fbpx
Wikipedia

Convección

Las tres formas de transferencia del calor son: conducción, convección y radiación, mediante las que se transporta el calor entre zonas con diferentes temperaturas. La convección se produce únicamente por medio de materiales, la evaporación del agua o fluidos. La convección en sí es el transporte de calor por medio del movimiento del fluido. Por ejemplo, al calentar el agua en una cacerola, el agua que entra en contacto con la base de la cacerola asciende al calentarse, mientras que el agua de la superficie desciende por los lados al enfriarse, y ocupa el lugar que dejó la porción caliente. Del mismo modo que en la conducción, requiere un material para la transferencia. A diferencia de la radiación, la cual no necesita un medio para que ocurra la transferencia.

La transferencia de calor implica el transporte de calor en un volumen y la mezcla de elementos macroscópicos de porciones calientes y frías de un gas o un líquido. Incluye también el intercambio de energía entre una superficie sólida y un fluido o por medio de una bomba, un ventilador u otro dispositivo mecánico (convección mecánica, forzada o asistida). Esta se caracteriza a través del número de Nusselt (Nu) que es función de los números de Reynolds (Re) y de Prandtl (Pr). En el caso del flujo laminar dentro de la tubería se utiliza la ecuación de Sieder-Tate. Para flujo turbulento dentro de tubería se En la transferencia de calor libre o natural, un fluido es más caliente o más frío. El contacto con una superficie sólida, causa una circulación debido a las diferencias de densidades que resultan del gradiente de temperaturas en el fluido. La circulación es causa de las fuerzas de flotación y las fuerzas viscosas. La relación entre ambas fuerzas es el número de Grashof (Gr) que es función del número de Reynolds y Prandtl. La convección puede ser externa o interna. Cuando es externa entonces el fluido se mueve sobre las superficies y si es interna entonces se mueve por dentro de las superficies. Así como la capa hidrodinámica en transferencia de momento, la capa límite térmica en transferencia de calor sirve para contastrar los espesores de las capas. La relación entre las capas de transferencia de propiedades sirve para saber cuál transferencia es mayor a nivel molecular, tal relación es el número de Prandtl. El número de Pr es mayor a 1, menor a 1 o igual a 1. Sirve para saber cómo se vinculan entre ellas. Los lubricantes tienen números de Pr elevados. El Pr de los gases es 0,70.

La transferencia de calor por convección se expresa con la Ley del enfriamiento de Newton:

Símbolo Nombre
Coeficiente de convección
Área del cuerpo en contacto con el fluido
Temperatura en la superficie del cuerpo
Temperatura del fluido lejos del cuerpo

El coeficiente convectivo, es decir, la constante para la conducción es la conductividad térmica. Este depende de las propiedades de fluido, geometría del sistema, velocidad de flujo, distribución de temperatura y variación de la temperatura. El análisis dimensional permite determinar una ecuación que relaciona el coeficiente de convección con otras variables las cuales se pueden cuantificar, esto ocurre para convección forzada como para convección libre. Si se realiza un análisis exacto de la capa límite entonces, a partir de la Ecuación de Navier-Stokes, se obtiene según las circunstancias una ecuación final para el balance de cantidad de movimiento. Se realiza el mismo procedimiento para el balance de energía y se obtiene otra ecuación final. La relación que permite determinar el coeficiente de convección resulta de vincular las anteriores. Para fluidos con Pr=1 ocurre que el número de Nu depende solamente del número de Re.

Convección atmosférica

La convección en la atmósfera terrestre involucra la transferencia de enormes cantidades del calor absorbido por el agua. Forma nubes de gran desarrollo vertical (por ejemplo, cumulus congestus y, sobre todo, [cumulonimbos], que son los tipos de nubes que alcanzan mayor desarrollo vertical). Estas nubes son las típicas portadoras de tormentas eléctricas y de grandes precipitaciones. Al alcanzar una altura muy grande (por ejemplo, unos 12 o 14 km) y enfriarse bruscamente por la baja temperatura atmosférica a dicha altura, pueden producir tormentas eléctricas, granizadas e intensas lluvias, ya que las gotas de lluvia van aumentando de tamaño al ascender violentamente y luego se precipitan hacia el suelo bien sea en estado líquido o en estado sólido. Pueden tener forma de un hongo asimétrico de gran tamaño; y a veces se forma en este tipo de nubes una estela que semeja una especie de yunque.

El proceso que origina la convección en el seno de la atmósfera terrestre es sumamente importante y genera una serie de fenómenos fundamentales en la explicación de los vientos y en la formación de nubes, vaguadas, ciclones, anticiclones, precipitaciones, etc. Todos los procesos y mecanismos de convección del calor atmosférico obedecen a las leyes físicas de la termodinámica. De estos procesos es fundamental el que explica el ciclo del agua en la naturaleza o ciclo hidrológico. Casi todos los fenómenos antes nombrados tienen que ver con este último mecanismo. La subsidencia es el fenómeno inverso a la convección, por el cual, el aire a gran altura se enfría considerablemente y forma una zona anticiclónica que desciende por su mayor densidad trayendo hacia la superficie terrestre aire frío y seco, que puede dar origen a remolinos de polvo y hasta tornados cuando se ponen en contacto con una zona de convección.

También se denomina ciclo hidrológico (o ciclo del agua) al recorrido del agua en la atmósfera por la capacidad que tiene el agua de absorber calor y cederlo gracias a la capacidad que tiene de transformarse de un estado físico a otro. A grandes rasgos, el ciclo hidrológico funciona de la siguiente manera: los rayos solares calientan las superficies de las aguas marinas y terrestres las cuales, al absorber ese calor, pasan del estado líquido al gaseoso en forma de vapor de agua. El vapor asciende hasta cierta altura y al hacerlo, pierde calor, se condensa y forma las nubes, que están constituidas por gotas de agua muy pequeñas que se mantienen en suspensión a determinada altura. Cuando esta condensación se acelera, por el propio ascenso de la masa de nubes (convección), se forman nubes de mayor desarrollo vertical, con lo que las gotas aumentan de tamaño y forman las precipitaciones, que pueden ser tanto sólidas (nieve, granizo) como acuosas (lluvia), dependiendo de la temperatura. Estas precipitaciones pueden caer tanto en el mar como en las tierras emergidas. Por último, parte del agua que se precipita en los continentes e islas pasa de nuevo a la atmósfera por evaporación o produce corrientes fluviales que llevan de nuevo gran parte de las aguas terrestres a los mares y océanos, con lo que se cierra el ciclo, el cual vuelve a repetirse.

Comportamiento de un fluido cualquiera en la transferencia de calor

Cuando un fluido cede calor sus moléculas se desaceleran por lo cual su temperatura disminuye y su densidad aumenta siendo atraídas sus moléculas por la gravedad de la tierra.

Cuando el fluido absorbe calor sus moléculas se aceleran por lo cual su temperatura aumenta y su densidad disminuye, lo que lo hace más liviano.

El fluido más frío tiende a bajar y ocupa el nivel más bajo de la vertical y los fluidos más calientes son desplazados al nivel más alto, creándose así los vientos de la tierra.

La transferencia térmica convectiva consiste en el contacto del fluido con una temperatura inicial con otro elemento o material con una temperatura diferente. En función de la variación de las temperaturas, variarán las cargas energéticas moleculares del fluido, y los elementos interactuantes del sistema realizarán un trabajo, donde el que tiene mayor energía o temperatura se la cederá al que tiene menos temperatura. Esta transferencia térmica se realizará hasta que los dos tengan igual temperatura; mientras se realiza el proceso las moléculas con menor densidad tenderán a subir y las de mayor densidad bajarán de nivel. Las moléculas que se encuentran en las capas inferiores aumentan su temperatura.

Intercambiadores de calor

Un intercambiador de calor es un dispositivo construido para intercambiar eficientemente el calor de un fluido a otro, tanto si los fluidos están separados por una pared sólida para prevenir su mezcla, como si están en contacto directo. Los cambiadores de calor son muy usados en refrigeración, acondicionamiento de aire, calefacción, producción de energía, y procesamiento químico. Un ejemplo básico de un cambiador de calor es el radiador de un coche, en el que el líquido del radiador caliente es enfriado por el flujo de aire sobre la superficie del radiador.

Las disposiciones más comunes de cambiadores de calor son, flujo paralelo, contracorriente y flujo cruzado. En el flujo paralelo, ambos fluidos se mueven en la misma dirección durante la transmisión de calor; en contracorriente, los fluidos se mueven en sentido contrario y en flujo cruzado los fluidos se mueven formando un ángulo recto entre ellos. Los tipos más comunes de cambiadores de calor son, de carcasa y tubos, de doble tubo, tubo extruido con aletas, tubo de aleta espiral, tubo en U, y de placas. Puede obtenerse más información sobre los flujos y configuraciones de los cambiadores de calor en el artículo intercambiador de calor.

Cuando los ingenieros calculan la transferencia teórica de calor en un intercambiador, deben lidiar con el hecho de que el gradiente de temperaturas entre ambos fluidos varía con la posición. Para solucionar el problema en sistemas simples, suele usarse la diferencia de temperaturas media logarítmica (DTML) para determinar estadísticamente un valor medio de la temperatura. En sistemas más complejos, el conocimiento directo de la DTML no es posible y en su lugar puede usarse el método de número de unidades de transferencia (NUT).

Véase también

  •   Datos: Q160329
  •   Multimedia: Convection
  •   Diccionario: convección

H

convección, tres, formas, transferencia, calor, conducción, convección, radiación, mediante, transporta, calor, entre, zonas, diferentes, temperaturas, convección, produce, únicamente, medio, materiales, evaporación, agua, fluidos, convección, transporte, calo. Las tres formas de transferencia del calor son conduccion conveccion y radiacion mediante las que se transporta el calor entre zonas con diferentes temperaturas La conveccion se produce unicamente por medio de materiales la evaporacion del agua o fluidos La conveccion en si es el transporte de calor por medio del movimiento del fluido Por ejemplo al calentar el agua en una cacerola el agua que entra en contacto con la base de la cacerola asciende al calentarse mientras que el agua de la superficie desciende por los lados al enfriarse y ocupa el lugar que dejo la porcion caliente Del mismo modo que en la conduccion requiere un material para la transferencia A diferencia de la radiacion la cual no necesita un medio para que ocurra la transferencia La transferencia de calor implica el transporte de calor en un volumen y la mezcla de elementos macroscopicos de porciones calientes y frias de un gas o un liquido Incluye tambien el intercambio de energia entre una superficie solida y un fluido o por medio de una bomba un ventilador u otro dispositivo mecanico conveccion mecanica forzada o asistida Esta se caracteriza a traves del numero de Nusselt Nu que es funcion de los numeros de Reynolds Re y de Prandtl Pr En el caso del flujo laminar dentro de la tuberia se utiliza la ecuacion de Sieder Tate Para flujo turbulento dentro de tuberia se En la transferencia de calor libre o natural un fluido es mas caliente o mas frio El contacto con una superficie solida causa una circulacion debido a las diferencias de densidades que resultan del gradiente de temperaturas en el fluido La circulacion es causa de las fuerzas de flotacion y las fuerzas viscosas La relacion entre ambas fuerzas es el numero de Grashof Gr que es funcion del numero de Reynolds y Prandtl La conveccion puede ser externa o interna Cuando es externa entonces el fluido se mueve sobre las superficies y si es interna entonces se mueve por dentro de las superficies Asi como la capa hidrodinamica en transferencia de momento la capa limite termica en transferencia de calor sirve para contastrar los espesores de las capas La relacion entre las capas de transferencia de propiedades sirve para saber cual transferencia es mayor a nivel molecular tal relacion es el numero de Prandtl El numero de Pr es mayor a 1 menor a 1 o igual a 1 Sirve para saber como se vinculan entre ellas Los lubricantes tienen numeros de Pr elevados El Pr de los gases es 0 70 La transferencia de calor por conveccion se expresa con la Ley del enfriamiento de Newton d Q d t h A s T s T inf displaystyle frac dQ dt hA s T s T inf Simbolo Nombreh displaystyle h Coeficiente de conveccionA s displaystyle A s Area del cuerpo en contacto con el fluidoT s displaystyle T s Temperatura en la superficie del cuerpoT inf displaystyle T inf Temperatura del fluido lejos del cuerpoEl coeficiente convectivo es decir la constante para la conduccion es la conductividad termica Este depende de las propiedades de fluido geometria del sistema velocidad de flujo distribucion de temperatura y variacion de la temperatura El analisis dimensional permite determinar una ecuacion que relaciona el coeficiente de conveccion con otras variables las cuales se pueden cuantificar esto ocurre para conveccion forzada como para conveccion libre Si se realiza un analisis exacto de la capa limite entonces a partir de la Ecuacion de Navier Stokes se obtiene segun las circunstancias una ecuacion final para el balance de cantidad de movimiento Se realiza el mismo procedimiento para el balance de energia y se obtiene otra ecuacion final La relacion que permite determinar el coeficiente de conveccion resulta de vincular las anteriores Para fluidos con Pr 1 ocurre que el numero de Nu depende solamente del numero de Re Indice 1 Conveccion atmosferica 2 Comportamiento de un fluido cualquiera en la transferencia de calor 3 Intercambiadores de calor 4 Vease tambienConveccion atmosferica EditarLa conveccion en la atmosfera terrestre involucra la transferencia de enormes cantidades del calor absorbido por el agua Forma nubes de gran desarrollo vertical por ejemplo cumulus congestus y sobre todo cumulonimbos que son los tipos de nubes que alcanzan mayor desarrollo vertical Estas nubes son las tipicas portadoras de tormentas electricas y de grandes precipitaciones Al alcanzar una altura muy grande por ejemplo unos 12 o 14 km y enfriarse bruscamente por la baja temperatura atmosferica a dicha altura pueden producir tormentas electricas granizadas e intensas lluvias ya que las gotas de lluvia van aumentando de tamano al ascender violentamente y luego se precipitan hacia el suelo bien sea en estado liquido o en estado solido Pueden tener forma de un hongo asimetrico de gran tamano y a veces se forma en este tipo de nubes una estela que semeja una especie de yunque El proceso que origina la conveccion en el seno de la atmosfera terrestre es sumamente importante y genera una serie de fenomenos fundamentales en la explicacion de los vientos y en la formacion de nubes vaguadas ciclones anticiclones precipitaciones etc Todos los procesos y mecanismos de conveccion del calor atmosferico obedecen a las leyes fisicas de la termodinamica De estos procesos es fundamental el que explica el ciclo del agua en la naturaleza o ciclo hidrologico Casi todos los fenomenos antes nombrados tienen que ver con este ultimo mecanismo La subsidencia es el fenomeno inverso a la conveccion por el cual el aire a gran altura se enfria considerablemente y forma una zona anticiclonica que desciende por su mayor densidad trayendo hacia la superficie terrestre aire frio y seco que puede dar origen a remolinos de polvo y hasta tornados cuando se ponen en contacto con una zona de conveccion Tambien se denomina ciclo hidrologico o ciclo del agua al recorrido del agua en la atmosfera por la capacidad que tiene el agua de absorber calor y cederlo gracias a la capacidad que tiene de transformarse de un estado fisico a otro A grandes rasgos el ciclo hidrologico funciona de la siguiente manera los rayos solares calientan las superficies de las aguas marinas y terrestres las cuales al absorber ese calor pasan del estado liquido al gaseoso en forma de vapor de agua El vapor asciende hasta cierta altura y al hacerlo pierde calor se condensa y forma las nubes que estan constituidas por gotas de agua muy pequenas que se mantienen en suspension a determinada altura Cuando esta condensacion se acelera por el propio ascenso de la masa de nubes conveccion se forman nubes de mayor desarrollo vertical con lo que las gotas aumentan de tamano y forman las precipitaciones que pueden ser tanto solidas nieve granizo como acuosas lluvia dependiendo de la temperatura Estas precipitaciones pueden caer tanto en el mar como en las tierras emergidas Por ultimo parte del agua que se precipita en los continentes e islas pasa de nuevo a la atmosfera por evaporacion o produce corrientes fluviales que llevan de nuevo gran parte de las aguas terrestres a los mares y oceanos con lo que se cierra el ciclo el cual vuelve a repetirse Comportamiento de un fluido cualquiera en la transferencia de calor EditarCuando un fluido cede calor sus moleculas se desaceleran por lo cual su temperatura disminuye y su densidad aumenta siendo atraidas sus moleculas por la gravedad de la tierra Cuando el fluido absorbe calor sus moleculas se aceleran por lo cual su temperatura aumenta y su densidad disminuye lo que lo hace mas liviano El fluido mas frio tiende a bajar y ocupa el nivel mas bajo de la vertical y los fluidos mas calientes son desplazados al nivel mas alto creandose asi los vientos de la tierra La transferencia termica convectiva consiste en el contacto del fluido con una temperatura inicial con otro elemento o material con una temperatura diferente En funcion de la variacion de las temperaturas variaran las cargas energeticas moleculares del fluido y los elementos interactuantes del sistema realizaran un trabajo donde el que tiene mayor energia o temperatura se la cedera al que tiene menos temperatura Esta transferencia termica se realizara hasta que los dos tengan igual temperatura mientras se realiza el proceso las moleculas con menor densidad tenderan a subir y las de mayor densidad bajaran de nivel Las moleculas que se encuentran en las capas inferiores aumentan su temperatura Intercambiadores de calor EditarArticulo principal Intercambiador de calor Un intercambiador de calor es un dispositivo construido para intercambiar eficientemente el calor de un fluido a otro tanto si los fluidos estan separados por una pared solida para prevenir su mezcla como si estan en contacto directo Los cambiadores de calor son muy usados en refrigeracion acondicionamiento de aire calefaccion produccion de energia y procesamiento quimico Un ejemplo basico de un cambiador de calor es el radiador de un coche en el que el liquido del radiador caliente es enfriado por el flujo de aire sobre la superficie del radiador Las disposiciones mas comunes de cambiadores de calor son flujo paralelo contracorriente y flujo cruzado En el flujo paralelo ambos fluidos se mueven en la misma direccion durante la transmision de calor en contracorriente los fluidos se mueven en sentido contrario y en flujo cruzado los fluidos se mueven formando un angulo recto entre ellos Los tipos mas comunes de cambiadores de calor son de carcasa y tubos de doble tubo tubo extruido con aletas tubo de aleta espiral tubo en U y de placas Puede obtenerse mas informacion sobre los flujos y configuraciones de los cambiadores de calor en el articulo intercambiador de calor Cuando los ingenieros calculan la transferencia teorica de calor en un intercambiador deben lidiar con el hecho de que el gradiente de temperaturas entre ambos fluidos varia con la posicion Para solucionar el problema en sistemas simples suele usarse la diferencia de temperaturas media logaritmica DTML para determinar estadisticamente un valor medio de la temperatura En sistemas mas complejos el conocimiento directo de la DTML no es posible y en su lugar puede usarse el metodo de numero de unidades de transferencia NUT Vease tambien EditarAislamiento termico Coeficiente de pelicula Conduccion de calor Conveccion del manto Radiacion termica Subsidencia meteorologia Datos Q160329 Multimedia Convection Diccionario conveccion H Obtenido de https es wikipedia org w index php title Conveccion amp oldid 138995206, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos