fbpx
Wikipedia

Celda de combustible microbiano

Una celda de combustible microbiano (CCM), o celda de combustible biológica (CCB), es un sistema bio-electroquímico que genera energía eléctrica a partir de la interacción de microorganismos (bacterias) en un medio acuoso, por la oxidación de la materia orgánica (biomasa).[1]​ Normalmente comprende un cátodo, un ánodo, una membrana de intercambio catiónico o protónico y un circuito eléctrico,[2]​ los combustibles pueden ser, glucosa, acetato, lactosa, entre otros componentes, empleados siempre y cuando tengan un factor de biodegradabilidad aprovechable por los microorganismos. Este tipo de tecnologías se utilizan actualmente en la producción de energía y en el tratamiento de aguas residuales.[3]

Las CCM se realizaban a través de cultivos de bacterias, la bacteria Geobacter sulfurreducens es una de las bacterias más utilizadas en el estudio de celdas de combustible biológicas, por su alta eficiencia de conversión energética , este hecho fue descubierto por el Dr. Derek R Lovley y sus colaboradores en el año de 1987, esta bacteria tiene el potencial para realizar biorremediación,[2]​ esta tecnología se encuentra principalmente en etapa de desarrollo experimental y piloto las potencias eléctricas obtenidas son aún bajas y no hay actualmente aplicaciones comerciales disponibles, la investigación hace prever un futuro prometedor a mediano plazo.

Estos sistemas usan diferentes tipos de materiales para la elaboración del electrodo para elevar la captación eléctrica, evitar la formación de biopelícula y tener mayor ergonomía en el caso de ser un material conductor flexible.


Principio de funcionamiento

Las CCM comprenden de una cámara anódicas y otra catódica, aisladas por una membrana de intercambio de protones (MIP).[4]​ Los microorganismos, presentes en el compartimiento anódico, oxidan sustratos, en general promoviendo el intercambio de electrones y protones entre ambas partes. El metabolismo bacteriano se encuentra determinado por la influencia del sustrato y el potencial del ánodo.[5]​ El incremento de la corriente en la CCM disminuirá el potencial del ánodo, por lo que las bacterias se verán obligadas a liberar electrones a través de complejos más reducidos. Mientras que, en altos potenciales anódicos las bacterias pueden usar la cadena respiratoria bajo un escenario de metabolismo oxidativo, transportando electrones y protones por medio de enzimas.[6]​ Los electrones son absorbidos por el ánodo y se transfieren al cátodo a través de un circuito externo. Los protones pasan por la cámara catódica y se unen el oxígeno para formar agua, después de cruzar la MIP o un puente de sal.[7][8]

La producción de corriente eléctrica se logra separando los microorganismos del oxígeno, para lo cual se requiere de una cámara anódica anaeróbica, donde los electrones viajan a través de una resistencia.[9]​ En ciertos casos, los microorganismos pueden producir su propio mediador soluble de transferencia de electrones o, pueden transferir directamente electrones a la superficie del ánodo. El cátodo puede estar expuesto al aire o sumergido en agua aerobia.[8]

Aplicación en el tratamiento de aguas residuales

Además de la generación de electricidad, las CCM tienen otras aplicaciones como biosensores en el tratamiento de aguas residuales y producción de biohidrógeno (Karthikeyan et al., 2015). Para su aplicación en el tratamiento de aguas residuales, tanto la potencia de salida y eficiencia de Coulomb son parámetros importantes. Éstas, guardan estrecha relación con los tipos de microorganismo que se encuentren en la cámara anódica, la configuración de las CCM y las condiciones de operación. En la siguiente tabla se pueden apreciar algunos casos aplicados al tratamiento de agua residual (municipal y agrícola).

Agua residual Tipo de CCM Características y resultados Fuente
Municipal Cátodo de aire Máxima densidad de potencia: 103 mW/m² (5.8 W/m³)

Remoción de DQO: 71%

Eficiencia de Coulomb: 18.4%

[10]
Potencia: 1.42 W/m³

Remoción de DQO: 80%

[11]
Flujo en serie bajo condiciones mesofílicas

Máxima densidad de potencia: 420 mW/m² (12.8 W/m³)

Remoción de DQO: 44%

Eficiencia de Coulomb: 13%

[12]
Dos cámaras Máxima densidad de potencia: 25 mW/m²

Remoción de DQO: 30%

[13]
Muestras recolectadas en invierno (i) y verano (v)

Máxima densidad de potencia: (i) 209 mW/m² y (v) 117 mW/m²

Remoción de DQO: (i) 2.7% y (v) 72.85%

[14]
Una cámara Máxima densidad de potencia: 464 mW/m² (15.5 W/m³)

Remoción de DQO: 40-50%

Eficiencia de Coulomb: 27%

[15]
Un cátodo de aire y ánodo de ocho electrodos de grafito

Máxima densidad de potencia: 26 mW/m²

Remoción DQO: 80%

Eficiencia de Coulomb: menor al 12%

[3]
Conjuntos:

electrodo separador y espaciados

Conjunto de electrodo separador (SEA) y electrodos espaciados (SPA)

Máxima densidad de potencia: (SEA) 328 mW/m² y 289 mW/m² (SPA)

Remoción de DQO: (SEA) 78% y (SPA) 87%

Eficiencia de Coulomb: (SEA) 20% y (SPA) 12.5%

[16]
Agrícola Dos cámaras Máxima densidad de potencia: 0.34 mW/m²

Remoción de DBO: 84%

Remoción de elementos en fertilizante: 84% (N), 70% (P) y 91% (K)

[17]
Máxima densidad de potencia: 22 mW/m²

Remoción DQO total: 71%

Remoción DQO soluble: 88%

[18]

*DQO: demanda química de oxígeno

Limitaciones

El problema principal en este tipo de sistemas es que la energía generada puede no ser suficiente como para hacer funcionar continuamente un sensor o un transmisor.[19]​ Sin embargo, esto podría resolverse incrementando la superficie de los electrodos o utilizando un programa de administración energética donde los datos se transfieren solo cuando se almacena la energía suficiente, lo que ocurriría utilizando un ultracondensador.[20]

La baja densidad de potencia surge por la alta resistencia interna, condiciones de la solución, baja degradabilidad del sustrato y la cinética del biofilm. Frente a lo cual, la aplicación de CCM apiladas en serie o paralelo sería esencial para incrementar significativamente la corriente y el voltaje.[21]

Otra desventaja importante de las CCM es su dependencia de biofilms para el transporte de electrones.[22]​ Para lo cual se esperaría, en un futuro, poder obtener un consorcio microbiano optimizado y así operar una CCM sin mediadores mientras se logra una elevada transferencia de masa y altas tasas de transferencia de electrones.[5]​ Adicionalmente, debido a que las reacciones microbianas son lentas a bajas temperaturas, las CCM no pueden funcionar bajo dichas condiciones.[19]

Véase también

Referencias

  1. «Electricity generation using membrane and salt bridge microbial fuel cells». Water Research (en inglés) 39 (9): 1675-1686. 1 de mayo de 2005. ISSN 0043-1354. doi:10.1016/j.watres.2005.02.002. Consultado el 9 de marzo de 2018. 
  2. Poddar, Sushmita; Khurana, Surbhi (2011-6). «Geobacter: The Electric Microbe! Efficient Microbial Fuel Cells to Generate Clean, Cheap Electricity». Indian Journal of Microbiology 51 (2): 240-241. ISSN 0046-8991. PMID 22654173. doi:10.1007/s12088-011-0180-8. Consultado el 14 de marzo de 2018. 
  3. Liu, Hong; Ramnarayanan, Ramanathan; Logan, Bruce E. (1 de abril de 2004). «Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell». Environmental Science & Technology 38 (7): 2281-2285. ISSN 0013-936X. doi:10.1021/es034923g. Consultado el 8 de marzo de 2018. 
  4. Goswami, Rachna; Mishra, Vijay Kumar (4 de marzo de 2018). «A review of design, operational conditions and applications of microbial fuel cells». Biofuels 9 (2): 203-220. ISSN 1759-7269. doi:10.1080/17597269.2017.1302682. Consultado el 16 de julio de 2019. 
  5. Verstraete, Willy; Rabaey, Korneel (1 de junio de 2005). «Microbial fuel cells: novel biotechnology for energy generation». Trends in Biotechnology (en inglés) 23 (6): 291-298. ISSN 0167-7799. PMID 15922081. doi:10.1016/j.tibtech.2005.04.008. Consultado el 16 de julio de 2019. 
  6. Rabaey, Korneel; Lissens, Geert; Siciliano, Steven D.; Verstraete, Willy (1 de septiembre de 2003). «A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency». Biotechnology Letters (en inglés) 25 (18): 1531-1535. ISSN 1573-6776. doi:10.1023/A:1025484009367. Consultado el 16 de julio de 2019. 
  7. He, Li; Du, Peng; Chen, Yizhong; Lu, Hongwei; Cheng, Xi; Chang, Bei; Wang, Zheng (1 de mayo de 2017). «Advances in microbial fuel cells for wastewater treatment». Renewable and Sustainable Energy Reviews 71: 388-403. ISSN 1364-0321. doi:10.1016/j.rser.2016.12.069. Consultado el 16 de julio de 2019. 
  8. Verstraete, Willy; Rabaey, Korneel (1 de junio de 2005). «Microbial fuel cells: novel biotechnology for energy generation». Trends in Biotechnology (en inglés) 23 (6): 291-298. ISSN 0167-7799. PMID 15922081. doi:10.1016/j.tibtech.2005.04.008. Consultado el 16 de julio de 2019. 
  9. Watanabe, Kazuya (1 de diciembre de 2008). «Recent Developments in Microbial Fuel Cell Technologies for Sustainable Bioenergy». Journal of Bioscience and Bioengineering 106 (6): 528-536. ISSN 1389-1723. doi:10.1263/jbb.106.528. Consultado el 16 de julio de 2019. 
  10. You, S.J. Zhao, Q.L. Jiang, J.Q. Zhang, J.N. (2006). Treatment of DomesticWastewaterwith Simultaneous Electricity Generation in Microbial Fuel Cell under Continuous Operation. Croatian Society of Chemical Engineers. OCLC 743082529. Consultado el 17 de julio de 2019. 
  11. Colprim, J.; Balaguer, M. D.; Coma, M.; Serra, M.; Puig, S. (1 de agosto de 2011). «Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs)». Water Science and Technology (en inglés) 64 (4): 904-909. ISSN 0273-1223. doi:10.2166/wst.2011.401. Consultado el 17 de julio de 2019. 
  12. Choi, Jeongdong; Ahn, Youngho (30 de noviembre de 2013). «Continuous electricity generation in stacked air cathode microbial fuel cell treating domestic wastewater». Journal of Environmental Management 130: 146-152. ISSN 0301-4797. doi:10.1016/j.jenvman.2013.08.065. Consultado el 17 de julio de 2019. 
  13. Rodrigo, M. A.; Cañizares, P.; Lobato, J.; Paz, R.; Sáez, C.; Linares, J. J. (10 de junio de 2007). «Production of electricity from the treatment of urban waste water using a microbial fuel cell». Journal of Power Sources. CONAPPICE 2006 169 (1): 198-204. ISSN 0378-7753. doi:10.1016/j.jpowsour.2007.01.054. Consultado el 17 de julio de 2019. 
  14. Ali, Amr El-Hag; Gomaa, Ola M.; Fathey, Reham; Kareem, Hussein Abd El; Zaid, Mohamed Abou (1 de septiembre de 2015). «Optimization of double chamber microbial fuel cell for domestic wastewater treatment and electricity production». Journal of Fuel Chemistry and Technology 43 (9): 1092-1099. ISSN 1872-5813. doi:10.1016/S1872-5813(15)30032-3. Consultado el 17 de julio de 2019. 
  15. Cheng, Shaoan; Liu, Hong; Logan, Bruce E. (1 de abril de 2006). «Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing». Environmental Science & Technology 40 (7): 2426-2432. ISSN 0013-936X. doi:10.1021/es051652w. Consultado el 17 de julio de 2019. 
  16. Ahn, Yongtae; Hatzell, Marta C.; Zhang, Fang; Logan, Bruce E. (1 de marzo de 2014). «Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater». Journal of Power Sources 249: 440-445. ISSN 0378-7753. doi:10.1016/j.jpowsour.2013.10.081. Consultado el 17 de julio de 2019. 
  17. Yokoyama, Hiroshi; Ohmori, Hideyuki; Ishida, Mitsuyoshi; Waki, Miyoko; Tanaka, Yasuo (2006). «Treatment of cow-waste slurry by a microbial fuel cell and the properties of the treated slurry as a liquid manure». Animal Science Journal (en inglés) 77 (6): 634-638. ISSN 1740-0929. doi:10.1111/j.1740-0929.2006.00395.x. Consultado el 17 de julio de 2019. 
  18. Fangzhou, Du; Zhenglong, Li; Shaoqiang, Yang; Beizhen, Xie; Hong, Liu (1 de mayo de 2011). «Electricity generation directly using human feces wastewater for life support system». Acta Astronautica. 17th IAA Humans in Space Symposium 68 (9): 1537-1547. ISSN 0094-5765. doi:10.1016/j.actaastro.2009.12.013. Consultado el 17 de julio de 2019. 
  19. Rahimnejad, Mostafa; Adhami, Arash; Darvari, Soheil; Zirepour, Alireza; Oh, Sang-Eun (1 de septiembre de 2015). «Microbial fuel cell as new technology for bioelectricity generation: A review». Alexandria Engineering Journal 54 (3): 745-756. ISSN 1110-0168. doi:10.1016/j.aej.2015.03.031. Consultado el 17 de julio de 2019. 
  20. Angathevar Veluchamy, Raaja Raajan. (2007). Chemical sensors and instrumentation powered by microbial fuel cells. OCLC 213444707. Consultado el 17 de julio de 2019. 
  21. He, Li; Du, Peng; Chen, Yizhong; Lu, Hongwei; Cheng, Xi; Chang, Bei; Wang, Zheng (1 de mayo de 2017). «Advances in microbial fuel cells for wastewater treatment». Renewable and Sustainable Energy Reviews 71: 388-403. ISSN 1364-0321. doi:10.1016/j.rser.2016.12.069. Consultado el 17 de julio de 2019. 
  22. Du, Zhuwei; Li, Haoran; Gu, Tingyue (1 de septiembre de 2007). «A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy». Biotechnology Advances 25 (5): 464-482. ISSN 0734-9750. doi:10.1016/j.biotechadv.2007.05.004. Consultado el 17 de julio de 2019. 
  •   Datos: Q56323998

celda, combustible, microbiano, celda, combustible, microbiano, celda, combustible, biológica, sistema, electroquímico, genera, energía, eléctrica, partir, interacción, microorganismos, bacterias, medio, acuoso, oxidación, materia, orgánica, biomasa, normalmen. Una celda de combustible microbiano CCM o celda de combustible biologica CCB es un sistema bio electroquimico que genera energia electrica a partir de la interaccion de microorganismos bacterias en un medio acuoso por la oxidacion de la materia organica biomasa 1 Normalmente comprende un catodo un anodo una membrana de intercambio cationico o protonico y un circuito electrico 2 los combustibles pueden ser glucosa acetato lactosa entre otros componentes empleados siempre y cuando tengan un factor de biodegradabilidad aprovechable por los microorganismos Este tipo de tecnologias se utilizan actualmente en la produccion de energia y en el tratamiento de aguas residuales 3 Las CCM se realizaban a traves de cultivos de bacterias la bacteria Geobacter sulfurreducens es una de las bacterias mas utilizadas en el estudio de celdas de combustible biologicas por su alta eficiencia de conversion energetica este hecho fue descubierto por el Dr Derek R Lovley y sus colaboradores en el ano de 1987 esta bacteria tiene el potencial para realizar biorremediacion 2 esta tecnologia se encuentra principalmente en etapa de desarrollo experimental y piloto las potencias electricas obtenidas son aun bajas y no hay actualmente aplicaciones comerciales disponibles la investigacion hace prever un futuro prometedor a mediano plazo Estos sistemas usan diferentes tipos de materiales para la elaboracion del electrodo para elevar la captacion electrica evitar la formacion de biopelicula y tener mayor ergonomia en el caso de ser un material conductor flexible Indice 1 Principio de funcionamiento 2 Aplicacion en el tratamiento de aguas residuales 3 Limitaciones 4 Vease tambien 5 ReferenciasPrincipio de funcionamiento EditarLas CCM comprenden de una camara anodicas y otra catodica aisladas por una membrana de intercambio de protones MIP 4 Los microorganismos presentes en el compartimiento anodico oxidan sustratos en general promoviendo el intercambio de electrones y protones entre ambas partes El metabolismo bacteriano se encuentra determinado por la influencia del sustrato y el potencial del anodo 5 El incremento de la corriente en la CCM disminuira el potencial del anodo por lo que las bacterias se veran obligadas a liberar electrones a traves de complejos mas reducidos Mientras que en altos potenciales anodicos las bacterias pueden usar la cadena respiratoria bajo un escenario de metabolismo oxidativo transportando electrones y protones por medio de enzimas 6 Los electrones son absorbidos por el anodo y se transfieren al catodo a traves de un circuito externo Los protones pasan por la camara catodica y se unen el oxigeno para formar agua despues de cruzar la MIP o un puente de sal 7 8 La produccion de corriente electrica se logra separando los microorganismos del oxigeno para lo cual se requiere de una camara anodica anaerobica donde los electrones viajan a traves de una resistencia 9 En ciertos casos los microorganismos pueden producir su propio mediador soluble de transferencia de electrones o pueden transferir directamente electrones a la superficie del anodo El catodo puede estar expuesto al aire o sumergido en agua aerobia 8 Aplicacion en el tratamiento de aguas residuales EditarAdemas de la generacion de electricidad las CCM tienen otras aplicaciones como biosensores en el tratamiento de aguas residuales y produccion de biohidrogeno Karthikeyan et al 2015 Para su aplicacion en el tratamiento de aguas residuales tanto la potencia de salida y eficiencia de Coulomb son parametros importantes Estas guardan estrecha relacion con los tipos de microorganismo que se encuentren en la camara anodica la configuracion de las CCM y las condiciones de operacion En la siguiente tabla se pueden apreciar algunos casos aplicados al tratamiento de agua residual municipal y agricola Agua residual Tipo de CCM Caracteristicas y resultados FuenteMunicipal Catodo de aire Maxima densidad de potencia 103 mW m 5 8 W m Remocion de DQO 71 Eficiencia de Coulomb 18 4 10 Potencia 1 42 W m Remocion de DQO 80 11 Flujo en serie bajo condiciones mesofilicas Maxima densidad de potencia 420 mW m 12 8 W m Remocion de DQO 44 Eficiencia de Coulomb 13 12 Dos camaras Maxima densidad de potencia 25 mW m Remocion de DQO 30 13 Muestras recolectadas en invierno i y verano v Maxima densidad de potencia i 209 mW m y v 117 mW m Remocion de DQO i 2 7 y v 72 85 14 Una camara Maxima densidad de potencia 464 mW m 15 5 W m Remocion de DQO 40 50 Eficiencia de Coulomb 27 15 Un catodo de aire y anodo de ocho electrodos de grafito Maxima densidad de potencia 26 mW m Remocion DQO 80 Eficiencia de Coulomb menor al 12 3 Conjuntos electrodo separador y espaciados Conjunto de electrodo separador SEA y electrodos espaciados SPA Maxima densidad de potencia SEA 328 mW m y 289 mW m SPA Remocion de DQO SEA 78 y SPA 87 Eficiencia de Coulomb SEA 20 y SPA 12 5 16 Agricola Dos camaras Maxima densidad de potencia 0 34 mW m Remocion de DBO 84 Remocion de elementos en fertilizante 84 N 70 P y 91 K 17 Maxima densidad de potencia 22 mW m Remocion DQO total 71 Remocion DQO soluble 88 18 DQO demanda quimica de oxigenoLimitaciones EditarEl problema principal en este tipo de sistemas es que la energia generada puede no ser suficiente como para hacer funcionar continuamente un sensor o un transmisor 19 Sin embargo esto podria resolverse incrementando la superficie de los electrodos o utilizando un programa de administracion energetica donde los datos se transfieren solo cuando se almacena la energia suficiente lo que ocurriria utilizando un ultracondensador 20 La baja densidad de potencia surge por la alta resistencia interna condiciones de la solucion baja degradabilidad del sustrato y la cinetica del biofilm Frente a lo cual la aplicacion de CCM apiladas en serie o paralelo seria esencial para incrementar significativamente la corriente y el voltaje 21 Otra desventaja importante de las CCM es su dependencia de biofilms para el transporte de electrones 22 Para lo cual se esperaria en un futuro poder obtener un consorcio microbiano optimizado y asi operar una CCM sin mediadores mientras se logra una elevada transferencia de masa y altas tasas de transferencia de electrones 5 Adicionalmente debido a que las reacciones microbianas son lentas a bajas temperaturas las CCM no pueden funcionar bajo dichas condiciones 19 Vease tambien EditarAmonio Biocarburante Desarrollo sostenible Eutrofizacion Nitrato Pila de combustible Tecnologia del hidrogenoReferencias Editar Electricity generation using membrane and salt bridge microbial fuel cells Water Research en ingles 39 9 1675 1686 1 de mayo de 2005 ISSN 0043 1354 doi 10 1016 j watres 2005 02 002 Consultado el 9 de marzo de 2018 a b Poddar Sushmita Khurana Surbhi 2011 6 Geobacter The Electric Microbe Efficient Microbial Fuel Cells to Generate Clean Cheap Electricity Indian Journal of Microbiology 51 2 240 241 ISSN 0046 8991 PMID 22654173 doi 10 1007 s12088 011 0180 8 Consultado el 14 de marzo de 2018 a b Liu Hong Ramnarayanan Ramanathan Logan Bruce E 1 de abril de 2004 Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell Environmental Science amp Technology 38 7 2281 2285 ISSN 0013 936X doi 10 1021 es034923g Consultado el 8 de marzo de 2018 Goswami Rachna Mishra Vijay Kumar 4 de marzo de 2018 A review of design operational conditions and applications of microbial fuel cells Biofuels 9 2 203 220 ISSN 1759 7269 doi 10 1080 17597269 2017 1302682 Consultado el 16 de julio de 2019 a b Verstraete Willy Rabaey Korneel 1 de junio de 2005 Microbial fuel cells novel biotechnology for energy generation Trends in Biotechnology en ingles 23 6 291 298 ISSN 0167 7799 PMID 15922081 doi 10 1016 j tibtech 2005 04 008 Consultado el 16 de julio de 2019 Rabaey Korneel Lissens Geert Siciliano Steven D Verstraete Willy 1 de septiembre de 2003 A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency Biotechnology Letters en ingles 25 18 1531 1535 ISSN 1573 6776 doi 10 1023 A 1025484009367 Consultado el 16 de julio de 2019 He Li Du Peng Chen Yizhong Lu Hongwei Cheng Xi Chang Bei Wang Zheng 1 de mayo de 2017 Advances in microbial fuel cells for wastewater treatment Renewable and Sustainable Energy Reviews 71 388 403 ISSN 1364 0321 doi 10 1016 j rser 2016 12 069 Consultado el 16 de julio de 2019 a b Verstraete Willy Rabaey Korneel 1 de junio de 2005 Microbial fuel cells novel biotechnology for energy generation Trends in Biotechnology en ingles 23 6 291 298 ISSN 0167 7799 PMID 15922081 doi 10 1016 j tibtech 2005 04 008 Consultado el 16 de julio de 2019 Watanabe Kazuya 1 de diciembre de 2008 Recent Developments in Microbial Fuel Cell Technologies for Sustainable Bioenergy Journal of Bioscience and Bioengineering 106 6 528 536 ISSN 1389 1723 doi 10 1263 jbb 106 528 Consultado el 16 de julio de 2019 You S J Zhao Q L Jiang J Q Zhang J N 2006 Treatment of DomesticWastewaterwith Simultaneous Electricity Generation in Microbial Fuel Cell under Continuous Operation Croatian Society of Chemical Engineers OCLC 743082529 Consultado el 17 de julio de 2019 Colprim J Balaguer M D Coma M Serra M Puig S 1 de agosto de 2011 Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells MFCs Water Science and Technology en ingles 64 4 904 909 ISSN 0273 1223 doi 10 2166 wst 2011 401 Consultado el 17 de julio de 2019 Choi Jeongdong Ahn Youngho 30 de noviembre de 2013 Continuous electricity generation in stacked air cathode microbial fuel cell treating domestic wastewater Journal of Environmental Management 130 146 152 ISSN 0301 4797 doi 10 1016 j jenvman 2013 08 065 Consultado el 17 de julio de 2019 Rodrigo M A Canizares P Lobato J Paz R Saez C Linares J J 10 de junio de 2007 Production of electricity from the treatment of urban waste water using a microbial fuel cell Journal of Power Sources CONAPPICE 2006 169 1 198 204 ISSN 0378 7753 doi 10 1016 j jpowsour 2007 01 054 Consultado el 17 de julio de 2019 Ali Amr El Hag Gomaa Ola M Fathey Reham Kareem Hussein Abd El Zaid Mohamed Abou 1 de septiembre de 2015 Optimization of double chamber microbial fuel cell for domestic wastewater treatment and electricity production Journal of Fuel Chemistry and Technology 43 9 1092 1099 ISSN 1872 5813 doi 10 1016 S1872 5813 15 30032 3 Consultado el 17 de julio de 2019 Cheng Shaoan Liu Hong Logan Bruce E 1 de abril de 2006 Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing Environmental Science amp Technology 40 7 2426 2432 ISSN 0013 936X doi 10 1021 es051652w Consultado el 17 de julio de 2019 Ahn Yongtae Hatzell Marta C Zhang Fang Logan Bruce E 1 de marzo de 2014 Different electrode configurations to optimize performance of multi electrode microbial fuel cells for generating power or treating domestic wastewater Journal of Power Sources 249 440 445 ISSN 0378 7753 doi 10 1016 j jpowsour 2013 10 081 Consultado el 17 de julio de 2019 Yokoyama Hiroshi Ohmori Hideyuki Ishida Mitsuyoshi Waki Miyoko Tanaka Yasuo 2006 Treatment of cow waste slurry by a microbial fuel cell and the properties of the treated slurry as a liquid manure Animal Science Journal en ingles 77 6 634 638 ISSN 1740 0929 doi 10 1111 j 1740 0929 2006 00395 x Consultado el 17 de julio de 2019 Fangzhou Du Zhenglong Li Shaoqiang Yang Beizhen Xie Hong Liu 1 de mayo de 2011 Electricity generation directly using human feces wastewater for life support system Acta Astronautica 17th IAA Humans in Space Symposium 68 9 1537 1547 ISSN 0094 5765 doi 10 1016 j actaastro 2009 12 013 Consultado el 17 de julio de 2019 a b Rahimnejad Mostafa Adhami Arash Darvari Soheil Zirepour Alireza Oh Sang Eun 1 de septiembre de 2015 Microbial fuel cell as new technology for bioelectricity generation A review Alexandria Engineering Journal 54 3 745 756 ISSN 1110 0168 doi 10 1016 j aej 2015 03 031 Consultado el 17 de julio de 2019 Angathevar Veluchamy Raaja Raajan 2007 Chemical sensors and instrumentation powered by microbial fuel cells OCLC 213444707 Consultado el 17 de julio de 2019 He Li Du Peng Chen Yizhong Lu Hongwei Cheng Xi Chang Bei Wang Zheng 1 de mayo de 2017 Advances in microbial fuel cells for wastewater treatment Renewable and Sustainable Energy Reviews 71 388 403 ISSN 1364 0321 doi 10 1016 j rser 2016 12 069 Consultado el 17 de julio de 2019 Du Zhuwei Li Haoran Gu Tingyue 1 de septiembre de 2007 A state of the art review on microbial fuel cells A promising technology for wastewater treatment and bioenergy Biotechnology Advances 25 5 464 482 ISSN 0734 9750 doi 10 1016 j biotechadv 2007 05 004 Consultado el 17 de julio de 2019 Datos Q56323998 Obtenido de https es wikipedia org w index php title Celda de combustible microbiano amp oldid 143525375, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos