a diferente temperatura.

Aplicaciones

Una de las principales aplicaciones es el análisis exergético a nivel de proceso y componente. Éste permite identificar, localizar y cuantificar las principales causas de irreversibilidades termodinámicas de un sistema o proceso, mediante el estudio de la destrucción y eficiencia exergéticas. Siendo la exergía la parte disponible de la energía utilizada para producir trabajo útil, esta representa una poderosa herramienta para determinar potenciales mejorías y optimización de procesos, así como impactos ambientales y su mitigación (al ser una medida del desequilibrio con el medio ambiente). La termoeconomía, una área que combina el análisis exergético con el análisis económico es una disciplina recientemente adoptada para determinar los costos exergéticos que se derivan de la producción de diferentes productos en plantas de cogeneración, trigeneración y poligeneración [1].

Notas

  1. Moran, M.J.; Shapiro, H.N. (1999). «Análisis exergético». Fundamentos de termodinámica técnica. Barcelona: Ed. Reverté. p. 311. ISBN 84-291-4168-5. 

Véase también

Bibliografía

  • Moran, M.J.; Shapiro, H.N. (1999). «Análisis exergético». Fundamentos de termodinámica técnica. Barcelona: Ed. Reverté. ISBN 84-291-4168-5. 
  • Flórez-Orrego, Daniel; Silva Ortiz, Pablo (2013). Exergía, Conceptualización y Aplicación. Escuela Politécnica de la Universidad de Sao Paulo. 
  • Yunus A. Cengel (2010). «Exergía, una medida del trabajo potencial». Termodinámica. Mc Graw Hill. ISBN 978-970-10-5611-0. 

Enlaces externos

  • Exergy calculator del portal "The Exergoecology Portal"
  • Documentos sobre termodinámica
  •   Datos: Q663290

exergía, exergía, propiedad, termodinámica, sustancia, entorno, permite, determinar, potencial, trabajo, útil, determinada, cantidad, energía, puede, alcanzar, interacción, espontánea, entre, sistema, entorno, informa, utilidad, potencial, sistema, como, fuent. La exergia es una propiedad termodinamica de una sustancia en un entorno que permite determinar el potencial de trabajo util de una determinada cantidad de energia que se puede alcanzar por la interaccion espontanea entre un sistema y su entorno Informa de la utilidad potencial del sistema como fuente de trabajo Es una propiedad termodinamica por lo que es una magnitud cuya variacion solo depende de los estados inicial y final del proceso y no de los detalles del mismo pero si depende de las condiciones del entorno presion y temperatura ambiente donde esta inmersa la sustancia Dado un sistema combinado formado por un sistema cerrado y el ambiente con un volumen total constante y una frontera que solo permite interacciones de trabajo la exergia denotada como A se define como el maximo trabajo teorico que puede realizar el sistema combinado cuando el sistema cerrado evoluciona hasta alcanzar el equilibrio con el ambiente i e hasta su estado muerto 1 Definida de otra forma la exergia es la porcion de la energia que puede ser transformada en trabajo mecanico La exergia determina de forma cuantitativa el valor termodinamico de cualquier recurso y permite analizar rigurosamente el desperdicio de los recursos en las actividades de la sociedad estableciendo pautas para su ahorro y uso eficiente Por ejemplo un compuesto de combustible y aire si se quema el combustible obteniendo una mezcla de aire y productos de combustion ligeramente calientes aunque la energia asociada al sistema sea la misma la exergia del sistema inicial es mucho mayor ya que potencialmente es mucho mas util a la hora de obtener trabajo de donde se deduce que la exergia al contrario que la energia no se conserva sino que se pierde por la evolucion hacia el estado de equilibrio Otro ejemplo es el agua de refrigeracion de las centrales termicas Aunque la central cede una gran cantidad de energia al agua esta solo eleva su temperatura unos grados por encima de la temperatura de su entorno por tanto su utilidad potencial para obtener trabajo es practicamente nula o lo que es lo mismo en terminos tecnicos tiene una exergia asociada baja Indice 1 Estado muerto 2 Balances 2 1 Balance en sistemas cerrados 2 2 Balance en sistemas abiertos 3 Aplicaciones 4 Notas 5 Vease tambien 6 Bibliografia 7 Enlaces externosEstado muerto EditarDos sistemas en condiciones termodinamicas diferentes que entren en contacto evolucionaran espontaneamente por medio de transferencias de masa y energia hacia un estado intermedio de equilibrio el que tenga minima exergia y entropia maxima A este estado de equilibrio se le denomina estado muerto Cuanto mayor sean las diferencias entre sus magnitudes termodinamicas presion temperatura mas trabajo podremos obtener de la interaccion entre sistema y entorno La energia utilizable o exergia esta asociada al desequilibrio entre un sistema y su entorno es decir que depende de la variable de dos sistemas como minimo Un ejemplo de ello para entender lo anterior es supongase una lamina metalica que se encuentra a 80 C y es sumergida en agua a 4 C es decir relativamente mucho mas fria en este caso la reaccion manifestacion y el nivel de exergia sera mayor que si la lamina hubiese sido sumergida en agua que se encuentra a 80 C es decir que la temperatura del sistema lamina metalica y de su entorno agua es la misma 80 C en este caso no pasaria nada y este estado se denomina estado muerto ya que tenemos cero exergia y maxima entropia Esto tambien es aplicable a otros desequilibrios como pueden ser de presion y otros Balances EditarEn realidad un balance de exergia no es mas que la combinacion de un balance de energia y de entropia que derivan a su vez del primer y segundo principio de la termodinamica No es por tanto un resultado independiente pero puede utilizarse como formulacion alternativa de la segunda ley de la termodinamica Como alternativa al principio de incremento de entropia se puede formular la segunda ley estableciendo que los unicos procesos que puede experimentar un sistema aislado son aquellos en los que la exergia del sistema disminuye El balance de exergia es un metodo de analisis muy util a la hora de valorar el rendimiento energetico de una instalacion nos da una vision mas amplia que el rendimiento termico Permite valorar las perdidas de energia en un proceso la energia que seria aprovechable de flujos salientes en sistemas abiertos y las ventajas de metodos regenerativos en instalaciones termicas Para todo esto la principal herramienta son los diagramas de Sankey enlace a Wikipedia en ingles Balance en sistemas cerrados Editar Un sistema cerrado puede interaccionar con el entorno mediante transferencias de energia en forma de calor o trabajo que implican una transferencia de exergia entre el sistema y el entorno Esta exergia transferida no coincide necesariamente con la variacion de exergia del sistema ya que la exergia tambien se destruye como consecuencia de la generacion de entropia todos los procesos reales con transferencia de energia en forma de calor conllevan ademas de una transferencia de entropia una generacion de entropia debida a procesos irreversibles dentro del sistema A 2 A 1 1 2 1 T 0 T f d Q W p 0 V 2 V 1 T 0 s displaystyle A 2 A 1 int 1 2 1 frac T 0 T f delta Q W p 0 V 2 V 1 T 0 sigma La variacion de exergia del sistema cerrado es igual a la transferencia de exergia con el entorno menos la destruccion de exergia T 0 s displaystyle T 0 sigma donde s displaystyle sigma representa la generacion de entropia que por el segundo principio no puede ser negativa Balance en sistemas abiertos Editar Para sistemas abiertos en los que hay transferencia de masa se maneja el concepto de exergia de flujo que no es mas que la exergia asociada a una corriente material que atraviesa un volumen de control determinado Adaptando la expresion y utilizando magnitudes especificas por unidad de masa se tiene b h h 0 T 0 s s 0 C 2 2 g z displaystyle b h h 0 T 0 s s 0 frac C 2 2 g cdot z donde h s C y z son entalpia entropia velocidad altura del flujo respectivamente h 0 T 0 s 0 displaystyle h 0 T 0 s 0 son las propiedades evaluadas en el estado muerto g es la aceleracion de la gravedad El balance de exergia en un sistema abierto como d A v c d t j 1 T 0 T j Q j W v c p 0 d V v c d t e m e b e s m s b s I v c displaystyle frac dA vc dt sum j 1 frac T 0 T j dot Q j dot W vc p 0 frac dV vc dt sum e dot m e b e sum s dot m s b s dot I vc Esto es la variacion de exergia acumulada dentro del sistema por unidad de tiempo es igual a j 1 T 0 T j Q j displaystyle sum j 1 frac T 0 T j dot Q j la transferencia de exergia asociada a la transmision de energia en forma de calor donde Q j displaystyle dot Q j representa la velocidad de transferencia de calor a traves de una parte de la frontera a temperatura T j displaystyle T j menosW v c p 0 d V v c d t displaystyle dot W vc p 0 frac dV vc dt la velocidad de intercambio de exergia por trabajo excluyendo el trabajo de flujo mas e m e b e s m s b s displaystyle sum e dot m e b e sum s dot m s b s es la transferencia de exergia asociada a la transferencia de masa entre el sistema y el entorno y I v c displaystyle dot I vc menos la destruccion de exergia por unidad de tiempo causada por irreversibilidades internas del volumen de control Que el termino j 1 T 0 T j Q j displaystyle sum j 1 frac T 0 T j dot Q j recuerde al rendimiento maximo calculado por Carnot en sus teoremas no es casualidad Representa precisamente la potencialidad a la hora de obtener trabajo de focos termicos a diferente temperatura Aplicaciones EditarUna de las principales aplicaciones es el analisis exergetico a nivel de proceso y componente Este permite identificar localizar y cuantificar las principales causas de irreversibilidades termodinamicas de un sistema o proceso mediante el estudio de la destruccion y eficiencia exergeticas Siendo la exergia la parte disponible de la energia utilizada para producir trabajo util esta representa una poderosa herramienta para determinar potenciales mejorias y optimizacion de procesos asi como impactos ambientales y su mitigacion al ser una medida del desequilibrio con el medio ambiente La termoeconomia una area que combina el analisis exergetico con el analisis economico es una disciplina recientemente adoptada para determinar los costos exergeticos que se derivan de la produccion de diferentes productos en plantas de cogeneracion trigeneracion y poligeneracion 1 Notas Editar Moran M J Shapiro H N 1999 Analisis exergetico Fundamentos de termodinamica tecnica Barcelona Ed Reverte p 311 ISBN 84 291 4168 5 Vease tambien EditarEntropia Neguentropia Entalpia Energia libre de Gibbs Ley de perdida de exergia Emergia Termoeconomia Economia ecologicaBibliografia EditarMoran M J Shapiro H N 1999 Analisis exergetico Fundamentos de termodinamica tecnica Barcelona Ed Reverte ISBN 84 291 4168 5 Florez Orrego Daniel Silva Ortiz Pablo 2013 Exergia Conceptualizacion y Aplicacion Escuela Politecnica de la Universidad de Sao Paulo Yunus A Cengel 2010 Exergia una medida del trabajo potencial Termodinamica Mc Graw Hill ISBN 978 970 10 5611 0 Enlaces externos EditarExergy calculator del portal The Exergoecology Portal Documentos sobre termodinamica Datos Q663290 Obtenido de https es wikipedia org w index php title Exergia amp oldid 147539776, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos