fbpx
Wikipedia

Constante de Planck

Valor de h Unidades
6,626 070 15 × 10-34 Js[1]
4,135 667 696 × 10-15 eVs
Valor de ħ (h-barra) Unidades
1,054 571 817 × 10-34 Js
6,582 119 569 × 10-16 eVs
Valor de hc Unidades
1,986 445 86 × 10-25 Jm
1,239 841 93 eVμm
Valor de ħc (h-barra) Unidades
3,161 526 49 × 10-26 Jm
0,197 326 9804 eVμm

La constante de Planck es una constante física que desempeña un papel central en la teoría de la mecánica cuántica y recibe su nombre de su descubridor, el físico y matemático alemán Max Planck, uno de los padres de dicha teoría. Denotada como , es la constante que frecuentemente se define como el cuanto elemental de acción. Planck la denominaría precisamente «cuanto de acción» (en alemán, Wirkungsquantum), debido a que la cantidad denominada acción de un proceso físico (el producto de la energía implicada y el tiempo empleado) solo podía tomar valores discretos, es decir, múltiplos enteros de .

Placa en la Universidad Humboldt de Berlín que reza: "En este edificio enseñó MAX PLANCK, el descubridor del cuanto de acción h, de 1889 a 1928"

Fue inicialmente propuesta como la constante de proporcionalidad entre la energía de un fotón y la frecuencia de su onda electromagnética asociada. Esta relación entre la energía y la frecuencia se denomina «relación de Planck-Einstein»:

Dado que la frecuencia , la longitud de onda , y la velocidad de la luz cumplen , la relación de Planck-Einstein se puede expresar como:

Otra ecuación fundamental en la que interviene la constante de Planck es la que relaciona el momento lineal de una partícula con la longitud de onda de De Broglie λ de la misma:

En aplicaciones donde la frecuencia viene expresada en términos de radianes por segundo o frecuencia angular, es útil incluir el factor dentro de la constante de Planck. La constante resultante, «constante de Planck reducida» o «constante de Dirac», se expresa como ħ ("h barra"):

De esta forma la energía de un fotón con frecuencia angular , donde , se podrá expresar como:

Por otro lado, la constante de Planck reducida es el cuanto del momento angular en mecánica cuántica. Los valores que puede tomar el momento angular orbital, de spin o total, son múltiplos enteros o semienteros de la constante reducida. Así, si es el momento angular total de un sistema con invariancia rotacional y es el momento angular del sistema medido sobre una dirección cualquiera, por ejemplo la del eje z, estas cantidades solo pueden tomar los valores:

.

Unicode reserva los códigos U+210E (h) para la constante de Planck y U+210F (h con barra) para la constante de Dirac.

Origen de la constante

Historia

El camino que llevó a Max Planck a su constante tuvo su origen en un proyecto que comenzó con un cuarto de siglo de anterioridad, la teoría sobre «la ley de distribución de energía del espectro normal».[2]​ En él estudiaba la radiación térmica emitida por un cuerpo debido a su temperatura. En esta teoría se introdujo en 1862 el concepto de cuerpo negro, cuya superficie absorbe toda la radiación térmica que incide sobre él y que además emite la radiación térmica con el mismo espectro a la misma temperatura.

Sin embargo, un estudio experimental del cuerpo negro condujo a una discrepancia entre los resultados experimentales y los obtenidos aplicando las leyes de la Física clásica. Según la ley de Stefan-Boltzmann, la radiancia espectral de los cuerpos aumenta rápidamente con la cuarta potencia de la temperatura y, además, se desplaza hacia frecuencias mayores (ley de desplazamiento de Wien). El problema surgió al calcular la energía absorbida por el cuerpo negro a una temperatura dada mediante el teorema de la equipartición de energía, pues a medida que la frecuencia crecía la predicción teórica tendía a infinito mientras que los experimentos mostraban que la densidad de energía siempre es finita y tiende a cero para frecuencias muy altas. Este comportamiento irreal de las teorías clásicas a las altas frecuencias es conocido como «catástrofe ultravioleta». Planck estaba interesado en dar sentido a este dilema; para lograrlo, decidió considerar la energía absorbida y emitida por el cuerpo negro en forma de «paquetes» discretos. Al realizar los cálculos de acuerdo con este procedimiento, y mediante un trabajo numérico, obtuvo una buena concordancia entre los resultados experimentales y los teóricos, introduciendo una constante que posteriormente fue conocida como la constante de Planck (h).

El trabajo de Planck supuso el comienzo de la mecánica cuántica (MC), lo que llevó consigo un cambio de mentalidad en la manera de comprender los fenómenos de la naturaleza a escala atómica.[3][4]​ El siguiente paso vino de la mano de Albert Einstein que, de manera análoga a Planck, planteó la absorción de luz por un metal de forma discreta, a cuantos, y su correspondiente emisión de electrones, en el efecto fotoeléctrico. Otro paso dado a comienzos del siglo XX fue el obtenido con el modelo del átomo de Bohr y sus postulados, revolucionando el concepto del átomo; en él interviene este nuevo concepto de la emisión y absorción de la luz por la materia de manera discreta. Por último, también hay una relación de la teoría de Planck y su constante con el principio de indeterminación de Heisenberg.

Orden de magnitud de la constante

Cuando se expresa el valor de la constante de Planck en unidades del SI, el valor resultante es muy pequeño, aproximadamente 6.63 x 10-34 J·s, lo cual indica que no parece aplicable a una escala adaptada a humanos (donde los valores habituales son metros, kg o segundos). La constante de Planck se aplica en física cuando se trabaja a escala atómica; por ejemplo, a la hora de calcular la energía de un fotón del espectro visible en el verde con una frecuencia de 5.77 x 1014 Hz. cada fotón de esta frecuencia tiene una energía de h.f = 3.82x 10 -19 J. Para aplicar la constante de Planck a nivel macroscópico habría que hacerlo con cantidades de fotones propias de nuestra escala. En este caso se puede comparar, por ejemplo, con un mol de fotones (NA = 6.02x1023 molec/mol). Si aplicamos la constante de Planck no a un fotón sino a una cantidad hipotética de un mol de fotones, la energía resultante es del orden de 230 kJ/mol, que ya es una medida típica en la vida cotidiana, lo cual hace patente las diferentes escalas en las que se puede valorar la naturaleza: la atómica (del orden de, por ejemplo, la constante de Planck), la humana (aplicando las unidades básicas del SI), o la del universo (del orden de, por ejemplo, la velocidad de la luz que permite medir distancias en años luz).

La radiación del cuerpo negro

 
Figura animada que representa un rayo de luz incidiendo sobre un cuerpo negro hasta su total absorción

Definición de cuerpo negro

El nombre cuerpo negro fue introducido por Gustav Kirchhoff en 1862 y su idea deriva de la siguiente observación: toda la materia emite radiación electromagnética cuando se encuentra a una temperatura por encima del cero absoluto. La radiación electromagnética emitida por un cuerpo a una temperatura dada es un proceso espontáneo y procede de una conversión de su energía térmica en energía electromagnética. También sucede a la inversa, toda la materia absorbe radiación electromagnética de su entorno en función de su temperatura. Un objeto que absorba toda la radiación que incide sobre él a todas las frecuencias se denomina cuerpo negro. Cuando un cuerpo negro posee una temperatura uniforme, la radiación que emite presenta una distribución en función de la frecuencia (o de la longitud de onda, relacionada inversamente con esta) que es característica y que depende de su temperatura. La superficie de una estrella como nuestro Sol tiene una temperatura de 5800 Kelvin y emite radiación con un máximo que se encuentra sobre los 500 nm (luz visible). En cambio, el cuerpo humano cuya temperatura media es muy inferior, está en torno a los 37 grados Celsius, y emite, por tanto, su máximo a mayores longitudes de onda, en torno a los 10 micrómetros, que corresponde al infrarrojo.

Esta radiación es la que se conoce como radiación del cuerpo negro. El concepto de cuerpo negro es una idealización ya que un cuerpo negro perfecto no existe en la naturaleza.[5]​ Por cuerpo negro ideal se considera aquel que absorbe toda la radiación que le llega sin reflejarla de tal forma que solo emite la correspondiente a su temperatura.

Ideas previas

 
En la gráfica se representa la intensidad de la radiación emitida por el cuerpo negro en función de la longitud de onda a diferentes temperaturas. El máximo de la curva aumenta al ir hacia menores longitudes de onda (ley de Wien). Se compara con el modelo clásico de Rayleigh-Jeans a altas temperaturas (5000 K) comprobándose la llamada catástrofe del ultravioleta

A finales del siglo XIX la física clásica podía proporcionar explicaciones de la mayoría de fenómenos observados. Sin embargo, algunos físicos se percataron de ciertos desajustes relativos a los espectros de emisión y absorción atómicos[6]​ en el rango de las longitudes de onda situadas en el espectro visible o en la disminución con la temperatura del calor molar de los sólidos que no explicaba la ley de Dulong y Petit.[7][8]​ El mayor desajuste de la teoría clásica se conoce como «la catástrofe del ultravioleta» o de Rayleigh-Jeans y está relacionado con la emisión de radiación por los cuerpos en equilibrio térmico a una temperatura dada. De acuerdo con la ley que enunciaron Rayleigh y Jeans, la densidad de energía emitida por un cuerpo negro para cada frecuencia y temperatura era proporcional al cuadrado de la frecuencia, lo que implicaba que cuanto mayor era la frecuencia mayor debía ser la cantidad de energía suministrada por el cuerpo. Por lo tanto, la contribución más importante a la densidad de energía de la emisión de radiación del cuerpo negro corresponde a la radiación de menor longitud de onda (mayor frecuencia), que en el límite del visible corresponde a la radiación ultravioleta.

Sin embargo, las medidas experimentales demuestran lo contrario,[9]​ es decir, que la emisión de la radiación disminuye al disminuir la longitud de onda (al aumentar la frecuencia), tendiendo a cero en la región del ultravioleta.[10]​ Además, si se calcula la energía total emitida por el cuerpo negro para todas las longitudes de onda a una temperatura elevada como la de una estrella, la ley clásica daría una energía infinita; una estrella no emite una radiación infinita y este resultado viola la ley de conservación de la energía, poniendo así en tela de juicio la ley clásica o ley de Rayleigh-Jeans.[11]

Fue Max Planck quien propuso la ley que lleva su nombre y que, mediante la idea de emisión y absorción de la luz por la materia en forma discreta a «cuantos» de energía h·f, resuelve el problema de la emisión y absorción de la radiación por los cuerpos en equilibrio térmico a una temperatura dada. Esta manera de abordar el problema de la emisión y la absorción de la energía electromagnética creó una nueva concepción del mundo físico.[12]

A finales del siglo XIX y comienzos del siglo XX era virtualmente imposible darse cuenta de que la raíz de los inconvenientes que presentaba la interpretación de algunos fenómenos físicos estaba en la hipótesis de que la energía era continua. Este cambio de mentalidad que supone la emisión y absorción de la luz por los cuerpos en forma de cuantos de energía lo pondría también de manifiesto Einstein en 1905 con la explicación del efecto fotoeléctrico.

Ley de Planck para la emisión del cuerpo negro

 
Ley de Planck a diferentes temperaturas en función de la frecuencia para la radiación del cuerpo negro

La ley de Planck establece que la energía electromagnética absorbida o emitida por un cuerpo negro se realiza por medio de intercambio de cuantos de energía electromagnética hf, de acuerdo con la siguiente expresión,

 

donde:

  • I (f,T) es la energía por unidad de tiempo (o la potencia), por unidad de área de la superficie que emite en la dirección normal, por unidad de ángulo sólido, y por unidad de frecuencia, radiada por un cuerpo negro a la temperatura T;
  • h es la constante de Planck;
  • c es la velocidad de la luz en el vacío;
  • k es la constante de Boltzmann;
  • f es la frecuencia de la radiación electromagnética y
  • T es la temperatura del cuerpo en Kelvin.

Se puede apreciar cómo aparece reflejado en el término exponencial de esta función de distribución   el cuanto de energía hf. La ley de Planck se comporta correctamente en mediciones experimentales de astrofísica, y más directamente relacionadas con la Tierra, en aquellas aplicaciones donde intervenga el espectro solar para todo el margen de frecuencias del espectro electromagnético.[9]

A los pocos años, el éxito de su teoría cuántica para la correcta interpretación de la entropía y del tercer principio de la termodinámica, así como las ideas de Einstein sobre la teoría cuántica de la radiación, reafirmaron a Planck en la certeza de su teoría.

Verificación: ley de Rayleigh-Jeans

En el límite clásico de bajas frecuencias la ley de Planck coincide con la ley de Rayleigh-Jeans:

 

Para frecuencias intermedias y altas, sin embargo, difieren. Es más, al aumentar la frecuencia f, la segunda crece indefinidamente mientras que la primera tiende a cero.

El efecto fotoeléctrico

 
Esquema del efecto fotoeléctrico. Interacción de los fotones sobre una lámina metálica. A consecuencia de la interacción se liberan algunos electrones

En 1887 Heinrich Rudolf Hertz descubrió que una descarga eléctrica entre dos electrodos ocurría más fácilmente cuando sobre uno de ellos incidía luz ultravioleta. Posteriormente, Philipp Lenard demostró que la luz ultravioleta facilita la descarga eléctrica ya que provoca la emisión de electrones desde la superficie del cátodo. Sin embargo a Albert Einstein le valió este experimento para contradecir algunos aspectos de la teoría electromagnética clásica,[13][14]​ y su correcta interpretación le valió el premio Nobel de 1921. El efecto fotoeléctrico ha sido uno de los ejemplos más interesantes para ilustrar la naturaleza corpuscular de la luz, llevando al desarrollo de la mecánica cuántica durante el siglo XX.

Cuando la luz de determinada longitud de onda incide sobre la superficie de un metal, este emite un flujo de electrones. En la época en la que se realizó este descubrimiento, la teoría ondulatoria de la luz era el único modelo disponible. Según esta, el número de electrones emitidos debía aumentar proporcionalmente a la intensidad de la luz; además debería existir un margen de tiempo entre la incidencia de los fotones y la emisión de los electrones. Al proceder a la experimentación, ninguna de estas condiciones resultaron ser ciertas. La intensidad luminosa no afecta a la emisión de los electrones, pero si a la frecuencia, ya que el efecto fotoeléctrico solo se produce para ciertos valores de esta y el margen de tiempo es irrelevante. La teoría ondulatoria, por tanto, no resulta válida a la hora de explicar el efecto fotoeléctrico.

Para justificar el fenómeno, Einstein empleó una idea propuesta por Max Planck en 1900 para explicar una paradoja similar surgida a la hora de interpretar la radiación del cuerpo negro. Planck consideró la luz como una serie de paquetes discretos a los que denominó cuantos en lugar de considerarla como una onda. Utilizando esta teoría, Einstein determinó que la energía de los cuantos, partículas que llamamos fotones, está relacionada con la frecuencia de la onda luminosa mediante la expresión:

 

Donde   es la energía cinética del fotón,   su frecuencia y   la constante de Planck   Una vez establecida la energía del fotón, el efecto fotoeléctrico se convierte en un caso simple de aplicación del principio de conservación de la energía.

Cuando la luz incide sobre una superficie, está aportando una cierta energía,  , en particular a los electrones de la superficie. Existe un valor concreto de energía necesario para «despegar» el electrón, llamado energía umbral y también función de trabajo, . El exceso de energía por encima de   aparecerá en forma de energía cinética del electrón, , el cual adquirirá la velocidad que corresponda a la citada energía cinética.

 

Existen varios procedimientos para verificar esta ecuación. Uno consiste en medir las diferencias de potencial entre los electrodos de una célula fotoeléctrica con un voltímetro al iluminar la célula con luz monocromática de diversas longitudes de onda. Como consecuencia, se crearán distintas diferencias de potencial   entre los electrodos y aparecerá un paso de corriente producida por los electrones arrancados del cátodo. Una variación de este experimento consistiría en conectar la célula a una batería con las polaridades invertidas y ajustar el valor de la misma hasta que la corriente de la célula descendiera a cero, lo que significaría que el campo opuesto creado es capaz de evitar que los electrones se desprendan de la superficie metálica. Ambos métodos deben verificar el principio de conservación de la energía y por tanto deben cumplir que la energía cinética de los electrones emitidos procede de la diferencia de potencial   existente entre los electrodos de la fotocélula en el primer caso y en el segundo representa el potencial   opuesto que se aplica y que anula la corriente establecida. Por ello, la ecuación se puede escribir de la siguiente manera:

 

Donde   es la carga del electrón y   el potencial de frenado.

La solución que Einstein propuso al problema del efecto fotoeléctrico resuelve por completo las contrariedades del modelo ondulatorio. Al tratar la luz como cuantos, se puede comprender que la intensidad de la luz no afecta a la energía del electrón, sino a la cantidad de electrones que se emiten, todos ellos con la misma energía, la cual depende de la frecuencia. Por la misma razón, este efecto no se aprecia para todas las frecuencias, sino solo cuando el fotón tiene la suficiente energía para superar la energía umbral. Por último, no existen motivos para que exista un margen de tiempo para apreciar el efecto ya que el electrón se desprende tan pronto como el fotón impacta la superficie. Este hecho constituye una prueba definitiva de la naturaleza corpuscular de la luz.

Modelos atómicos: el modelo atómico de Bohr

Niels Bohr fue un físico danés que contribuyó a la comprensión de la estructura del átomo y de la mecánica cuántica. Basándose en las teorías de Ernest Rutherford, publicó su modelo atómico en 1913, en el que introdujo la teoría de las órbitas cuantizadas, y en 1922 recibió el Premio Nobel de Física por sus trabajos sobre la estructura atómica y la radiación. Numerosos físicos, basándose en este principio, concluyeron que la luz presentaba una dualidad onda-partícula.

En la física atómica, el modelo atómico de Bohr presenta el átomo como un pequeño núcleo cargado positivamente rodeado por electrones que se mueven alrededor del núcleo en órbitas circulares, similar en estructura al sistema solar, pero con una atracción producida por fuerzas electrostáticas en lugar de gravitatorias. Supuso una mejora con respecto al anterior modelo de Thomson o el modelo de Rutherford. Dado que el modelo de Bohr es una modificación del modelo de Rutherford basada en la física cuántica, distintas fuentes combinan los dos y hablan del modelo de Rutherford-Bohr.[cita requerida] La clave para el éxito del modelo radica en explicar la fórmula de Rydberg para las líneas de emisión espectrales del hidrógeno atómico. La fórmula de Rydberg funcionaba experimentalmente pero no se pudo justificar teóricamente hasta que Bohr introdujo su modelo. Este no solo explica la razón de la estructura de la fórmula de Rydberg, sino que también proporciona una justificación de sus resultados empíricos en términos de constantes físicas fundamentales. En comparación con la teoría del modelo actual, el de Bohr es un modelo primitivo del átomo de hidrógeno pero, debido a su simplicidad y a sus resultados correctos en la interpretación de algunos sistemas concretos, el modelo de Bohr aparece siempre en las introducciones a la mecánica cuántica.[cita requerida]

Los aportes de Bohr a su modelo del átomo se encierran en el segundo y tercer postulados. En el segundo establece la condición de cuantización de las órbitas de los electrones en el átomo y en el tercero introduce la hipótesis de que la energía de un electrón en el átomo solamente puede intercambiarla con el entorno, en pequeñas cantidades múltiplo de la constante de Planck, pasando de una órbita a otra según la condición del segundo postulado. El tercer postulado impide entre otras cosas que el electrón en su movimiento alrededor del núcleo pierda energía de manera continua y salga despedido hacia el núcleo como predecía la teoría clásica.

Primer postulado

Los electrones se mueven en ciertas órbitas circulares permitidas alrededor del núcleo sin emitir energía. En el átomo no hay emisión de radiación electromagnética mientras el electrón permanece en su órbita. La causa de que el electrón no radie energía es un postulado, ya que según la electrodinámica clásica una carga en movimiento acelerado, como es el movimiento de rotación, debe emitir energía en forma de radiación.

 
Órbita de un electrón alrededor del átomo de hidrógeno

Para obtener la energía del electrón en una órbita dada en función de su radio, Bohr presupone órbitas circulares y utiliza el siguiente razonamiento: el movimiento de rotación del electrón se mantiene por la acción de la fuerza de Coulomb, atractiva, debida a la presencia del núcleo positivo. Dicha fuerza es precisamente la fuerza centrípeta necesaria para mantener al electrón en su órbita circular. Esto conduce a la siguiente expresión:

 

Donde el primer término es la fuerza de Coulomb y el segundo es la fuerza centrípeta; k es la constante de la fuerza de Coulomb, Z es el número atómico, e es la carga del electrón,   es la masa del electrón, v es la velocidad del electrón en la órbita y r el radio de la órbita.

Partiendo de la ecuación anterior y sabiendo que la energía total es la suma de las energías cinética y potencial, la energía de un electrón se expresa en función del radio r de la órbita como:

 

Con este postulado, Bohr evitaba el problema de la inestabiliad orbital del electrón, y por tanto del átomo, predicha por la electrodinámica clásica. Esto lo hace al postular que la radiación de energía por parte de las partículas cargadas es válida a escala macroscópica, pero no es aplicable al mundo microscópico del átomo. Sin embargo, surgía el problema de explicar la transición entre los estados estacionarios y la emisión de radiación por el átomo, para lo que Bohr introdujo otro postulado.

Segundo postulado

La condición de cuantización de las órbitas permitidas para el movimiento del electrón en el átomo es una de las grandes aportaciones de Bohr, si bien no aparece en su primer postulado. Bohr hace uso de la constante de Planck como un momento angular elemental de forma que los momentos angulares posibles del electrón son solo los múltiplos enteros del citado momento angular elemental.[cita requerida] Así, no todas las órbitas del electrón alrededor del núcleo están permitidas, tan solo aquellas cuyo radio cumpla que el momento angular,  , del electrón sea un múltiplo entero de  .

A partir de esto queda la condición de cuantización para los radios permitidos para el electrón son:

 

Con  ;

Sustituyendo los radios permitidos   en la expresión de la energía se puede obtener la energía correspondiente a cada órbita permitida:

 

Tercer postulado

 
Emisión y absorción de energía en forma de cuantos al pasar de una órbita a otra

El electrón solo emite o absorbe energía en los saltos de una órbita permitida a otra. En dicho cambio emite o absorbe un fotón cuya energía es la diferencia de energía entre ambos niveles. El fotón, siguiendo las ideas de Planck, tiene una energía:

 

Donde   identifica la órbita inicial y   la final, y   es la frecuencia del fotón. Introduciendo los valores de las energías asociadas a cada órbita se obtiene para la frecuencia del fotón emitido o absorbido:

 

Esta última expresión obtenida a partir de principios cuánticos confirma la fórmula empírica hallada antes por Balmer y utilizada habitualmente por los espectroscopistas para describir la Serie de Balmer —observada desde finales del siglo XIX— en la desexcitación del Hidrógeno y que venía dada por:

 

Con   y donde   es la llamada constante de Rydberg para el hidrógeno. El valor medido experimentalmente de la constante de Rydberg  , coincide con el valor de la fórmula teórica de Bohr.

Los postulados de Bohr corresponden a una primera consideración del hecho de que los electrones estables orbitando en un átomo están descritos por funciones de onda estacionarias.

Principio de incertidumbre de Heisenberg

Introducción

 
Principio de Incertidumbre para la medida simultánea de la posición y el momento de una partícula

Werner Heisenberg —Premio Nobel de Física en 1932— enunció el llamado principio de incertidumbre o principio de indeterminación, según el cual es imposible medir simultáneamente, y con precisión absoluta, el valor de la posición y la cantidad de movimiento de una partícula. Esto significa que la precisión con que se pueden medir las propiedades de los objetos microscópicos, como posición y momento, está limitada y el límite viene fijado por una ecuación donde la constante de Planck es sujeto principal.[cita requerida]

El principio de incertidumbre en una dimensión (por ejemplo, a lo largo del eje x) se escribe:

 

 : indeterminación en la posición.

 : indeterminación en la cantidad de movimiento.

 : constante de Planck.

De manera análoga, se puede considerar la relación de incertidumbre en cualquiera de las proyecciones espaciales (sobre los ejes de coordenadas y o z).

La incertidumbre no se deriva de los instrumentos de medida sino del propio hecho de medir; con los aparatos más precisos la incertidumbre en la medida continúa existiendo. Así, cuanto mayor sea la precisión en la medida de una de estas magnitudes mayor será la incertidumbre en la medida de la otra variable complementaria. La posición y la cantidad de movimiento de una partícula, respecto de uno de los ejes de coordenadas, son magnitudes complementarias sujetas a las restricciones del principio de incertidumbre de Heisenberg. También son variables complementarias afectadas por el principio de incertidumbre para un mismo objeto, su energía E y el tiempo, t empleado en la medida,

 

Aplicación del principio de incertidumbre

 
Datos simulados de la colisión entre protones con producción de haces de hadrones y electrones. Procedente del detector CMS del LHC en el CERN

En el LHC (Large Hadron Collider) del CERN se producen colisiones de protones a una velocidad próxima a la de la luz. Si los protones alcanzaran velocidades punta de   y se midieran con un 1% de precisión, se puede calcular entonces la incertidumbre en la posición de dichos protones de masa   con una aproximación del 1% en su velocidad, y por tanto:

 

Dado que  , de la incertidumbre en la determinación simultánea de su velocidad y posición se obtiene la siguiente relación para  ,

 

Por tanto,  , es la indeterminación en la posición del protón.

En las mismas condiciones de precisión, y siguiendo el principio de incertidumbre, se comprueba que cuanto mayor es la velocidad de la partícula, menor es su indeterminación en la posición y viceversa. Un ejemplo extremo sería el caso de un protón a muy bajas velocidades, entonces su posición estaría muy localizada en el espacio pero, en cambio, su incertidumbre sobre dicha posición sería grande.

Aplicación macroscópica del principio de incertidumbre

Un artículo publicado en la revista Science[15]​ en febrero de 2013 demuestra que los efectos de la mecánica cuántica no solo son claramente medibles en los experimentos microscópicos, sino que también es posible observarlos en la macrofísica. Es el caso de un oscilador macroscópico que consta de una membrana situada dentro de una cavidad óptica y cuya posición se puede medir gracias a la luz que se refleja en ambos extremos de la cavidad.

Una analogía para la medida óptica de la posición de un objeto es la que se realiza con el sistema de enfoque automático de una cámara de fotos.[16][17]​ Al emitir un pulso de luz infrarroja, este se refleja en el objeto y vuelve a la cámara. El tiempo empleado por el haz en ir y volver lo usa la cámara para estimar la distancia entre el objeto y el plano de la imagen. Los autores han podido comprobar cómo se ve afectada la posición de la membrana por la presión de radiación debida a la radiación incidente en la membrana. La medida es tan precisa que se encuentra influenciada por la naturaleza cuántica de los fotones y el error sistemático de la medida solo está limitado por el ruido cuántico que predice el principio de indeterminación de Heisenberg, ecuación (1). El citado principio conduce a cambios en la intensidad de la luz detectada que permiten medir el retroceso de la membrana debido a la presión de la radiación.

Nueva comprensión en la física

 
Aplicación macroscópica del principio de indeterminación de Heisenberg en la medida óptica de la posición de un objeto macroscópico (una membrana en una cavidad óptica)

El trabajo publicado en la revista Science, además de representar un avance en la observación de los fenómenos cuánticos, constituye un hito en la medida de este tipo de sucesos ya que el experimento alcanza los límites de precisión impuestos por el principio de indeterminación de Heisenberg en las medidas ópticas de la posición de un objeto (membrana en una cavidad óptica).[18]​ Esto se debe a que en la citada experiencia se puede medir con precisión el ruido de disparo debido a la presión de radiación, RPSN (Radiation Pressure Shot Noise) que es el retroceso experimentado por el fotón al colisionar contra el objeto. Por el principio de Heisenberg, este «ruido de disparo» presenta una incertidumbre en la cantidad de movimiento, Δp que conlleva un error en la medida de la posición Δx. Esta relación ha impuesto un límite máximo a la sensibilidad de los experimentos de este tipo. El nuevo procedimiento publicado en Science permite medir la posición de un objeto con un error limitado solo por el RPSN. Con estos experimentos se pueden verificar procedimientos teóricos utilizados para intentar esquivar el límite impuesto por el principio de Indeterminación, como es el uso de la luz comprimida de incertidumbre mínima (quadrature-squeezed light) [19]​ o las técnicas para evitar el retroceso.[20]

Medidas experimentales de la constante de Planck

Determinación actual de la constante

Gracias a la precisión de la tecnología actual, la constante de Planck se puede determinar con, al menos, nueve cifras significativas, y su determinación experimental se realiza a partir de las siguientes experiencias:

Si bien la constante de Planck está asociada a sistemas microscópicos, la manera más precisa de obtenerla deriva de fenómenos macroscópicos como el efecto Hall cuántico y el efecto Josephson.[23][24][25]

La constante en la definición de las unidades del SI

Fue el propio Planck quien adelantó la idea de establecer las unidades empleadas en física a partir de las constantes universales.[26]​ Las primeras mediciones de la constante se efectuaron a partir del efecto fotoeléctrico. Durante varias décadas se fueron optimizando nuevos experimentos que hicieron posible la medida de otros fenómenos físicos afectados directamente por la constante así como de otras constantes como la carga elemental y el número de Avogadro. Conforme las técnicas experimentales han evolucionado, se ha ido mejorando también la precisión del valor de h; en 1960 se introdujo el SI ( Sistema Internacional de unidades ) y con él la definición de las unidades eléctricas del V (voltio), y el ohm (Ohmio) pero fue en la década de los años 90 cuando se definió por primera vez el ohmio a partir de la constante fundamental h midiendo la resistencia Hall en el efecto Hall cuántico y el voltio, a partir del efecto Josephson.[27]​ Nació así un nuevo SI partiendo de muy pocas constantes fundamentales para sus definiciones. Las teorías del efecto Josephson y del efecto Hall cuántico han desempeñado un papel crucial para mostrar la influencia de la constante h en las directrices para las mediciones eléctricas, conforme estas han ido llevando a nuevos dispositivos electrónicos. La constante h no solo se ha convertido en esencial en las definiciones de las unidades de los voltios y los ohmios, sino que las medidas de los efectos mencionados han permitido determinar h directamente y con precisión aún mayor. Desde el 20 de mayo de 2019 la constante de Planck es un valor sin incertidumbre:[28]

 

Sin el refinamiento de las medidas del efecto Hall cuántico y del efecto Josephson, de una manera más básica aunque con menos precisión, también se puede determinar la constante h a nivel de laboratorio docente universitario, que de forma tradicional ha venido obteniendo a partir del efecto fotoeléctrico. Sin embargo, debido al progreso alcanzado en la tecnología LED cada vez son más frecuentes los experimentos para medir la constante h haciendo uso de diodos LED.[cita requerida]

La estimación de la constante de Planck con diodos LED en el laboratorio universitario

Fundamento físico

 
Fundamento físico del funcionamiento de un diodo LED

Los diodos led son componentes electrónicos fabricados con materiales semiconductores que, al paso de la corriente eléctrica, emiten luz. El fundamento electrónico del proceso es el mismo que el de los diodos semiconductores convencionales empleados como rectificadores y que se explicará a continuación, prestando atención a las diferencias con los LED. En la práctica los LED se emplean como emisores de luz debido a su alto rendimiento. La emisión se conoce como luz fría por el escaso calentamiento que tiene un diodo LED al emitir luz. En su funcionamiento, los diodos están constituidos por dos capas de distintas propiedades eléctricas, una más positiva —' zona P'— y la otra más negativa —'zona N'— en contacto directo —zona de la 'unión PN'—. En concreto, la zona N se dopa con más electrones de los que existirían de forma natural y en la zona P se quitan electrones para crear 'huecos'. Al establecerse el contacto entre las dos porciones los electrones en exceso de la región N pasan a la región P y van ocupando los huecos en la zona de contacto. Al llenar un hueco se crea un ion negativo en la zona P y deja tras de sí un ion positivo en la zona N. Con ello se acumula en la zona de contacto una carga espacial, hasta llegar a un cierto equilibrio, creándose un campo eléctrico en la unión entre las dos capas que hace de barrera de potencial permanente en ausencia de un generador eléctrico y no permitiendo el paso de nuevos electrones de la región N a la P. La zona de la unión donde se ha acumulado la carga se llama región de depleción (del inglés depletion) o de agotamiento.[29]​ Externamente se puede modificar el campo eléctrico o barrera de potencial establecidos en una unión PN aplicando un generador eléctrico. Si el polo positivo se aplica a la zona N y el polo negativo a la zona P (lo que se conoce como polarización inversa) se contribuirá a incrementar la altura de la barrera de potencial y la corriente que circulará del polo positivo al polo negativo a través de la unión PN será muy débil. Por el contrario, si el polo positivo del generador se aplica a la región P y el negativo a la región N (lo que se conoce como polarización directa) se reducirá la altura de la barrera de potencial y la corriente podrá circular entre el polo + y el polo - a través de la unión PN. En un diodo LED si se polariza la unión PN directamente, haciendo positiva la región P en relación con la región N, se reduce la intensidad del campo disminuyendo entonces la barrera de potencial y permitiendo el desplazamiento de las cargas, el establecimiento de la corriente y la emisión de fotones. El fenómeno físico que tiene lugar en la unión PN al paso de la corriente en polarización directa consiste en una sucesión de recombinaciones electrón-hueco. El fenómeno de la recombinación viene acompañado de la emisión de algún tipo de energía. En los diodos ordinarios de Germanio o de Silicio se producen fonones o vibraciones de la estructura cristalina del semiconductor que contribuyen, simplemente, al calentamiento de este. En el caso de los diodos LED los materiales estructurales son diferentes de los anteriores tratándose, por ejemplo, de aleaciones varias de arseniuro de galio. En estos semiconductores, las recombinaciones que se desarrollan en las uniones PN eliminan el exceso de energía emitiendo fotones luminosos. El color de la luz emitida es característico de cada aleación concreta y depende de su frecuencia. En la actualidad se fabrican aleaciones que producen fotones luminosos de varios colores.

A partir de un valor de la tensión externa (que depende del tipo de material semiconductor), el LED comienza a emitir fotones, es la tensión de encendido  . Los portadores de la carga, electrones y huecos, pueden desplazarse a través de la unión cuando se aplican a los electrodos diferentes tensiones. Al ir elevando la tensión externa a la unión, el LED comienza a conducir; a partir de la tensión de encendido  , comienza a emitir fotones y a tensiones mayores, aumenta la intensidad de luz emitida. Este aumento de intensidad luminosa al aumentar la intensidad de la corriente puede verse disminuida por la recombinación Auger[30]​ .[31]​ Durante el proceso de recombinación, el electrón salta de la banda de conducción a la de valencia emitiendo un fotón y accediendo, por conservación de la energía, a un nivel más bajo de energía, por debajo del nivel de Fermi del material. El proceso de emisión se llama recombinación radiativa,[32]​ que corresponde al fenómeno de la emisión espontánea. Así, en cada recombinación radiativa electrón-hueco se emite un fotón de energía igual a la anchura en energías de la banda prohibida,   (ver la figura):

 

siendo c la velocidad de la luz y λ es la longitud de onda de la luz que emite. Esta descripción del fundamento de la emisión de radiación electromagnética por el diodo LED (hay LED que emiten también en el ultravioleta y en el infrarrojo) se puede apreciar en la figura donde se hace una representación esquemática de la unión PN del material semiconductor junto con el diagrama de energías, implicado en el proceso de recombinación y emisión de luz, en la parte baja del dibujo. La longitud de onda de la luz emitida, y por lo tanto su color, depende de la anchura de la banda prohibida de energía. En los diodos de silicio o de germanio, los electrones y los huecos se recombinan generando vibraciones de la red en forma de fonones y emitiendo radiación térmica. Es una transición no radiativa que, finalmente, produce el calentamiento del diodo en vez de emitir luz. Los substratos más importantes disponibles para su aplicación en emisión de luz son el GaAs y el InP. Los diodos LED pueden disminuir su eficiencia si sus picos de absorción y emisión espectral en función de su longitud de onda, están muy próximos, como ocurre con los LED de GaAs:Zn (dopado con Zinc) ya que parte de la luz que emiten, la absorben internamente.

Los materiales utilizados para los LED tienen una banda prohibida en polarización directa cuya anchura en energías varía desde la luz infrarroja, al visible o incluso cerca del ultravioleta. La evolución de los LED comenzó con dispositivos infrarrojos y rojos de arseniuro de galio.[33]​ Los avances de la ciencia de materiales han permitido fabricar dispositivos con longitudes de onda cada vez más cortas, emitiendo luz en una amplia gama de colores. Los LED se fabrican generalmente sobre un sustrato de tipo N, con un electrodo conectado a la capa de tipo p depositada en su superficie. Los sustratos de tipo P, aunque son menos comunes, también se fabrican.

Resultados experimentales

 
Curva característica de un diodo LED con sus zonas de polarización directa e inversa

Como se ha descrito en el fundamento, un LED requiere alcanzar una cierta tensión aplicada a sus bornes  , en polarización directa, para que emita luz. Esta tensión de encendido del LED,   es proporcional, en energías, a la anchura de la banda prohibida  :

 

siendo e la carga del electrón. Además, recordando la ec. (2),

 

En realidad, esta proporcionalidad en energías entre el gap   y la energía de «encendido»   y entre el gap y el cuanto de energía del fotón, es aproximada. Si bien dependiendo del material semiconductor del LED, la frecuencia de emisión está determinada, debido a que se utilizan diferentes materiales dopantes con un mismo substrato semiconductor, la energía asociada al salto del electrón desde la banda de conducción a la de valencia es algo menor.[34]​ Debido a la aproximación realizada, se incluye en la ecuación (3) una constante aditiva   que la hace más realista y permite un ajuste más adecuado a las medidas experimentales.

La tensión de «encendido» tiene una interpretación de interés a partir de la curva característica del LED como se explica a continuación. En el codo de la misma (ver ilustración) y en polarización directa, es precisamente, donde está localizada la tensión  , que es diferente de un LED a otro. Para tensiones menores a la tensión de encendido la corriente es muy débil y la tensión en bornes del LED no es suficiente para producir una emisión de fotones estadísticamente significativa. Para tensiones correspondientes al comienzo del codo de la curva y a una intensidad de corriente determinada, la misma para todos los LED considerados, es donde se considera el comienzo de la emisión de luz.

Así las ecuaciones (3) y (4) se convierten en

 

Para estimar la constante de Planck se utiliza la ecuación (5). Midiendo la tensión de encendido   de los diferentes LED en función su frecuencia de emisión   y realizando el ajuste por una recta según esta ecuación, se obtiene   como la pendiente de la misma, independientemente del valor de  .

Conviene elegir unas características adecuadas, accesibles comercialmente y comunes a los diferentes LED que se desean utilizar para las medidas, como por ejemplo, un diámetro de 5 mm, una luminosidad de unos 120 lúmenes o la potencia consumida del orden de 3w.[35]

Obtención de la longitud de onda de un LED

 
Familia de curvas de luminosidad del diodo LED RS-Rojo medido en el Departamento de Tecnología Fotónica y Bioingeniería de la ETSI de Telecomunicaciones (UPM)

Si bien las hojas técnicas de los fabricantes de los diodos LED[36]​ muestran los valores de las longitudes de onda emitidas,,[37][38]​ también se pueden medir en un laboratorio docente universitario.[39]​ Para ello se utiliza un analizador de espectros. En este caso, se mostrarán medidas realizadas con el analizador AQ-6315A / -6315B . La señal luminosa le llega al analizador a través de una fibra óptica. El origen de la fibra se sitúa frente al diodo LED y se emplaza mediante un 'posicionador de 3D'. La fibra se centra sobre el diodo con ayuda de la lectura de la corriente suministrada por un fotodetector de Si.

El analizador proporciona la potencia óptica captada por la fibra en función de λ y su resultado viene dado en dBm ( decibelios referidos a 1 mW ). La sensibilidad del analizador alcanza los -60 dBm. Para cada diodo hay que explorar y analizar en detalle la región de longitudes de onda emitidas.

El analizador de espectros permite determinar la diferente luminosidad de los diodos según sea el material de fabricación.

 
En la gráfica se muestra la diferente luminosidad de los diodos LED verdes según diferentes fabricantes. Medidas realizadas en el Departamento de Tecnología Fotónica y Bioingeniería de la ETSI de Telecomunicaciones (UPM)

Al aumentar la intensidad luminosa del Led aparece una dependencia de las curvas de luminosidad con la temperatura, desplazando el máximo de la curva a mayores longitudes de onda. Por ello conviene realizar las medidas aplicando al Led corrientes débiles, como en la figura, donde se muestran las curvas correspondientes a las corrientes más débiles de 10 mA. Los resultados medidos con el analizador de espectros se corresponden bien con los datos de los fabricantes.

Se puede observar en la figura, en el caso de un Led RS rojo, el efecto de la temperatura en el pequeño desplazamiento del máximo de la curva hacia mayores longitudes de onda cuando se aumenta la intensidad de la corriente a través del Led,.

En un breve análisis de la luminosidad para diodos Led de las mismas características de 5 mm de diámetro[35]​ y en torno a los 120 lúmenes , se puede observar el comportamiento en función de la corriente directa para diferentes colores. Para ello, se representan, en el eje horizontal, los valores de la longitud de onda y en el eje vertical, la potencia luminosa emitida normalizada. Las tres curvas que acompañan al texto corresponden a valores de la corriente directa de 10, 20 y 30 mA. A cada diodo Led se le ha asociado la longitud de onda correspondiente al máximo de la curva de luminosidad. De entre todos los diodos LED medidos se han seleccionado los siete que mostraban una mayor luminosidad y cubrían razonablemente el espectro óptico. Y en la siguiente figura, se puede apreciar comparando sus curvas de luminosidad, que los diodos D+ Verde y CO Verde presentan un buen comportamiento en cuanto a luminosidad y características de emisión, no siendo así para el RS Verde con peores características de emisión.



Trazado de las curvas características de los diodos LED. Determinación experimental de las tensiones de encendido

 
Esquema del circuito LED alimentado con tensión continua incrementada gradualmente hasta que el LED comienza a brillar
 
Curva característica midiendo con el LED Azul y el LED verde, ambos de CO utilizando el primer procediemiento(circuito de c.c.).
 
Resultados del segundo procedimiento (circuito de c. alterna) a) Curva característica del LED rojo, b) Representación temporal de la corriente a través del LED (I), y de la tensión de alimentación (V)
 
Comparación de ambos procedimientos, en continua y en alterna para el LED CO azul, midiendo con especial detalle en la zona del codo

Como se trata de obtener la Constante de Planck, es muy importante tener muy bien definida y medida la tensión de encendido (Vo) y prestar especial atención a las diferencias en las medidas realizadas con una alimentación con tensión continua, alterna o, incluso, utilizando una tensión en rampa. Para ver estas diferencias, se muestran dos procedimientos de medida de la tensión de encendido en el laboratorio, para los diodos Led utilizando diferentes colores. El primero, implementando el circuito de medida alimentado con una fuente de tensión continua y en el segundo, el circuito se alimenta con una f.e.m. alterna. En ambos casos se obtienen las curvas características de los diodos Led, I = I (V), prestando un cuidado especial para la mejor identificación de la tensión en el codo de la curva. Conviene observar que precisamente esta es la parte no lineal de la curva característica del diodo. En un diodo ideal,[40]​ esta zona se simplifica limitándose a un vértice, donde cambia la pendiente entre dos zonas lineales. Para la medida de la Constante es, en cambio, muy importante la zona del codo de la curva.

En la animación se puede apreciar el esquema eléctrico simplificado que se utiliza para la determinación de la curva característica de los diodos LED en corriente continua, punto a punto, para los valores (corriente I – tensión V). Para realizarla se va aumentando paulatinamente la tensión V del generador midiendo en cada incremento la tensión en bornes del diodo V y la intensidad de corriente I, que lo atraviesa. Para obtener la citada curva, cuando el circuito está alimentado con un generador de tensión continua, se representan para cada LED los valores , I= I (V), obtenidos punto a punto, midiendo con especial detalle los valores I-V en la zona del codo de la curva, como se puede apreciar en la figura de la curva característica para los diodos CO verde y CO azul.

Invirtiendo la polaridad del generador se obtiene la rama de la curva característica correspondiente a la zona de tensiones negativas. La intensidad de corriente en esta zona es, como se puede apreciar en la curva para el Led RS rojo, muy débil. Con el segundo procedimiento el circuito de medida es, básicamente, el de la animación pero sustituyendo la fuente de continua por una f.e.m. de alterna que permite verificar la función rectificadora del diodo en polarización inversa. Al ser la fuente de alimentación periódica se puede usar un osciloscopio o una tarjeta de adquisición de datos para almacenar con gran detalle la curva característica ya que, por ejemplo, en un intervalo de 1 ms se almacenan 10 periodos de una señal de 10 kHz de frecuencia. Por este procedimiento se pueden registrar la serie de medidas (corriente I, tensión V) con, por ejemplo, la tarjeta de adquisición de datos Picoscope 6.[41]​ Como resultado de estas medidas se muestra para el LED RS Rojo, una curva característica I= I (V), parte a) y a la derecha, parte b) la evolución temporal de ambas de la corriente y la tensión de alimentación, observando la rectificación de la corriente que produce el diodo Led.

Para completar los procedimientos de medida y analizar la influencia de otros generadores de onda, conviene medir la curva característica de los diodos LED sustituyendo el generador c.c. por un generador de onda triangular y un generador de onda sinusoidal. En estos dos casos se obtiene el trazado completo de la curva característica se puede utilizar una tarjeta de adquisición de datos, o bien, un osciloscopio digital con el que también se recopilan las medidas con gran precisión. Tanto la onda triangular como la onda sinusoidal, en las mismas condiciones de medida, dan un comportamiento muy similar en la zona del codo.

Con la intención de obtener una mayor precisión en la determinación de la tensión de encendido ( Vo ) es interesante comparar las medidas del primer procedimiento en c.c., con las del segundo, en c.a. en la zona del codo. Dicha comparación se puede observar en la figura para el LED CO azul. En esta zona donde la corriente que atraviesa el LED es débil, en el rango de 0,02 a 0,1 mA, la coincidencia de los dos tipos de medidas es muy buena y nos permite precisar el 'el despegue' de la curva en el momento de 'encendido' del LED.

En la tabla que sigue figuran los valores de λ medidos en el laboratorio docente y los valores de la tensión de encendido deducida comparando las medidas que se obtienen corriente alterna y con las correspondientes en continua, explicado en esta sección.

'Valores experimentales obtenidos para las longitudes de onda y para las tensiones de encendido para siete LED de diferentes longitudes de onda'.

Color Long. onda λ (nm) Tensión de encendido Vo (V)
RS Violeta 425 2,95
CO Azul 470 2,55
D+LED Verde 525 2,35
CO Verde 529 2,37
RS Ambar 610 1,67
RS Rojo 643 1,75
RS Infrarrojo 887 1,19

Obtención de la constante de Planck a partir de la frecuencia y la tensión umbral

En la tabla siguiente se han resumido los valores experimentales necesarios para determinar la constante de Planck por un procedimiento de laboratorio universitario. En la primera columna figuran los diodos LED empleados, en la segunda columna aparece la frecuencia característica de emisión de cada uno de ellos y en la tercera la anchura de la banda prohibida determinada experimentalmente, expresada en unidades de energía. En la cuarta columna se muestra una estimación de la constante de Planck calculada a partir de los valores medidos para cada diodo LED.

Color Frecuencia f=c/λ (Hz) E=qVo=hf (J) <h>
RS Violeta 7,44×1014 4,47×10-19 (6,79 ± 0,06)
× 10-34 J. s


R2 = 0,953
CO Azul 6,41×1014 3,99×10-19
D+LED Verde 5,81×1014 3,81×10-19
CO Verde 5,75×1014 3,77×10-19
RS Ambar 4,96×1014 2,74×10-19
RS Rojo 4,70×1014 2,72×10-19
RS Infrarrojo 3,37×1014 1,89×10-19

El valor definitivo de la constante de Planck se determina representando los siete puntos experimentales  ,y ajustándolos a una recta. La pendiente de la recta ajustada constituye una buena estimación de la constante de Planck.

Para completar el la determinación, se representan los siete puntos resultado de las medidas, de coordenadas  . En la misma la gráfica aparece la recta correspondiente al ajuste realizado, ecuación (5), según explicación dada al comienzo de la sección. El resultado del ajuste proporciona un valor de

 

Este resultado, si bien es una estimación de la constante ya que aprecia solo la primera cifra significativa, resulta adecuado teniendo en cuenta la sencillez del método utilizado para obtenerla. Este procedimiento de medida se utiliza también a modo de introducción en la mecánica cuántica para estudiantes de ciencias e ingeniería. De los muy diversos trabajos existentes en laboratorios docentes universitarios y a modo de comparación, se incluyen tres referencias que utilizan este método para obtener la Constante de Planck: Una de la Universidad de Pensilvania,[42]​ otra del Cornell Center for Material Resarch[43]​ y finalmente una referencia de la Universidad de Buenos Aires.[44]​ En esta última referencia se compara el valor obtenido para la constante de Planck con el obtenido por otros dos métodos en los que consideran el modelo de Shockley para el diodo y que, sin embargo, no obtienen una mejor estimación.

 
Representación gráfica de la obtención experimental de la constante de Planck realizada por alumnos de la UPM
 
Animación ilustrativa de la iluminación sucesiva de diversos diodos LED

Véase también

Referencias

  1. «BIPM - Unit of mass (kilogram)». www.bipm.org. Consultado el 21 de octubre de 2020. 
  2. Planck, Max (1901). Annalen der Physik IV, Folge 4 (PDF) (en alemán). 
  3. Manuel Cardona, et al. (2008). . Il Nuovo Saggiatore 24 (5-6): 39-54. Archivado desde el original el 3 de diciembre de 2013. Consultado el 29 de junio de 2013. 
  4. Olalla Linares, Carlos (2006). Sevilla Arroyo, Florencio, ed. Planck: La fuerza del deber. Madrid: Nivola, Tres Cantos. ISBN 978-84-96566-15-6. 
  5. Robitaille, Pierre (Ogosto de 2009). . Progress in Physics: 3-13. 
  6. «Atomic emission Spectroscopy» |url= incorrecta con autorreferencia (ayuda). english Wikipedia. 
  7. M. Olmo, R. Nave. «Espectro atómico». HyperPhysics, Georgia State University. 
  8. M. Olmo, R. Nave. «Ley de Dulong y Petit». HyperPhysics, Georgia State University. 
  9. I. Ermolli et al. (17 de abril de 2013). «Recent variability of the solar spectral irradiance and its impact on climate modelling». Atmos. Chem. Phys. (en inglés) 13: 3945-3977. Consultado el 23 de octubre de 2013. 
  10. Rod Nave. (en inglés). HyperPhysics, Georgia State University. Archivado desde el original el 6 de noviembre de 2006. Consultado el 16 de octubre de 2013. 
  11. Rod Nave. (en inglés). HyperPhysics, Georgia State University. Archivado desde el original el 6 de noviembre de 2006. Consultado el 16 de octubre de 2013. 
  12. Kuhn, T. S. (1980). La Teoría del Cuerpo Negro y la Discontinuidad Cuántica, 1894-1912. Madrid: Editorial Alianza Universidad AU262. 
  13. (en inglés). Archivado desde el original el 24 de diciembre de 2012. Consultado el 29 de junio de 2013. 
  14. «The Photoelectric Effect» (en inglés). Consultado el 29 de junio de 2013. 
  15. T. P. Purdy, R. W. Peterson, C. A. Regal (2013). «Observation of Radiation Pressure Shot Noise on a Macroscopic Object». Science 15: 339. 
  16. . Archivado desde el original el 21 de junio de 2009. 
  17. . Archivado desde el original el 12 de noviembre de 2013. Consultado el 12 de noviembre de 2013. 
  18. Emule, Francis (15 de febrero de 2013). Demuestran el principio de indeterminación de Heisenberg en la medida óptica de la posición de un objeto macroscópico. 
  19. D. F. Walls (1983). «Squeezed states of light». Nature 306: 141. 
  20. J. B. Hertzberg, T. Rocheleau, T. Ndukum, M. Savva, A. A. Clerk & K. C. Schwab (diciembre de 2009). «Back-action-evading measurements of nanomechanical motion». Nature Physics. 
  21. Klaus von Kltizing. «25 Years of Quantum Hall Effect». 
  22. Malo Cadoret, Estefania de Mirandes,Pierre Clade, Saida Guiellati-Khelifa, François Nez, François Biraben. «Measurement of the ratio h/mRb and determination of the fine-structure constant». 
  23. Petley BW, Kibble BP, Hartland A (18 de junio de 1987). «A measurement of the Planck constant». Nature 327: 605-6. doi:10.1038/327605a0. 
  24. Williams ER, et al. (21 de septiembre de 1998). «Accurate Measurement of the Planck Constant». Physical Review Letters 81 (12): 2404-7. doi:10.1103/PhysRevLett.81.2404. 
  25. (en inglés). Archivado desde el original el 1 de julio de 2013. Consultado el 30 de junio de 2013. 
  26. Max Planck. . Archivado desde el original el 22 de junio de 2013. 
  27. B Jeckelmann y B Jeanneret (2001). . . Archivado desde el original el 17 de diciembre de 2013. Consultado el 29 de junio de 2013. 
  28. «The NIST Reference on Constants, Units, and Uncertainty». Consultado el 15 de agosto de 2021. 
  29. M. Olmo and R. Nave. «union p-n» (en inglés). HyperPhysics, Georgia State University. Consultado el 10 de octubre de 2013. 
  30. J. Iveland et al. (19 de abril de 2013). «disminución de la eficiencia de los led debido al efecto Auger» (en inglés). Material Department University od California. Consultado el 10 de octubre de 2013. 
  31. Christiana Honsberg and Stuart Bowden. «tipos de recombinación» (en inglés). PV Education.org. Consultado el 10 de octubre de 2013. 
  32. (en inglés). Archivado desde el original el 28 de septiembre de 2013. Consultado el 29 de junio de 2013. 
  33. In Pursuit of the Ultimate Lamp (2001). «M. George Craford, N. Holonyak,Jr. and F.A. Kish, Jr.». Science 15: 62-67. 
  34. F. Schubert (2006). Light Emitting Diodes,. Ed. Cambridge University Press. p. 203. 
  35. «Uso de los LED en iluminación». 25 de abril de 2007. Consultado el 7 de octubre de 2013. 
  36. D+LED España Proveedor de componentes electrónicos
  37. CONECTROL, S.A. Proveedor de componentes electrónicos
  38. RS España Proveedor de componentes electrónicos
  39. . Archivado desde el original el 26 de marzo de 2013. 
  40. «Modelos equivalentes lineales aproximados del diodo». Consultado el 7 de octubre de 2013. 
  41. PicoTech Proveedor de aparatos de medida electrónicos
  42. Prof. Kevin Range. Measuring Planck's constant with LEDs. Lock Haven University. 
  43. Karen Daniels and Erika Merschrod (Junio de 2000). Rainbow Connection. Cornell Center for Materials Research. 
  44. Carla Romano y Cecilia López (marzo de 2001). Medición de la constante de Planck utilizando LED. Universidad de Buenos Aires. 

Bibliografía

  • Planck, Max (1914). M. P. Blakiston's Sons & Co. Proyecto Gutenberg, ed. The Theory of Heat Radiation (en inglés). Traducido por Morton Masius. Consultado el 8 de octubre de 2013. 
  • Morehead, Frederick F. (mayo de 1967). «Light-emitting semiconductors». Scientific American (en inglés) 216 (5): 108-122. 
  • Eisberg, Robert; Resnick, Robert (1994). Física Cuántica. Átomos, Moléculas, Sólidos, Núcleos y Partículas. México: Limusa. ISBN 9681804198. 
  • Sánchez del Río, Carlos (1997). Física Cuántica. Pirámide. 
  • Alonso, Marcelo; Finn, Edward J. (1998). Rev. y Aum., ed. Física. II, Campos y Ondas. Alhambra Mexicana. ISBN 9789684442245. 
  • Sedra, Adel (2006). Circuitos Microelectrónicos (5ª edición). McGraw-Hill/Interamericana de México. ISBN 9789701054727. 
  • Schubert, Fred (2006). Light Emitting Diodes (en inglés). Cambridge University Press. ISBN 9780521865388. 
  • Tipler, Paul Allen; Mosca, Gene (2010). Física para la ciencia y la tecnología II (6ª edición). Barcelona: Reverté. 

Enlaces externos

  • CODATA 2014 Valores recomendados para Las Constantes Físicas Fundamentales
  •   Datos: Q122894

constante, planck, valor, unidades6, svalor, barra, unidades1, svalor, unidades1, μmvalor, barra, unidades3, 9804, μmla, constante, planck, constante, física, desempeña, papel, central, teoría, mecánica, cuántica, recibe, nombre, descubridor, físico, matemátic. Valor de h Unidades6 626 070 15 10 34 J s 1 4 135 667 696 10 15 eV sValor de ħ h barra Unidades1 054 571 817 10 34 J s6 582 119 569 10 16 eV sValor de hc Unidades1 986 445 86 10 25 J m1 239 841 93 eV mmValor de ħc h barra Unidades3 161 526 49 10 26 J m0 197 326 9804 eV mmLa constante de Planck es una constante fisica que desempena un papel central en la teoria de la mecanica cuantica y recibe su nombre de su descubridor el fisico y matematico aleman Max Planck uno de los padres de dicha teoria Denotada como h displaystyle h es la constante que frecuentemente se define como el cuanto elemental de accion Planck la denominaria precisamente cuanto de accion en aleman Wirkungsquantum debido a que la cantidad denominada accion de un proceso fisico el producto de la energia implicada y el tiempo empleado solo podia tomar valores discretos es decir multiplos enteros de h displaystyle h Placa en la Universidad Humboldt de Berlin que reza En este edificio enseno MAX PLANCK el descubridor del cuanto de accion h de 1889 a 1928 Fue inicialmente propuesta como la constante de proporcionalidad entre la energia E displaystyle E de un foton y la frecuencia f displaystyle f de su onda electromagnetica asociada Esta relacion entre la energia y la frecuencia se denomina relacion de Planck Einstein E h f displaystyle E hf Dado que la frecuencia f displaystyle f la longitud de onda l displaystyle lambda y la velocidad de la luz c displaystyle c cumplen l f c displaystyle lambda f c la relacion de Planck Einstein se puede expresar como E h c l displaystyle E frac hc lambda Otra ecuacion fundamental en la que interviene la constante de Planck es la que relaciona el momento lineal p displaystyle p de una particula con la longitud de onda de De Broglie l de la misma l h p displaystyle lambda frac h p En aplicaciones donde la frecuencia viene expresada en terminos de radianes por segundo o frecuencia angular es util incluir el factor 1 2 p displaystyle frac 1 2 pi dentro de la constante de Planck La constante resultante constante de Planck reducida o constante de Dirac se expresa como ħ h barra ℏ h 2 p displaystyle hbar frac h 2 pi De esta forma la energia de un foton con frecuencia angular w displaystyle omega donde w 2 p f displaystyle omega 2 pi f se podra expresar como E ℏ w displaystyle E hbar omega Por otro lado la constante de Planck reducida es el cuanto del momento angular en mecanica cuantica Los valores que puede tomar el momento angular orbital de spin o total son multiplos enteros o semienteros de la constante reducida Asi si J displaystyle J es el momento angular total de un sistema con invariancia rotacional y J z displaystyle J z es el momento angular del sistema medido sobre una direccion cualquiera por ejemplo la del eje z estas cantidades solo pueden tomar los valores J 2 j j 1 ℏ 2 j 0 1 2 1 3 2 J z m ℏ m j j 1 j displaystyle begin matrix J 2 j j 1 hbar 2 amp j 0 1 2 1 3 2 ldots J z m hbar qquad quad amp m j j 1 ldots j end matrix Unicode reserva los codigos U 210E h para la constante de Planck y U 210F h con barra para la constante de Dirac Indice 1 Origen de la constante 1 1 Historia 1 2 Orden de magnitud de la constante 2 La radiacion del cuerpo negro 2 1 Definicion de cuerpo negro 2 2 Ideas previas 2 3 Ley de Planck para la emision del cuerpo negro 2 4 Verificacion ley de Rayleigh Jeans 3 El efecto fotoelectrico 4 Modelos atomicos el modelo atomico de Bohr 4 1 Primer postulado 4 2 Segundo postulado 4 3 Tercer postulado 5 Principio de incertidumbre de Heisenberg 5 1 Introduccion 5 2 Aplicacion del principio de incertidumbre 5 3 Aplicacion macroscopica del principio de incertidumbre 5 3 1 Nueva comprension en la fisica 6 Medidas experimentales de la constante de Planck 6 1 Determinacion actual de la constante 6 2 La constante en la definicion de las unidades del SI 6 3 La estimacion de la constante de Planck con diodos LED en el laboratorio universitario 6 3 1 Fundamento fisico 6 3 2 Resultados experimentales 6 3 3 Obtencion de la longitud de onda de un LED 6 3 4 Trazado de las curvas caracteristicas de los diodos LED Determinacion experimental de las tensiones de encendido 6 3 5 Obtencion de la constante de Planck a partir de la frecuencia y la tension umbral 7 Vease tambien 8 Referencias 9 Bibliografia 10 Enlaces externosOrigen de la constante EditarHistoria Editar El camino que llevo a Max Planck a su constante tuvo su origen en un proyecto que comenzo con un cuarto de siglo de anterioridad la teoria sobre la ley de distribucion de energia del espectro normal 2 En el estudiaba la radiacion termica emitida por un cuerpo debido a su temperatura En esta teoria se introdujo en 1862 el concepto de cuerpo negro cuya superficie absorbe toda la radiacion termica que incide sobre el y que ademas emite la radiacion termica con el mismo espectro a la misma temperatura Sin embargo un estudio experimental del cuerpo negro condujo a una discrepancia entre los resultados experimentales y los obtenidos aplicando las leyes de la Fisica clasica Segun la ley de Stefan Boltzmann la radiancia espectral de los cuerpos aumenta rapidamente con la cuarta potencia de la temperatura y ademas se desplaza hacia frecuencias mayores ley de desplazamiento de Wien El problema surgio al calcular la energia absorbida por el cuerpo negro a una temperatura dada mediante el teorema de la equiparticion de energia pues a medida que la frecuencia crecia la prediccion teorica tendia a infinito mientras que los experimentos mostraban que la densidad de energia siempre es finita y tiende a cero para frecuencias muy altas Este comportamiento irreal de las teorias clasicas a las altas frecuencias es conocido como catastrofe ultravioleta Planck estaba interesado en dar sentido a este dilema para lograrlo decidio considerar la energia absorbida y emitida por el cuerpo negro en forma de paquetes discretos Al realizar los calculos de acuerdo con este procedimiento y mediante un trabajo numerico obtuvo una buena concordancia entre los resultados experimentales y los teoricos introduciendo una constante que posteriormente fue conocida como la constante de Planck h El trabajo de Planck supuso el comienzo de la mecanica cuantica MC lo que llevo consigo un cambio de mentalidad en la manera de comprender los fenomenos de la naturaleza a escala atomica 3 4 El siguiente paso vino de la mano de Albert Einstein que de manera analoga a Planck planteo la absorcion de luz por un metal de forma discreta a cuantos y su correspondiente emision de electrones en el efecto fotoelectrico Otro paso dado a comienzos del siglo XX fue el obtenido con el modelo del atomo de Bohr y sus postulados revolucionando el concepto del atomo en el interviene este nuevo concepto de la emision y absorcion de la luz por la materia de manera discreta Por ultimo tambien hay una relacion de la teoria de Planck y su constante con el principio de indeterminacion de Heisenberg Orden de magnitud de la constante Editar Cuando se expresa el valor de la constante de Planck en unidades del SI el valor resultante es muy pequeno aproximadamente 6 63 x 10 34 J s lo cual indica que no parece aplicable a una escala adaptada a humanos donde los valores habituales son metros kg o segundos La constante de Planck se aplica en fisica cuando se trabaja a escala atomica por ejemplo a la hora de calcular la energia de un foton del espectro visible en el verde con una frecuencia de 5 77 x 1014 Hz cada foton de esta frecuencia tiene una energia de h f 3 82x 10 19 J Para aplicar la constante de Planck a nivel macroscopico habria que hacerlo con cantidades de fotones propias de nuestra escala En este caso se puede comparar por ejemplo con un mol de fotones NA 6 02x1023 molec mol Si aplicamos la constante de Planck no a un foton sino a una cantidad hipotetica de un mol de fotones la energia resultante es del orden de 230 kJ mol que ya es una medida tipica en la vida cotidiana lo cual hace patente las diferentes escalas en las que se puede valorar la naturaleza la atomica del orden de por ejemplo la constante de Planck la humana aplicando las unidades basicas del SI o la del universo del orden de por ejemplo la velocidad de la luz que permite medir distancias en anos luz La radiacion del cuerpo negro Editar Figura animada que representa un rayo de luz incidiendo sobre un cuerpo negro hasta su total absorcion Definicion de cuerpo negro Editar Articulo principal Cuerpo negro El nombre cuerpo negro fue introducido por Gustav Kirchhoff en 1862 y su idea deriva de la siguiente observacion toda la materia emite radiacion electromagnetica cuando se encuentra a una temperatura por encima del cero absoluto La radiacion electromagnetica emitida por un cuerpo a una temperatura dada es un proceso espontaneo y procede de una conversion de su energia termica en energia electromagnetica Tambien sucede a la inversa toda la materia absorbe radiacion electromagnetica de su entorno en funcion de su temperatura Un objeto que absorba toda la radiacion que incide sobre el a todas las frecuencias se denomina cuerpo negro Cuando un cuerpo negro posee una temperatura uniforme la radiacion que emite presenta una distribucion en funcion de la frecuencia o de la longitud de onda relacionada inversamente con esta que es caracteristica y que depende de su temperatura La superficie de una estrella como nuestro Sol tiene una temperatura de 5800 Kelvin y emite radiacion con un maximo que se encuentra sobre los 500 nm luz visible En cambio el cuerpo humano cuya temperatura media es muy inferior esta en torno a los 37 grados Celsius y emite por tanto su maximo a mayores longitudes de onda en torno a los 10 micrometros que corresponde al infrarrojo Esta radiacion es la que se conoce como radiacion del cuerpo negro El concepto de cuerpo negro es una idealizacion ya que un cuerpo negro perfecto no existe en la naturaleza 5 Por cuerpo negro ideal se considera aquel que absorbe toda la radiacion que le llega sin reflejarla de tal forma que solo emite la correspondiente a su temperatura Ideas previas Editar En la grafica se representa la intensidad de la radiacion emitida por el cuerpo negro en funcion de la longitud de onda a diferentes temperaturas El maximo de la curva aumenta al ir hacia menores longitudes de onda ley de Wien Se compara con el modelo clasico de Rayleigh Jeans a altas temperaturas 5000 K comprobandose la llamada catastrofe del ultravioleta A finales del siglo XIX la fisica clasica podia proporcionar explicaciones de la mayoria de fenomenos observados Sin embargo algunos fisicos se percataron de ciertos desajustes relativos a los espectros de emision y absorcion atomicos 6 en el rango de las longitudes de onda situadas en el espectro visible o en la disminucion con la temperatura del calor molar de los solidos que no explicaba la ley de Dulong y Petit 7 8 El mayor desajuste de la teoria clasica se conoce como la catastrofe del ultravioleta o de Rayleigh Jeans y esta relacionado con la emision de radiacion por los cuerpos en equilibrio termico a una temperatura dada De acuerdo con la ley que enunciaron Rayleigh y Jeans la densidad de energia emitida por un cuerpo negro para cada frecuencia y temperatura era proporcional al cuadrado de la frecuencia lo que implicaba que cuanto mayor era la frecuencia mayor debia ser la cantidad de energia suministrada por el cuerpo Por lo tanto la contribucion mas importante a la densidad de energia de la emision de radiacion del cuerpo negro corresponde a la radiacion de menor longitud de onda mayor frecuencia que en el limite del visible corresponde a la radiacion ultravioleta Sin embargo las medidas experimentales demuestran lo contrario 9 es decir que la emision de la radiacion disminuye al disminuir la longitud de onda al aumentar la frecuencia tendiendo a cero en la region del ultravioleta 10 Ademas si se calcula la energia total emitida por el cuerpo negro para todas las longitudes de onda a una temperatura elevada como la de una estrella la ley clasica daria una energia infinita una estrella no emite una radiacion infinita y este resultado viola la ley de conservacion de la energia poniendo asi en tela de juicio la ley clasica o ley de Rayleigh Jeans 11 Fue Max Planck quien propuso la ley que lleva su nombre y que mediante la idea de emision y absorcion de la luz por la materia en forma discreta a cuantos de energia h f resuelve el problema de la emision y absorcion de la radiacion por los cuerpos en equilibrio termico a una temperatura dada Esta manera de abordar el problema de la emision y la absorcion de la energia electromagnetica creo una nueva concepcion del mundo fisico 12 A finales del siglo XIX y comienzos del siglo XX era virtualmente imposible darse cuenta de que la raiz de los inconvenientes que presentaba la interpretacion de algunos fenomenos fisicos estaba en la hipotesis de que la energia era continua Este cambio de mentalidad que supone la emision y absorcion de la luz por los cuerpos en forma de cuantos de energia lo pondria tambien de manifiesto Einstein en 1905 con la explicacion del efecto fotoelectrico Ley de Planck para la emision del cuerpo negro Editar Ley de Planck a diferentes temperaturas en funcion de la frecuencia para la radiacion del cuerpo negro La ley de Planck establece que la energia electromagnetica absorbida o emitida por un cuerpo negro se realiza por medio de intercambio de cuantos de energia electromagnetica hf de acuerdo con la siguiente expresion I f T 2 f 2 c 2 h f e h f k T 1 displaystyle I f T frac 2f 2 c 2 frac hf e hf kT 1 qquad donde I f T es la energia por unidad de tiempo o la potencia por unidad de area de la superficie que emite en la direccion normal por unidad de angulo solido y por unidad de frecuencia radiada por un cuerpo negro a la temperatura T h es la constante de Planck c es la velocidad de la luz en el vacio k es la constante de Boltzmann f es la frecuencia de la radiacion electromagnetica y T es la temperatura del cuerpo en Kelvin Se puede apreciar como aparece reflejado en el termino exponencial de esta funcion de distribucion I f T displaystyle I f T el cuanto de energia hf La ley de Planck se comporta correctamente en mediciones experimentales de astrofisica y mas directamente relacionadas con la Tierra en aquellas aplicaciones donde intervenga el espectro solar para todo el margen de frecuencias del espectro electromagnetico 9 A los pocos anos el exito de su teoria cuantica para la correcta interpretacion de la entropia y del tercer principio de la termodinamica asi como las ideas de Einstein sobre la teoria cuantica de la radiacion reafirmaron a Planck en la certeza de su teoria Verificacion ley de Rayleigh Jeans Editar En el limite clasico de bajas frecuencias la ley de Planck coincide con la ley de Rayleigh Jeans I f T 2 f 2 c 2 h f e h f k T 1 2 f 2 c 2 h f 1 h f k T 1 2 f 2 c 2 k T displaystyle I f T frac 2f 2 c 2 frac hf e hf kT 1 frac 2f 2 c 2 frac hf 1 frac hf kT 1 approx frac 2f 2 c 2 kT qquad Para frecuencias intermedias y altas sin embargo difieren Es mas al aumentar la frecuencia f la segunda crece indefinidamente mientras que la primera tiende a cero El efecto fotoelectrico Editar Esquema del efecto fotoelectrico Interaccion de los fotones sobre una lamina metalica A consecuencia de la interaccion se liberan algunos electrones Articulo principal Efecto fotoelectrico En 1887 Heinrich Rudolf Hertz descubrio que una descarga electrica entre dos electrodos ocurria mas facilmente cuando sobre uno de ellos incidia luz ultravioleta Posteriormente Philipp Lenard demostro que la luz ultravioleta facilita la descarga electrica ya que provoca la emision de electrones desde la superficie del catodo Sin embargo a Albert Einstein le valio este experimento para contradecir algunos aspectos de la teoria electromagnetica clasica 13 14 y su correcta interpretacion le valio el premio Nobel de 1921 El efecto fotoelectrico ha sido uno de los ejemplos mas interesantes para ilustrar la naturaleza corpuscular de la luz llevando al desarrollo de la mecanica cuantica durante el siglo XX Cuando la luz de determinada longitud de onda incide sobre la superficie de un metal este emite un flujo de electrones En la epoca en la que se realizo este descubrimiento la teoria ondulatoria de la luz era el unico modelo disponible Segun esta el numero de electrones emitidos debia aumentar proporcionalmente a la intensidad de la luz ademas deberia existir un margen de tiempo entre la incidencia de los fotones y la emision de los electrones Al proceder a la experimentacion ninguna de estas condiciones resultaron ser ciertas La intensidad luminosa no afecta a la emision de los electrones pero si a la frecuencia ya que el efecto fotoelectrico solo se produce para ciertos valores de esta y el margen de tiempo es irrelevante La teoria ondulatoria por tanto no resulta valida a la hora de explicar el efecto fotoelectrico Para justificar el fenomeno Einstein empleo una idea propuesta por Max Planck en 1900 para explicar una paradoja similar surgida a la hora de interpretar la radiacion del cuerpo negro Planck considero la luz como una serie de paquetes discretos a los que denomino cuantos en lugar de considerarla como una onda Utilizando esta teoria Einstein determino que la energia de los cuantos particulas que llamamos fotones esta relacionada con la frecuencia de la onda luminosa mediante la expresion E h f displaystyle E hf Donde E displaystyle E es la energia cinetica del foton f displaystyle f su frecuencia y h displaystyle h la constante de Planck 6 63 10 34 J s displaystyle 6 63 10 34 J s Una vez establecida la energia del foton el efecto fotoelectrico se convierte en un caso simple de aplicacion del principio de conservacion de la energia Cuando la luz incide sobre una superficie esta aportando una cierta energia E displaystyle E en particular a los electrones de la superficie Existe un valor concreto de energia necesario para despegar el electron llamado energia umbral y tambien funcion de trabajo F u displaystyle Phi u El exceso de energia por encima de F u displaystyle Phi u aparecera en forma de energia cinetica del electron E c displaystyle E c el cual adquirira la velocidad que corresponda a la citada energia cinetica E f o t o n F u E c e l e c t r o n displaystyle E foton Phi u E c electron Existen varios procedimientos para verificar esta ecuacion Uno consiste en medir las diferencias de potencial entre los electrodos de una celula fotoelectrica con un voltimetro al iluminar la celula con luz monocromatica de diversas longitudes de onda Como consecuencia se crearan distintas diferencias de potencial V displaystyle V entre los electrodos y aparecera un paso de corriente producida por los electrones arrancados del catodo Una variacion de este experimento consistiria en conectar la celula a una bateria con las polaridades invertidas y ajustar el valor de la misma hasta que la corriente de la celula descendiera a cero lo que significaria que el campo opuesto creado es capaz de evitar que los electrones se desprendan de la superficie metalica Ambos metodos deben verificar el principio de conservacion de la energia y por tanto deben cumplir que la energia cinetica de los electrones emitidos procede de la diferencia de potencial V displaystyle V existente entre los electrodos de la fotocelula en el primer caso y en el segundo representa el potencial V displaystyle V opuesto que se aplica y que anula la corriente establecida Por ello la ecuacion se puede escribir de la siguiente manera q V h f F u displaystyle qV hf Phi u Donde q displaystyle q es la carga del electron y V displaystyle V el potencial de frenado La solucion que Einstein propuso al problema del efecto fotoelectrico resuelve por completo las contrariedades del modelo ondulatorio Al tratar la luz como cuantos se puede comprender que la intensidad de la luz no afecta a la energia del electron sino a la cantidad de electrones que se emiten todos ellos con la misma energia la cual depende de la frecuencia Por la misma razon este efecto no se aprecia para todas las frecuencias sino solo cuando el foton tiene la suficiente energia para superar la energia umbral Por ultimo no existen motivos para que exista un margen de tiempo para apreciar el efecto ya que el electron se desprende tan pronto como el foton impacta la superficie Este hecho constituye una prueba definitiva de la naturaleza corpuscular de la luz Modelos atomicos el modelo atomico de Bohr EditarNiels Bohr fue un fisico danes que contribuyo a la comprension de la estructura del atomo y de la mecanica cuantica Basandose en las teorias de Ernest Rutherford publico su modelo atomico en 1913 en el que introdujo la teoria de las orbitas cuantizadas y en 1922 recibio el Premio Nobel de Fisica por sus trabajos sobre la estructura atomica y la radiacion Numerosos fisicos basandose en este principio concluyeron que la luz presentaba una dualidad onda particula En la fisica atomica el modelo atomico de Bohr presenta el atomo como un pequeno nucleo cargado positivamente rodeado por electrones que se mueven alrededor del nucleo en orbitas circulares similar en estructura al sistema solar pero con una atraccion producida por fuerzas electrostaticas en lugar de gravitatorias Supuso una mejora con respecto al anterior modelo de Thomson o el modelo de Rutherford Dado que el modelo de Bohr es una modificacion del modelo de Rutherford basada en la fisica cuantica distintas fuentes combinan los dos y hablan del modelo de Rutherford Bohr cita requerida La clave para el exito del modelo radica en explicar la formula de Rydberg para las lineas de emision espectrales del hidrogeno atomico La formula de Rydberg funcionaba experimentalmente pero no se pudo justificar teoricamente hasta que Bohr introdujo su modelo Este no solo explica la razon de la estructura de la formula de Rydberg sino que tambien proporciona una justificacion de sus resultados empiricos en terminos de constantes fisicas fundamentales En comparacion con la teoria del modelo actual el de Bohr es un modelo primitivo del atomo de hidrogeno pero debido a su simplicidad y a sus resultados correctos en la interpretacion de algunos sistemas concretos el modelo de Bohr aparece siempre en las introducciones a la mecanica cuantica cita requerida Los aportes de Bohr a su modelo del atomo se encierran en el segundo y tercer postulados En el segundo establece la condicion de cuantizacion de las orbitas de los electrones en el atomo y en el tercero introduce la hipotesis de que la energia de un electron en el atomo solamente puede intercambiarla con el entorno en pequenas cantidades multiplo de la constante de Planck pasando de una orbita a otra segun la condicion del segundo postulado El tercer postulado impide entre otras cosas que el electron en su movimiento alrededor del nucleo pierda energia de manera continua y salga despedido hacia el nucleo como predecia la teoria clasica Primer postulado Editar Los electrones se mueven en ciertas orbitas circulares permitidas alrededor del nucleo sin emitir energia En el atomo no hay emision de radiacion electromagnetica mientras el electron permanece en su orbita La causa de que el electron no radie energia es un postulado ya que segun la electrodinamica clasica una carga en movimiento acelerado como es el movimiento de rotacion debe emitir energia en forma de radiacion orbita de un electron alrededor del atomo de hidrogeno Para obtener la energia del electron en una orbita dada en funcion de su radio Bohr presupone orbitas circulares y utiliza el siguiente razonamiento el movimiento de rotacion del electron se mantiene por la accion de la fuerza de Coulomb atractiva debida a la presencia del nucleo positivo Dicha fuerza es precisamente la fuerza centripeta necesaria para mantener al electron en su orbita circular Esto conduce a la siguiente expresion k Z e 2 r 2 m e v 2 r displaystyle k Ze 2 over r 2 m e v 2 over r Donde el primer termino es la fuerza de Coulomb y el segundo es la fuerza centripeta k es la constante de la fuerza de Coulomb Z es el numero atomico e es la carga del electron m e displaystyle m e es la masa del electron v es la velocidad del electron en la orbita y r el radio de la orbita Partiendo de la ecuacion anterior y sabiendo que la energia total es la suma de las energias cinetica y potencial la energia de un electron se expresa en funcion del radio r de la orbita como E 1 2 k Z e 2 r displaystyle E 1 over 2 kZe 2 over r Con este postulado Bohr evitaba el problema de la inestabiliad orbital del electron y por tanto del atomo predicha por la electrodinamica clasica Esto lo hace al postular que la radiacion de energia por parte de las particulas cargadas es valida a escala macroscopica pero no es aplicable al mundo microscopico del atomo Sin embargo surgia el problema de explicar la transicion entre los estados estacionarios y la emision de radiacion por el atomo para lo que Bohr introdujo otro postulado Segundo postulado Editar La condicion de cuantizacion de las orbitas permitidas para el movimiento del electron en el atomo es una de las grandes aportaciones de Bohr si bien no aparece en su primer postulado Bohr hace uso de la constante de Planck como un momento angular elemental de forma que los momentos angulares posibles del electron son solo los multiplos enteros del citado momento angular elemental cita requerida Asi no todas las orbitas del electron alrededor del nucleo estan permitidas tan solo aquellas cuyo radio cumpla que el momento angular L displaystyle L del electron sea un multiplo entero de ℏ h 2 p displaystyle hbar h over 2 pi A partir de esto queda la condicion de cuantizacion para los radios permitidos para el electron son r n n 2 ℏ 2 k m e Z e 2 displaystyle r n n 2 hbar 2 over km e Ze 2 Con n 1 2 3 displaystyle n 1 2 3 dots Sustituyendo los radios permitidos r n displaystyle r n en la expresion de la energia se puede obtener la energia correspondiente a cada orbita permitida E n 1 2 k 2 m Z 2 e 4 n 2 ℏ 2 displaystyle E n 1 over 2 k 2 mZ 2 e 4 over n 2 hbar 2 Tercer postulado Editar Emision y absorcion de energia en forma de cuantos al pasar de una orbita a otra El electron solo emite o absorbe energia en los saltos de una orbita permitida a otra En dicho cambio emite o absorbe un foton cuya energia es la diferencia de energia entre ambos niveles El foton siguiendo las ideas de Planck tiene una energia E g h n E n i E n f displaystyle E gamma h nu E n i E n f Donde n i displaystyle n i identifica la orbita inicial y n f displaystyle n f la final y n displaystyle nu es la frecuencia del foton Introduciendo los valores de las energias asociadas a cada orbita se obtiene para la frecuencia del foton emitido o absorbido n k 2 m e Z 2 e 4 2 h ℏ 2 1 n f 2 1 n i 2 displaystyle nu k 2 m e Z 2 e 4 over 2h hbar 2 left 1 over n f 2 1 over n i 2 right Esta ultima expresion obtenida a partir de principios cuanticos confirma la formula empirica hallada antes por Balmer y utilizada habitualmente por los espectroscopistas para describir la Serie de Balmer observada desde finales del siglo XIX en la desexcitacion del Hidrogeno y que venia dada por n 1 l R H 1 2 2 1 n 2 displaystyle overline nu 1 over lambda R H left 1 over 2 2 1 over n 2 right Con n 3 4 5 displaystyle n 3 4 5 dots y donde R H displaystyle R H es la llamada constante de Rydberg para el hidrogeno El valor medido experimentalmente de la constante de Rydberg 1 09710 7 m 1 displaystyle 1 09710 7 m 1 coincide con el valor de la formula teorica de Bohr Los postulados de Bohr corresponden a una primera consideracion del hecho de que los electrones estables orbitando en un atomo estan descritos por funciones de onda estacionarias Principio de incertidumbre de Heisenberg EditarIntroduccion Editar Principio de Incertidumbre para la medida simultanea de la posicion y el momento de una particula Werner Heisenberg Premio Nobel de Fisica en 1932 enuncio el llamado principio de incertidumbre o principio de indeterminacion segun el cual es imposible medir simultaneamente y con precision absoluta el valor de la posicion y la cantidad de movimiento de una particula Esto significa que la precision con que se pueden medir las propiedades de los objetos microscopicos como posicion y momento esta limitada y el limite viene fijado por una ecuacion donde la constante de Planck es sujeto principal cita requerida El principio de incertidumbre en una dimension por ejemplo a lo largo del eje x se escribe D x D p x ℏ 2 h 4 p displaystyle Delta x Delta p x gtrsim frac hbar 2 frac h 4 pi qquad dd dd D x displaystyle Delta x indeterminacion en la posicion D p x displaystyle Delta p x indeterminacion en la cantidad de movimiento h displaystyle h constante de Planck De manera analoga se puede considerar la relacion de incertidumbre en cualquiera de las proyecciones espaciales sobre los ejes de coordenadas y o z La incertidumbre no se deriva de los instrumentos de medida sino del propio hecho de medir con los aparatos mas precisos la incertidumbre en la medida continua existiendo Asi cuanto mayor sea la precision en la medida de una de estas magnitudes mayor sera la incertidumbre en la medida de la otra variable complementaria La posicion y la cantidad de movimiento de una particula respecto de uno de los ejes de coordenadas son magnitudes complementarias sujetas a las restricciones del principio de incertidumbre de Heisenberg Tambien son variables complementarias afectadas por el principio de incertidumbre para un mismo objeto su energia E y el tiempo t empleado en la medida D E D t ℏ 2 h 4 p displaystyle Delta E Delta t gtrsim frac hbar 2 frac h 4 pi qquad dd dd Aplicacion del principio de incertidumbre Editar Datos simulados de la colision entre protones con produccion de haces de hadrones y electrones Procedente del detector CMS del LHC en el CERN En el LHC Large Hadron Collider del CERN se producen colisiones de protones a una velocidad proxima a la de la luz Si los protones alcanzaran velocidades punta de v p 2 998 10 8 m s 1 displaystyle v p 2 998 times 10 8 m cdot s 1 y se midieran con un 1 de precision se puede calcular entonces la incertidumbre en la posicion de dichos protones de masa m 1 673 10 27 k g displaystyle m 1 673 times 10 27 kg con una aproximacion del 1 en su velocidad y por tanto D v p 1 10 2 2 998 10 8 m s 1 2 998 10 6 m s 1 displaystyle Delta v p 1 times 10 2 2 998 times 10 8 m cdot s 1 2 998 times 10 6 m cdot s 1 Dado que D p m D v p displaystyle Delta p m times Delta v p de la incertidumbre en la determinacion simultanea de su velocidad y posicion se obtiene la siguiente relacion para D x displaystyle Delta x D x 6 626 10 34 J s 4 p 1 673 10 27 k g 2 998 10 6 m s 1 6 626 63 029 10 13 m displaystyle Delta x geq frac 6 626 times 10 34 J cdot s 4 pi 1 673 times 10 27 kg 2 998 times 10 6 m cdot s 1 geq frac 6 626 63 029 times 10 13 m Por tanto D x 1 05 10 14 m displaystyle Delta x geq pm 1 05 times 10 14 m es la indeterminacion en la posicion del proton En las mismas condiciones de precision y siguiendo el principio de incertidumbre se comprueba que cuanto mayor es la velocidad de la particula menor es su indeterminacion en la posicion y viceversa Un ejemplo extremo seria el caso de un proton a muy bajas velocidades entonces su posicion estaria muy localizada en el espacio pero en cambio su incertidumbre sobre dicha posicion seria grande Aplicacion macroscopica del principio de incertidumbre Editar Un articulo publicado en la revista Science 15 en febrero de 2013 demuestra que los efectos de la mecanica cuantica no solo son claramente medibles en los experimentos microscopicos sino que tambien es posible observarlos en la macrofisica Es el caso de un oscilador macroscopico que consta de una membrana situada dentro de una cavidad optica y cuya posicion se puede medir gracias a la luz que se refleja en ambos extremos de la cavidad Una analogia para la medida optica de la posicion de un objeto es la que se realiza con el sistema de enfoque automatico de una camara de fotos 16 17 Al emitir un pulso de luz infrarroja este se refleja en el objeto y vuelve a la camara El tiempo empleado por el haz en ir y volver lo usa la camara para estimar la distancia entre el objeto y el plano de la imagen Los autores han podido comprobar como se ve afectada la posicion de la membrana por la presion de radiacion debida a la radiacion incidente en la membrana La medida es tan precisa que se encuentra influenciada por la naturaleza cuantica de los fotones y el error sistematico de la medida solo esta limitado por el ruido cuantico que predice el principio de indeterminacion de Heisenberg ecuacion 1 El citado principio conduce a cambios en la intensidad de la luz detectada que permiten medir el retroceso de la membrana debido a la presion de la radiacion Nueva comprension en la fisica Editar Aplicacion macroscopica del principio de indeterminacion de Heisenberg en la medida optica de la posicion de un objeto macroscopico una membrana en una cavidad optica El trabajo publicado en la revista Science ademas de representar un avance en la observacion de los fenomenos cuanticos constituye un hito en la medida de este tipo de sucesos ya que el experimento alcanza los limites de precision impuestos por el principio de indeterminacion de Heisenberg en las medidas opticas de la posicion de un objeto membrana en una cavidad optica 18 Esto se debe a que en la citada experiencia se puede medir con precision el ruido de disparo debido a la presion de radiacion RPSN Radiation Pressure Shot Noise que es el retroceso experimentado por el foton al colisionar contra el objeto Por el principio de Heisenberg este ruido de disparo presenta una incertidumbre en la cantidad de movimiento Dp que conlleva un error en la medida de la posicion Dx Esta relacion ha impuesto un limite maximo a la sensibilidad de los experimentos de este tipo El nuevo procedimiento publicado en Science permite medir la posicion de un objeto con un error limitado solo por el RPSN Con estos experimentos se pueden verificar procedimientos teoricos utilizados para intentar esquivar el limite impuesto por el principio de Indeterminacion como es el uso de la luz comprimida de incertidumbre minima quadrature squeezed light 19 o las tecnicas para evitar el retroceso 20 Medidas experimentales de la constante de Planck EditarDeterminacion actual de la constante Editar Gracias a la precision de la tecnologia actual la constante de Planck se puede determinar con al menos nueve cifras significativas y su determinacion experimental se realiza a partir de las siguientes experiencias La constante de Josephson KJ obtenida gracias a experimentos relacionados con el efecto Josephson y la cuantizacion del flujo magnetico La constante de von Klitzing 21 y la resistencia Hall del efecto Hall cuantico La constante de estructura fina 22 La balanza de Watt la constante de Planck y la redefinicion del kilogramo El magneton de Bohr en la resonancia magnetica nuclear Con la actual definicion del Sistema Internacional de unidades SI una medida del numero de Avogadro NA representa una medida indirecta de la constante de Planck Para esta determinacion del Numero de Avogadro utilizan la relacion del volumen molar al volumen de la celda unidad en un cristal de Si Medidas realizadas en los laboratorios del LHC Gran Colisionador de Hadrones Si bien la constante de Planck esta asociada a sistemas microscopicos la manera mas precisa de obtenerla deriva de fenomenos macroscopicos como el efecto Hall cuantico y el efecto Josephson 23 24 25 La constante en la definicion de las unidades del SI Editar Fue el propio Planck quien adelanto la idea de establecer las unidades empleadas en fisica a partir de las constantes universales 26 Las primeras mediciones de la constante se efectuaron a partir del efecto fotoelectrico Durante varias decadas se fueron optimizando nuevos experimentos que hicieron posible la medida de otros fenomenos fisicos afectados directamente por la constante asi como de otras constantes como la carga elemental y el numero de Avogadro Conforme las tecnicas experimentales han evolucionado se ha ido mejorando tambien la precision del valor de h en 1960 se introdujo el SI Sistema Internacional de unidades y con el la definicion de las unidades electricas del V voltio y el ohm Ohmio pero fue en la decada de los anos 90 cuando se definio por primera vez el ohmio a partir de la constante fundamental h midiendo la resistencia Hall en el efecto Hall cuantico y el voltio a partir del efecto Josephson 27 Nacio asi un nuevo SI partiendo de muy pocas constantes fundamentales para sus definiciones Las teorias del efecto Josephson y del efecto Hall cuantico han desempenado un papel crucial para mostrar la influencia de la constante h en las directrices para las mediciones electricas conforme estas han ido llevando a nuevos dispositivos electronicos La constante h no solo se ha convertido en esencial en las definiciones de las unidades de los voltios y los ohmios sino que las medidas de los efectos mencionados han permitido determinar h directamente y con precision aun mayor Desde el 20 de mayo de 2019 la constante de Planck es un valor sin incertidumbre 28 h 6 626 070 15 10 34 J s displaystyle h 6 626 070 15 times 10 34 mbox J cdot mbox s Sin el refinamiento de las medidas del efecto Hall cuantico y del efecto Josephson de una manera mas basica aunque con menos precision tambien se puede determinar la constante h a nivel de laboratorio docente universitario que de forma tradicional ha venido obteniendo a partir del efecto fotoelectrico Sin embargo debido al progreso alcanzado en la tecnologia LED cada vez son mas frecuentes los experimentos para medir la constante h haciendo uso de diodos LED cita requerida La estimacion de la constante de Planck con diodos LED en el laboratorio universitario Editar Fundamento fisico Editar Fundamento fisico del funcionamiento de un diodo LED Los diodos led son componentes electronicos fabricados con materiales semiconductores que al paso de la corriente electrica emiten luz El fundamento electronico del proceso es el mismo que el de los diodos semiconductores convencionales empleados como rectificadores y que se explicara a continuacion prestando atencion a las diferencias con los LED En la practica los LED se emplean como emisores de luz debido a su alto rendimiento La emision se conoce como luz fria por el escaso calentamiento que tiene un diodo LED al emitir luz En su funcionamiento los diodos estan constituidos por dos capas de distintas propiedades electricas una mas positiva zona P y la otra mas negativa zona N en contacto directo zona de la union PN En concreto la zona N se dopa con mas electrones de los que existirian de forma natural y en la zona P se quitan electrones para crear huecos Al establecerse el contacto entre las dos porciones los electrones en exceso de la region N pasan a la region P y van ocupando los huecos en la zona de contacto Al llenar un hueco se crea un ion negativo en la zona P y deja tras de si un ion positivo en la zona N Con ello se acumula en la zona de contacto una carga espacial hasta llegar a un cierto equilibrio creandose un campo electrico en la union entre las dos capas que hace de barrera de potencial permanente en ausencia de un generador electrico y no permitiendo el paso de nuevos electrones de la region N a la P La zona de la union donde se ha acumulado la carga se llama region de deplecion del ingles depletion o de agotamiento 29 Externamente se puede modificar el campo electrico o barrera de potencial establecidos en una union PN aplicando un generador electrico Si el polo positivo se aplica a la zona N y el polo negativo a la zona P lo que se conoce como polarizacion inversa se contribuira a incrementar la altura de la barrera de potencial y la corriente que circulara del polo positivo al polo negativo a traves de la union PN sera muy debil Por el contrario si el polo positivo del generador se aplica a la region P y el negativo a la region N lo que se conoce como polarizacion directa se reducira la altura de la barrera de potencial y la corriente podra circular entre el polo y el polo a traves de la union PN En un diodo LED si se polariza la union PN directamente haciendo positiva la region P en relacion con la region N se reduce la intensidad del campo disminuyendo entonces la barrera de potencial y permitiendo el desplazamiento de las cargas el establecimiento de la corriente y la emision de fotones El fenomeno fisico que tiene lugar en la union PN al paso de la corriente en polarizacion directa consiste en una sucesion de recombinaciones electron hueco El fenomeno de la recombinacion viene acompanado de la emision de algun tipo de energia En los diodos ordinarios de Germanio o de Silicio se producen fonones o vibraciones de la estructura cristalina del semiconductor que contribuyen simplemente al calentamiento de este En el caso de los diodos LED los materiales estructurales son diferentes de los anteriores tratandose por ejemplo de aleaciones varias de arseniuro de galio En estos semiconductores las recombinaciones que se desarrollan en las uniones PN eliminan el exceso de energia emitiendo fotones luminosos El color de la luz emitida es caracteristico de cada aleacion concreta y depende de su frecuencia En la actualidad se fabrican aleaciones que producen fotones luminosos de varios colores A partir de un valor de la tension externa que depende del tipo de material semiconductor el LED comienza a emitir fotones es la tension de encendido V 0 displaystyle V 0 Los portadores de la carga electrones y huecos pueden desplazarse a traves de la union cuando se aplican a los electrodos diferentes tensiones Al ir elevando la tension externa a la union el LED comienza a conducir a partir de la tension de encendido V 0 displaystyle V 0 comienza a emitir fotones y a tensiones mayores aumenta la intensidad de luz emitida Este aumento de intensidad luminosa al aumentar la intensidad de la corriente puede verse disminuida por la recombinacion Auger 30 31 Durante el proceso de recombinacion el electron salta de la banda de conduccion a la de valencia emitiendo un foton y accediendo por conservacion de la energia a un nivel mas bajo de energia por debajo del nivel de Fermi del material El proceso de emision se llama recombinacion radiativa 32 que corresponde al fenomeno de la emision espontanea Asi en cada recombinacion radiativa electron hueco se emite un foton de energia igual a la anchura en energias de la banda prohibida E g displaystyle E g ver la figura E g h f h c l 2 displaystyle E g hf frac hc lambda qquad 2 siendo c la velocidad de la luz y l es la longitud de onda de la luz que emite Esta descripcion del fundamento de la emision de radiacion electromagnetica por el diodo LED hay LED que emiten tambien en el ultravioleta y en el infrarrojo se puede apreciar en la figura donde se hace una representacion esquematica de la union PN del material semiconductor junto con el diagrama de energias implicado en el proceso de recombinacion y emision de luz en la parte baja del dibujo La longitud de onda de la luz emitida y por lo tanto su color depende de la anchura de la banda prohibida de energia En los diodos de silicio o de germanio los electrones y los huecos se recombinan generando vibraciones de la red en forma de fonones y emitiendo radiacion termica Es una transicion no radiativa que finalmente produce el calentamiento del diodo en vez de emitir luz Los substratos mas importantes disponibles para su aplicacion en emision de luz son el GaAs y el InP Los diodos LED pueden disminuir su eficiencia si sus picos de absorcion y emision espectral en funcion de su longitud de onda estan muy proximos como ocurre con los LED de GaAs Zn dopado con Zinc ya que parte de la luz que emiten la absorben internamente Los materiales utilizados para los LED tienen una banda prohibida en polarizacion directa cuya anchura en energias varia desde la luz infrarroja al visible o incluso cerca del ultravioleta La evolucion de los LED comenzo con dispositivos infrarrojos y rojos de arseniuro de galio 33 Los avances de la ciencia de materiales han permitido fabricar dispositivos con longitudes de onda cada vez mas cortas emitiendo luz en una amplia gama de colores Los LED se fabrican generalmente sobre un sustrato de tipo N con un electrodo conectado a la capa de tipo p depositada en su superficie Los sustratos de tipo P aunque son menos comunes tambien se fabrican Resultados experimentales Editar Curva caracteristica de un diodo LED con sus zonas de polarizacion directa e inversa Como se ha descrito en el fundamento un LED requiere alcanzar una cierta tension aplicada a sus bornes V 0 displaystyle V 0 en polarizacion directa para que emita luz Esta tension de encendido del LED V 0 displaystyle V 0 es proporcional en energias a la anchura de la banda prohibida E g displaystyle E g E g e V 0 D E 3 displaystyle E g eV 0 Delta E qquad qquad 3 siendo e la carga del electron Ademas recordando la ec 2 E g E F o t o n h f 4 displaystyle E g E rm Foton hf qquad 4 En realidad esta proporcionalidad en energias entre el gap E g displaystyle E g y la energia de encendido e V 0 displaystyle eV 0 y entre el gap y el cuanto de energia del foton es aproximada Si bien dependiendo del material semiconductor del LED la frecuencia de emision esta determinada debido a que se utilizan diferentes materiales dopantes con un mismo substrato semiconductor la energia asociada al salto del electron desde la banda de conduccion a la de valencia es algo menor 34 Debido a la aproximacion realizada se incluye en la ecuacion 3 una constante aditiva D E displaystyle Delta E que la hace mas realista y permite un ajuste mas adecuado a las medidas experimentales La tension de encendido tiene una interpretacion de interes a partir de la curva caracteristica del LED como se explica a continuacion En el codo de la misma ver ilustracion y en polarizacion directa es precisamente donde esta localizada la tension V 0 displaystyle V 0 que es diferente de un LED a otro Para tensiones menores a la tension de encendido la corriente es muy debil y la tension en bornes del LED no es suficiente para producir una emision de fotones estadisticamente significativa Para tensiones correspondientes al comienzo del codo de la curva y a una intensidad de corriente determinada la misma para todos los LED considerados es donde se considera el comienzo de la emision de luz Asi las ecuaciones 3 y 4 se convierten ene V 0 D E h f 5 displaystyle eV rm 0 Delta E hf qquad 5 Para estimar la constante de Planck se utiliza la ecuacion 5 Midiendo la tension de encendido V 0 displaystyle V 0 de los diferentes LED en funcion su frecuencia de emision f displaystyle f y realizando el ajuste por una recta segun esta ecuacion se obtiene h displaystyle h como la pendiente de la misma independientemente del valor de D E displaystyle Delta E Conviene elegir unas caracteristicas adecuadas accesibles comercialmente y comunes a los diferentes LED que se desean utilizar para las medidas como por ejemplo un diametro de 5 mm una luminosidad de unos 120 lumenes o la potencia consumida del orden de 3w 35 Obtencion de la longitud de onda de un LED Editar Familia de curvas de luminosidad del diodo LED RS Rojo medido en el Departamento de Tecnologia Fotonica y Bioingenieria de la ETSI de Telecomunicaciones UPM Si bien las hojas tecnicas de los fabricantes de los diodos LED 36 muestran los valores de las longitudes de onda emitidas 37 38 tambien se pueden medir en un laboratorio docente universitario 39 Para ello se utiliza un analizador de espectros En este caso se mostraran medidas realizadas con el analizador AQ 6315A 6315B La senal luminosa le llega al analizador a traves de una fibra optica El origen de la fibra se situa frente al diodo LED y se emplaza mediante un posicionador de 3D La fibra se centra sobre el diodo con ayuda de la lectura de la corriente suministrada por un fotodetector de Si El analizador proporciona la potencia optica captada por la fibra en funcion de l y su resultado viene dado en dBm decibelios referidos a 1 mW La sensibilidad del analizador alcanza los 60 dBm Para cada diodo hay que explorar y analizar en detalle la region de longitudes de onda emitidas El analizador de espectros permite determinar la diferente luminosidad de los diodos segun sea el material de fabricacion En la grafica se muestra la diferente luminosidad de los diodos LED verdes segun diferentes fabricantes Medidas realizadas en el Departamento de Tecnologia Fotonica y Bioingenieria de la ETSI de Telecomunicaciones UPM Al aumentar la intensidad luminosa del Led aparece una dependencia de las curvas de luminosidad con la temperatura desplazando el maximo de la curva a mayores longitudes de onda Por ello conviene realizar las medidas aplicando al Led corrientes debiles como en la figura donde se muestran las curvas correspondientes a las corrientes mas debiles de 10 mA Los resultados medidos con el analizador de espectros se corresponden bien con los datos de los fabricantes Se puede observar en la figura en el caso de un Led RS rojo el efecto de la temperatura en el pequeno desplazamiento del maximo de la curva hacia mayores longitudes de onda cuando se aumenta la intensidad de la corriente a traves del Led En un breve analisis de la luminosidad para diodos Led de las mismas caracteristicas de 5 mm de diametro 35 y en torno a los 120 lumenes se puede observar el comportamiento en funcion de la corriente directa para diferentes colores Para ello se representan en el eje horizontal los valores de la longitud de onda y en el eje vertical la potencia luminosa emitida normalizada Las tres curvas que acompanan al texto corresponden a valores de la corriente directa de 10 20 y 30 mA A cada diodo Led se le ha asociado la longitud de onda correspondiente al maximo de la curva de luminosidad De entre todos los diodos LED medidos se han seleccionado los siete que mostraban una mayor luminosidad y cubrian razonablemente el espectro optico Y en la siguiente figura se puede apreciar comparando sus curvas de luminosidad que los diodos D Verde y CO Verde presentan un buen comportamiento en cuanto a luminosidad y caracteristicas de emision no siendo asi para el RS Verde con peores caracteristicas de emision Trazado de las curvas caracteristicas de los diodos LED Determinacion experimental de las tensiones de encendido Editar Esquema del circuito LED alimentado con tension continua incrementada gradualmente hasta que el LED comienza a brillar Curva caracteristica midiendo con el LED Azul y el LED verde ambos de CO utilizando el primer procediemiento circuito de c c Resultados del segundo procedimiento circuito de c alterna a Curva caracteristica del LED rojo b Representacion temporal de la corriente a traves del LED I y de la tension de alimentacion V Comparacion de ambos procedimientos en continua y en alterna para el LED CO azul midiendo con especial detalle en la zona del codo Como se trata de obtener la Constante de Planck es muy importante tener muy bien definida y medida la tension de encendido Vo y prestar especial atencion a las diferencias en las medidas realizadas con una alimentacion con tension continua alterna o incluso utilizando una tension en rampa Para ver estas diferencias se muestran dos procedimientos de medida de la tension de encendido en el laboratorio para los diodos Led utilizando diferentes colores El primero implementando el circuito de medida alimentado con una fuente de tension continua y en el segundo el circuito se alimenta con una f e m alterna En ambos casos se obtienen las curvas caracteristicas de los diodos Led I I V prestando un cuidado especial para la mejor identificacion de la tension en el codo de la curva Conviene observar que precisamente esta es la parte no lineal de la curva caracteristica del diodo En un diodo ideal 40 esta zona se simplifica limitandose a un vertice donde cambia la pendiente entre dos zonas lineales Para la medida de la Constante es en cambio muy importante la zona del codo de la curva En la animacion se puede apreciar el esquema electrico simplificado que se utiliza para la determinacion de la curva caracteristica de los diodos LED en corriente continua punto a punto para los valores corriente I tension V Para realizarla se va aumentando paulatinamente la tension V del generador midiendo en cada incremento la tension en bornes del diodo V y la intensidad de corriente I que lo atraviesa Para obtener la citada curva cuando el circuito esta alimentado con un generador de tension continua se representan para cada LED los valores I I V obtenidos punto a punto midiendo con especial detalle los valores I V en la zona del codo de la curva como se puede apreciar en la figura de la curva caracteristica para los diodos CO verde y CO azul Invirtiendo la polaridad del generador se obtiene la rama de la curva caracteristica correspondiente a la zona de tensiones negativas La intensidad de corriente en esta zona es como se puede apreciar en la curva para el Led RS rojo muy debil Con el segundo procedimiento el circuito de medida es basicamente el de la animacion pero sustituyendo la fuente de continua por una f e m de alterna que permite verificar la funcion rectificadora del diodo en polarizacion inversa Al ser la fuente de alimentacion periodica se puede usar un osciloscopio o una tarjeta de adquisicion de datos para almacenar con gran detalle la curva caracteristica ya que por ejemplo en un intervalo de 1 ms se almacenan 10 periodos de una senal de 10 kHz de frecuencia Por este procedimiento se pueden registrar la serie de medidas corriente I tension V con por ejemplo la tarjeta de adquisicion de datos Picoscope 6 41 Como resultado de estas medidas se muestra para el LED RS Rojo una curva caracteristica I I V parte a y a la derecha parte b la evolucion temporal de ambas de la corriente y la tension de alimentacion observando la rectificacion de la corriente que produce el diodo Led Para completar los procedimientos de medida y analizar la influencia de otros generadores de onda conviene medir la curva caracteristica de los diodos LED sustituyendo el generador c c por un generador de onda triangular y un generador de onda sinusoidal En estos dos casos se obtiene el trazado completo de la curva caracteristica se puede utilizar una tarjeta de adquisicion de datos o bien un osciloscopio digital con el que tambien se recopilan las medidas con gran precision Tanto la onda triangular como la onda sinusoidal en las mismas condiciones de medida dan un comportamiento muy similar en la zona del codo Con la intencion de obtener una mayor precision en la determinacion de la tension de encendido Vo es interesante comparar las medidas del primer procedimiento en c c con las del segundo en c a en la zona del codo Dicha comparacion se puede observar en la figura para el LED CO azul En esta zona donde la corriente que atraviesa el LED es debil en el rango de 0 02 a 0 1 mA la coincidencia de los dos tipos de medidas es muy buena y nos permite precisar el el despegue de la curva en el momento de encendido del LED En la tabla que sigue figuran los valores de l medidos en el laboratorio docente y los valores de la tension de encendido deducida comparando las medidas que se obtienen corriente alterna y con las correspondientes en continua explicado en esta seccion Valores experimentales obtenidos para las longitudes de onda y para las tensiones de encendido para siete LED de diferentes longitudes de onda Color Long onda l nm Tension de encendido Vo V RS Violeta 425 2 95CO Azul 470 2 55D LED Verde 525 2 35CO Verde 529 2 37RS Ambar 610 1 67RS Rojo 643 1 75RS Infrarrojo 887 1 19Obtencion de la constante de Planck a partir de la frecuencia y la tension umbral Editar En la tabla siguiente se han resumido los valores experimentales necesarios para determinar la constante de Planck por un procedimiento de laboratorio universitario En la primera columna figuran los diodos LED empleados en la segunda columna aparece la frecuencia caracteristica de emision de cada uno de ellos y en la tercera la anchura de la banda prohibida determinada experimentalmente expresada en unidades de energia En la cuarta columna se muestra una estimacion de la constante de Planck calculada a partir de los valores medidos para cada diodo LED Color Frecuencia f c l Hz E qVo hf J lt h gt RS Violeta 7 44 1014 4 47 10 19 6 79 0 06 10 34 J s R2 0 953CO Azul 6 41 1014 3 99 10 19D LED Verde 5 81 1014 3 81 10 19CO Verde 5 75 1014 3 77 10 19RS Ambar 4 96 1014 2 74 10 19RS Rojo 4 70 1014 2 72 10 19RS Infrarrojo 3 37 1014 1 89 10 19El valor definitivo de la constante de Planck se determina representando los siete puntos experimentales f E displaystyle f E y ajustandolos a una recta La pendiente de la recta ajustada constituye una buena estimacion de la constante de Planck Para completar el la determinacion se representan los siete puntos resultado de las medidas de coordenadas f e V 0 displaystyle f eV 0 En la misma la grafica aparece la recta correspondiente al ajuste realizado ecuacion 5 segun explicacion dada al comienzo de la seccion El resultado del ajuste proporciona un valor de h 6 79 0 06 10 34 J s displaystyle h 6 79 pm 0 06 times 10 34 J s Este resultado si bien es una estimacion de la constante ya que aprecia solo la primera cifra significativa resulta adecuado teniendo en cuenta la sencillez del metodo utilizado para obtenerla Este procedimiento de medida se utiliza tambien a modo de introduccion en la mecanica cuantica para estudiantes de ciencias e ingenieria De los muy diversos trabajos existentes en laboratorios docentes universitarios y a modo de comparacion se incluyen tres referencias que utilizan este metodo para obtener la Constante de Planck Una de la Universidad de Pensilvania 42 otra del Cornell Center for Material Resarch 43 y finalmente una referencia de la Universidad de Buenos Aires 44 En esta ultima referencia se compara el valor obtenido para la constante de Planck con el obtenido por otros dos metodos en los que consideran el modelo de Shockley para el diodo y que sin embargo no obtienen una mejor estimacion Representacion grafica de la obtencion experimental de la constante de Planck realizada por alumnos de la UPM Animacion ilustrativa de la iluminacion sucesiva de diversos diodos LEDVease tambien EditarMecanica cuantica Relacion de indeterminacion de Heisenberg Unidades de Planck Unidades atomicas Constante fisica Diodo semiconductorReferencias Editar BIPM Unit of mass kilogram www bipm org Consultado el 21 de octubre de 2020 Planck Max 1901 Annalen der Physik IV Folge 4 PDF en aleman Manuel Cardona et al 2008 Max Planck a Conservative Revolutionary Il Nuovo Saggiatore 24 5 6 39 54 Archivado desde el original el 3 de diciembre de 2013 Consultado el 29 de junio de 2013 Olalla Linares Carlos 2006 Sevilla Arroyo Florencio ed Planck La fuerza del deber Madrid Nivola Tres Cantos ISBN 978 84 96566 15 6 Robitaille Pierre Ogosto de 2009 Kirchhof s Law of Thermal Emission Progress in Physics 3 13 Atomic emission Spectroscopy url incorrecta con autorreferencia ayuda english Wikipedia M Olmo R Nave Espectro atomico HyperPhysics Georgia State University M Olmo R Nave Ley de Dulong y Petit HyperPhysics Georgia State University a b I Ermolli et al 17 de abril de 2013 Recent variability of the solar spectral irradiance and its impact on climate modelling Atmos Chem Phys en ingles 13 3945 3977 Consultado el 23 de octubre de 2013 Rod Nave Rayleigh Jeans vs Planck en ingles HyperPhysics Georgia State University Archivado desde el original el 6 de noviembre de 2006 Consultado el 16 de octubre de 2013 Rod Nave black body radiation en ingles HyperPhysics Georgia State University Archivado desde el original el 6 de noviembre de 2006 Consultado el 16 de octubre de 2013 Kuhn T S 1980 La Teoria del Cuerpo Negro y la Discontinuidad Cuantica 1894 1912 Madrid Editorial Alianza Universidad AU262 The Photoelectric Effect A practical approach en ingles Archivado desde el original el 24 de diciembre de 2012 Consultado el 29 de junio de 2013 The Photoelectric Effect en ingles Consultado el 29 de junio de 2013 T P Purdy R W Peterson C A Regal 2013 Observation of Radiation Pressure Shot Noise on a Macroscopic Object Science 15 339 Sistema de enfoque automatico Tecnologia Leica primera patente Archivado desde el original el 21 de junio de 2009 Sistema de seguimiento de enfoque predictivo tecnologia Nikon Archivado desde el original el 12 de noviembre de 2013 Consultado el 12 de noviembre de 2013 Emule Francis 15 de febrero de 2013 Demuestran el principio de indeterminacion de Heisenberg en la medida optica de la posicion de un objeto macroscopico D F Walls 1983 Squeezed states of light Nature 306 141 J B Hertzberg T Rocheleau T Ndukum M Savva A A Clerk amp K C Schwab diciembre de 2009 Back action evading measurements of nanomechanical motion Nature Physics Klaus von Kltizing 25 Years of Quantum Hall Effect Malo Cadoret Estefania de Mirandes Pierre Clade Saida Guiellati Khelifa Francois Nez Francois Biraben Measurement of the ratio h mRb and determination of the fine structure constant Petley BW Kibble BP Hartland A 18 de junio de 1987 A measurement of the Planck constant Nature 327 605 6 doi 10 1038 327605a0 Williams ER et al 21 de septiembre de 1998 Accurate Measurement of the Planck Constant Physical Review Letters 81 12 2404 7 doi 10 1103 PhysRevLett 81 2404 Physics News Graphics Measuring Planck s Constant en ingles Archivado desde el original el 1 de julio de 2013 Consultado el 30 de junio de 2013 Max Planck PLANCK Max Scientific Papers Index 1900 1949 Archivado desde el original el 22 de junio de 2013 B Jeckelmann y B Jeanneret 2001 The quantum Hall effect as an electrical resistance standard Archivado desde el original el 17 de diciembre de 2013 Consultado el 29 de junio de 2013 The NIST Reference on Constants Units and Uncertainty Consultado el 15 de agosto de 2021 M Olmo and R Nave union p n en ingles HyperPhysics Georgia State University Consultado el 10 de octubre de 2013 J Iveland et al 19 de abril de 2013 disminucion de la eficiencia de los led debido al efecto Auger en ingles Material Department University od California Consultado el 10 de octubre de 2013 Christiana Honsberg and Stuart Bowden tipos de recombinacion en ingles PV Education org Consultado el 10 de octubre de 2013 Electrical Measurement Standards Based on Quantum Phenomena en ingles Archivado desde el original el 28 de septiembre de 2013 Consultado el 29 de junio de 2013 In Pursuit of the Ultimate Lamp 2001 M George Craford N Holonyak Jr and F A Kish Jr Science 15 62 67 F Schubert 2006 Light Emitting Diodes Ed Cambridge University Press p 203 a b Uso de los LED en iluminacion 25 de abril de 2007 Consultado el 7 de octubre de 2013 D LED Espana Proveedor de componentes electronicos CONECTROL S A Proveedor de componentes electronicos RS Espana Proveedor de componentes electronicos Departamento de Fisica de la ETSIT UPM Archivado desde el original el 26 de marzo de 2013 Modelos equivalentes lineales aproximados del diodo Consultado el 7 de octubre de 2013 PicoTech Proveedor de aparatos de medida electronicos Prof Kevin Range Measuring Planck s constant with LEDs Lock Haven University Karen Daniels and Erika Merschrod Junio de 2000 Rainbow Connection Cornell Center for Materials Research Carla Romano y Cecilia Lopez marzo de 2001 Medicion de la constante de Planck utilizando LED Universidad de Buenos Aires Bibliografia EditarPlanck Max 1914 M P Blakiston s Sons amp Co Proyecto Gutenberg ed The Theory of Heat Radiation en ingles Traducido por Morton Masius Consultado el 8 de octubre de 2013 Morehead Frederick F mayo de 1967 Light emitting semiconductors Scientific American en ingles 216 5 108 122 Eisberg Robert Resnick Robert 1994 Fisica Cuantica Atomos Moleculas Solidos Nucleos y Particulas Mexico Limusa ISBN 9681804198 Sanchez del Rio Carlos 1997 Fisica Cuantica Piramide Alonso Marcelo Finn Edward J 1998 Rev y Aum ed Fisica II Campos y Ondas Alhambra Mexicana ISBN 9789684442245 Sedra Adel 2006 Circuitos Microelectronicos 5ª edicion McGraw Hill Interamericana de Mexico ISBN 9789701054727 Schubert Fred 2006 Light Emitting Diodes en ingles Cambridge University Press ISBN 9780521865388 Tipler Paul Allen Mosca Gene 2010 Fisica para la ciencia y la tecnologia II 6ª edicion Barcelona Reverte Enlaces externos EditarCODATA 2014 Valores recomendados para Las Constantes Fisicas Fundamentales Datos Q122894Obtenido de https es wikipedia org w index php title Constante de Planck amp oldid 137693585, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos