fbpx
Wikipedia

Bola de gluones

En física de partículas, una bola de gluones es una partícula compuesta hipotética.[1]​ Consiste exclusivamente de gluones, sin quarks. Dicho estado es posible porque los gluones tienen carga de color y experimentan la interacción nuclear fuerte. Las bolas de gluones son extremadamente difícil de identificar en los aceleradores de partículas, porque se mezclan con estados mesónicos normales.[2]

Los cálculos teóricos muestran que las bolas de gluones deberían existir en rangos energéticos accesibles con la tecnología de colisionadores actuales. Sin embargo, debido a la ya mencionada dificultad (entre otras), hasta 2013 no han sido observados o identificados con certeza.[3]​ La predicción de que las bolas de gluones existen es una de las más importantes predicciones del modelo estándar de física de partículas que no ha sido aún confirmada experimentalmente.[4]

Propiedades de las bolas de gluones

En principio, es teóricamente posible calcular de manera exacta todas las propiedades posibles de las bolas de gluones, derivadas de las ecuaciones y constantes físicas de la cromodinámica cuántica (QCD) sin ningún experimento adicional. Por lo tanto, las propiedades predichas de estas partículas hipotéticas se pueden describir en gran detalle usando la sólo la física del modelo estándar que tiene una aceptación bastante amplia dentro de la física teórica. Pero, el hecho de que los cálculos de la cromodinámica cuántica son tan difíciles que las soluciones a estas ecuaciones son casi siempre aproximaciones numéricas (alcanzados por varias metodologías muy diferentes) y la considerable incertidumbre en la medición de algunas de las constantes físicas fundamentales pertinentes (en relación con la interacción electrodébil) puede conducir a una variación en las predicciones teóricas de las propiedades de las bolas de gluones, como la masa y la proporción de la bifurcación del decaimiento (?) de las bolas de gluones.

Partículas constituyentes y carga de color

Los estudios teóricos de las bolas de gluones se han enfocado en bolas de gluones consistentes en dos o tres gluones, en analogía con los mesones y bariones que tienen dos y tres quarks respectivamente. Como en el caso de los mesones y los bariones, las bolas de gluones pueden ser neutrales en carga de color (o con isospin=0). El número bariónico de las bolas de gluones es cero.

Momento angular total

Las bolas de gluones de dos gluones pueden tener un número cuántico de momento angular total (J) de 0 (siendo escalar o pseudoescalares) o 2 (tensores). Las bolas de gluones de tres gluones pueden tener un número cuántico de momento angular total (J) de 1 (bosones vectoriales) o 3. Todas las bolas de gluones tienen un número cuántico de momento total angular entero lo que implica que son bosones más que fermiones.

Las bolas de gluones son las únicas partículas predichas por el modelo estándar con un número cuántico de momento angular total (J) (algunas veces llamado espín intrínseco) que puede ser bien 2 o 3 en sus estados fundamentales, aunque los mesones compuestos de dos quarks con J=0 y J=1 con masas similares han sido observados y otros mesones con estados excitados pueden tener estos valores de su número cuántico de momento angular total.

Las partículas fundamentales con estados fundamentales de J=0 o J=2 son distinguibles fácilmente de las bolas de gluones. Los hipotéticos gravitones, a pesar de tener un número cuántico de momento total angular de J=2, no tendrían masa ni carga de color así que serían fácilmente distinguibles de las bolas de gluones. El bosón de Higgs del modelo estándar (que tiene una masa estimada experimentalmente de en torno a 125-126 GeV/c² , aunque el status de esta partícula medida como el bosón de Higgs del modelo estándar aún no ha sido plenamente confirmada) es la única partícula fundamental con J=0 en el modelo estándar y tampoco tiene carga de color así que no interacciona con la fuerza nuclear fuerte. El bosón de Higgs en torno a 25 u 80 veces más pesado que la masa de las diferentes bolas de gluones predichas por el modelo estándar.

Carga eléctrica

Todas las bolas de gluones tendrían una carga eléctrica, Q(e), de cero, puesto que los gluones en sí mismos no tienen ninguna carga eléctrica.

Masa y paridad

La cromodinámica cuántica predice que las bolas de gluones son masivas, a pesar del hecho de que los gluones en sí mismos tienen masa cero en reposo en el modelo estándar. Las bolas de gluones con las cuatro posibles combinaciones de números cuánticos P (paridad) y C (c-paridad) se han considerado para cada posible momento angular total, produciendo al menos quince estados posibles de bolas de gluones, incluyendo estados excitados de bolas de gluones que comparten los mismos números cuánticos, pero tienen diferentes masas con los estados más ligeros teniendo masas tan bajas como 1.4 GeV/c² (para una bola de gluones con los números cuánticos J=0, P=+, C=+), y los estados más pesados teniendo unas masas tan grandes como casi 5 GeV/c² (para una bola de gluones con los números cuánticos J=0, P=+, C=-).[5]

Estas masas son del mismo orden de magnitud que las masas experimentalmente observadas de los mesones y bariones, así como de las masas de los leptones tau, quark encantado, quark fondo, algunos isótopos de hidrógeno y algunos isótopos de helio.

Estabilidad y canales de desintegración

Al igual que todos los mesones y bariones del modelo estándar, con la excepción de los protones, son inestables, todas las bolas de gluones predichas por el modelo estándar son inestables, con varios cálculos cromodinámicos prediciendo que la desintegración total (que está relacionada funcionalmente con su vida media) por varios estados de las bolas de gluones.

Los cálculos de la QCD también hacen predicciones atendiendo a los patrones de desintegración esperados para las bolas de gluones.[6][7]​ Por ejemplo, las bolas de gluones no tendrían radiación (?) o dos fotones de desintegración, pero tendrían desintegraciones en pares de piones, pares de kaones o pares de mesones eta.[6]

Impacto práctico sobre la física macroscópica de baja energía

Debido a que las bolas de gluones del modelo estándar son tan efímeras (desintegrándose casi de inmediato en productos de desintegración más estables) y sólo se generan en física de altas energías, las bolas de gluones sólo surgen de manera sintética en las condiciones naturales que se encuentran en la Tierra que los humanos pueden observar fácilmente. Son científicamente notables sobre todo porque han sido una predicción comprobable del modelo estándar, y no a causa del impacto fenomenológico sobre los procesos macroscópicos, o su aplicaciones en ingeniería.

Simulaciones QDC reticuladas

La teoría de campo reticulado provee una manera de estudiar teóricamente el espectro de las bolas de gluones y a partir de los primeros principios. Algunas de las primeras cantidades calculadas usando métodos QCD reticulados (en 1980) eran estimaciones de masas de bolas de gluones.[8]​ Morningstar y Peardon[9]​ calcularon computacionalmente en 1999 las masas de las bolas de gluones más ligeros en la QCD sin quarks dinámicos. Los tres estados más bajos están tabulados abajo. La presencia de quarks dinámicos alteraría ligeramente estos datos, pero también haría los cálculos computaciones más difíciles. Desde entonces los cálculos dentro de la QCD (retículo y reglas de suma (?)) han encontrado que las bolas de gluones más ligeras serían escalares con masa en el rango de los 1000-1700 MeV.[10]

J P'C masa
0++ 1730 ±80 MeV
2++ 2400 ±120 MeV
0−+ 2590 ±130 MeV

Candidatos experimentales

Los experimentos en aceleradores de partículas son capaces frecuentemente de identificar partículas compuestas inestables y asignar masas a esas partículas con una precisión de aproximadamente 1 MeV/c², sin ser capaces de asignar de inmediato a la resonancia de las partículas que se observa todas las propiedades de esa partícula. Muchas de tales partículas se han detectado, a pesar de que algunas partículas detectadas en algunos experimentos, pero no en otros, pueden ser vistos como dudosas. Algunas de las candidatas de resonancias de partículas que podrían ser bolas de gluones, aunque la evidencia no es definitiva, son las siguientes:


  • X(3020) observada por BaBaR es un candidato para un estado excitado de 2-+, 1+- or 1-- estados de bolas de gluones (?) con una masa de en torno a 3.02 GeV/c².[4]
  • f0(500)/σ -- las propiedades de esta partícula son consistentes posiblemente con una bola de gluones de 1000 MeV o 1500 MeV de masa.[11]
  • f0(980) -- la estructura de esta partícula compuesta es consistente con la existencia de una bola de gluones ligera.[11]
  • f0(1370) -- la existencia de esta resonancia está disputada pero es un candidato de un estado mezclado de una bola de gluones y un mesón.[11]
  • f0(1500) -- la existencia de esta resonancia no está discutida pero su estatus como estado mezcla de mesón-bola de gluones no está bien establecido.[11]
  • f0(1710) -- la existencia de esta resonancia no está discutida pero su estatus como estado mezcla de mesón-bola de gluones o bola de gluones pura no está bien establecido.[11]
  • Los chorros de gluones en el experimento LEP mostraron un 40% de exceso sobre las expectativas teóricas de clusters electromagnéticamente neutrales lo que sugiere partículas eletromagnéticamente neutras esperadas en un ambiente rico en gluones donde las bolas de gluones podrían estar presentes.[11]

Muchos de estos candidatos han sido sujeto de investigaciones activas en los pasados 18 años.[6]​ El experimento GlueX, programado para empezar en 2014, ha sido específicamente diseñado para producir evidencias experimentales definitivas de las bolas de gluones

Véase también

Referencias

  1. * Frank Close and Phillip R. Page, "Glueballs", Scientific American, vol. 279 no. 5 (November 1998) pp. 80–85
  2. Vincent Mathieu; Nikolai Kochelev; Vicente Vento (2009). «The Physics of Glueballs». International Journal of Modern Physics E 18: 1-49. Bibcode:2009IJMPE..18....1M. arXiv:0810.4453. doi:10.1142/S0218301309012124.  Glueball on arxiv.org
  3. Wolfgang Ochs, "The Status of Glueballs" J.Phys.G: Nuclear and Particle Physics 40, 67 (2013) DOI: 10.1088/0954-3899/40/4/043001 http://arxiv.org/pdf/1301.5183v3.pdf
  4. Y.K. Hsiao, C.Q. Geng, "Identifying Glueball at 3.02 GeV in Baryonic B Decays" (Version 2: October 9, 2013) http://arxiv.org/abs/1302.3331
  5. Wolfgang Ochs, "The Status of Glueballs" J.Phys.G: Nuclear and Particle Physics 40, 6 (2013) DOI: 10.1088/0954-3899/40/4/043001 http://arxiv.org/pdf/1301.5183v3.pdf
  6. Walter Taki, "Search for Glueballs" (1996) http://www.slac.stanford.edu/cgi-wrap/getdoc/ssi96-006.pdf
  7. See, e.g., Walaa I. Eshraim, Stanislaus Janowski, "Branching ratios of the pseudoscalar glueball with a mass of 2.6 GeV", prepared for Proceedings of Confinement X - Conference on Quark Confinement and the Hadron Spectrum (Munich/Germany, 8-12 October 2012) (pre-print published January 15, 2013) http://arxiv.org/abs/1301.3345
  8. B. Berg. Plaquette-plaquette correlations in the su(2) lattice gauge theory. Phys. Lett., B97:401, 1980.
  9. Colin J. Morningstar; Mike Peardon (1999). «Glueball spectrum from an anisotropic lattice study». Physical Review D 60 (3): 034509. Bibcode:1999PhRvD..60c4509M. arXiv:hep-lat/9901004. doi:10.1103/PhysRevD.60.034509. 
  10. Wolfgang Ochs, "The status of glueballs" Source: JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS Volume: 40 Issue: 4 Article Number: 043001 DOI: 10.1088/0954-3899/40/4/043001 Published: APR 2013
  11. Wolfgang Ochs (2013). «The status of glueballs». Journal of Physics G 40 (4): 043001. doi:10.1088/0954-3899/40/4/043001. 
  •   Datos: Q1199270
  •   Multimedia: Glueball

bola, gluones, texto, sigue, traducción, defectuosa, quieres, colaborar, wikipedia, busca, artículo, original, mejora, esta, traducción, copia, pega, siguiente, código, página, discusión, autor, este, artículo, subst, aviso, traducido, física, partículas, bola. El texto que sigue es una traduccion defectuosa Si quieres colaborar con Wikipedia busca el articulo original y mejora esta traduccion Copia y pega el siguiente codigo en la pagina de discusion del autor de este articulo subst Aviso mal traducido Bola de gluones En fisica de particulas una bola de gluones es una particula compuesta hipotetica 1 Consiste exclusivamente de gluones sin quarks Dicho estado es posible porque los gluones tienen carga de color y experimentan la interaccion nuclear fuerte Las bolas de gluones son extremadamente dificil de identificar en los aceleradores de particulas porque se mezclan con estados mesonicos normales 2 Los calculos teoricos muestran que las bolas de gluones deberian existir en rangos energeticos accesibles con la tecnologia de colisionadores actuales Sin embargo debido a la ya mencionada dificultad entre otras hasta 2013 no han sido observados o identificados con certeza 3 La prediccion de que las bolas de gluones existen es una de las mas importantes predicciones del modelo estandar de fisica de particulas que no ha sido aun confirmada experimentalmente 4 Indice 1 Propiedades de las bolas de gluones 1 1 Particulas constituyentes y carga de color 1 2 Momento angular total 1 3 Carga electrica 1 4 Masa y paridad 1 5 Estabilidad y canales de desintegracion 2 Impacto practico sobre la fisica macroscopica de baja energia 3 Simulaciones QDC reticuladas 4 Candidatos experimentales 5 Vease tambien 6 ReferenciasPropiedades de las bolas de gluones EditarEn principio es teoricamente posible calcular de manera exacta todas las propiedades posibles de las bolas de gluones derivadas de las ecuaciones y constantes fisicas de la cromodinamica cuantica QCD sin ningun experimento adicional Por lo tanto las propiedades predichas de estas particulas hipoteticas se pueden describir en gran detalle usando la solo la fisica del modelo estandar que tiene una aceptacion bastante amplia dentro de la fisica teorica Pero el hecho de que los calculos de la cromodinamica cuantica son tan dificiles que las soluciones a estas ecuaciones son casi siempre aproximaciones numericas alcanzados por varias metodologias muy diferentes y la considerable incertidumbre en la medicion de algunas de las constantes fisicas fundamentales pertinentes en relacion con la interaccion electrodebil puede conducir a una variacion en las predicciones teoricas de las propiedades de las bolas de gluones como la masa y la proporcion de la bifurcacion del decaimiento de las bolas de gluones Particulas constituyentes y carga de color Editar Los estudios teoricos de las bolas de gluones se han enfocado en bolas de gluones consistentes en dos o tres gluones en analogia con los mesones y bariones que tienen dos y tres quarks respectivamente Como en el caso de los mesones y los bariones las bolas de gluones pueden ser neutrales en carga de color o con isospin 0 El numero barionico de las bolas de gluones es cero Momento angular total Editar Las bolas de gluones de dos gluones pueden tener un numero cuantico de momento angular total J de 0 siendo escalar o pseudoescalares o 2 tensores Las bolas de gluones de tres gluones pueden tener un numero cuantico de momento angular total J de 1 bosones vectoriales o 3 Todas las bolas de gluones tienen un numero cuantico de momento total angular entero lo que implica que son bosones mas que fermiones Las bolas de gluones son las unicas particulas predichas por el modelo estandar con un numero cuantico de momento angular total J algunas veces llamado espin intrinseco que puede ser bien 2 o 3 en sus estados fundamentales aunque los mesones compuestos de dos quarks con J 0 y J 1 con masas similares han sido observados y otros mesones con estados excitados pueden tener estos valores de su numero cuantico de momento angular total Las particulas fundamentales con estados fundamentales de J 0 o J 2 son distinguibles facilmente de las bolas de gluones Los hipoteticos gravitones a pesar de tener un numero cuantico de momento total angular de J 2 no tendrian masa ni carga de color asi que serian facilmente distinguibles de las bolas de gluones El boson de Higgs del modelo estandar que tiene una masa estimada experimentalmente de en torno a 125 126 GeV c aunque el status de esta particula medida como el boson de Higgs del modelo estandar aun no ha sido plenamente confirmada es la unica particula fundamental con J 0 en el modelo estandar y tampoco tiene carga de color asi que no interacciona con la fuerza nuclear fuerte El boson de Higgs en torno a 25 u 80 veces mas pesado que la masa de las diferentes bolas de gluones predichas por el modelo estandar Carga electrica Editar Todas las bolas de gluones tendrian una carga electrica Q e de cero puesto que los gluones en si mismos no tienen ninguna carga electrica Masa y paridad Editar La cromodinamica cuantica predice que las bolas de gluones son masivas a pesar del hecho de que los gluones en si mismos tienen masa cero en reposo en el modelo estandar Las bolas de gluones con las cuatro posibles combinaciones de numeros cuanticos P paridad y C c paridad se han considerado para cada posible momento angular total produciendo al menos quince estados posibles de bolas de gluones incluyendo estados excitados de bolas de gluones que comparten los mismos numeros cuanticos pero tienen diferentes masas con los estados mas ligeros teniendo masas tan bajas como 1 4 GeV c para una bola de gluones con los numeros cuanticos J 0 P C y los estados mas pesados teniendo unas masas tan grandes como casi 5 GeV c para una bola de gluones con los numeros cuanticos J 0 P C 5 Estas masas son del mismo orden de magnitud que las masas experimentalmente observadas de los mesones y bariones asi como de las masas de los leptones tau quark encantado quark fondo algunos isotopos de hidrogeno y algunos isotopos de helio Estabilidad y canales de desintegracion Editar Al igual que todos los mesones y bariones del modelo estandar con la excepcion de los protones son inestables todas las bolas de gluones predichas por el modelo estandar son inestables con varios calculos cromodinamicos prediciendo que la desintegracion total que esta relacionada funcionalmente con su vida media por varios estados de las bolas de gluones Los calculos de la QCD tambien hacen predicciones atendiendo a los patrones de desintegracion esperados para las bolas de gluones 6 7 Por ejemplo las bolas de gluones no tendrian radiacion o dos fotones de desintegracion pero tendrian desintegraciones en pares de piones pares de kaones o pares de mesones eta 6 Impacto practico sobre la fisica macroscopica de baja energia EditarDebido a que las bolas de gluones del modelo estandar son tan efimeras desintegrandose casi de inmediato en productos de desintegracion mas estables y solo se generan en fisica de altas energias las bolas de gluones solo surgen de manera sintetica en las condiciones naturales que se encuentran en la Tierra que los humanos pueden observar facilmente Son cientificamente notables sobre todo porque han sido una prediccion comprobable del modelo estandar y no a causa del impacto fenomenologico sobre los procesos macroscopicos o su aplicaciones en ingenieria Simulaciones QDC reticuladas EditarLa teoria de campo reticulado provee una manera de estudiar teoricamente el espectro de las bolas de gluones y a partir de los primeros principios Algunas de las primeras cantidades calculadas usando metodos QCD reticulados en 1980 eran estimaciones de masas de bolas de gluones 8 Morningstar y Peardon 9 calcularon computacionalmente en 1999 las masas de las bolas de gluones mas ligeros en la QCD sin quarks dinamicos Los tres estados mas bajos estan tabulados abajo La presencia de quarks dinamicos alteraria ligeramente estos datos pero tambien haria los calculos computaciones mas dificiles Desde entonces los calculos dentro de la QCD reticulo y reglas de suma han encontrado que las bolas de gluones mas ligeras serian escalares con masa en el rango de los 1000 1700 MeV 10 J P C masa0 1730 80 MeV2 2400 120 MeV0 2590 130 MeVCandidatos experimentales EditarLos experimentos en aceleradores de particulas son capaces frecuentemente de identificar particulas compuestas inestables y asignar masas a esas particulas con una precision de aproximadamente 1 MeV c sin ser capaces de asignar de inmediato a la resonancia de las particulas que se observa todas las propiedades de esa particula Muchas de tales particulas se han detectado a pesar de que algunas particulas detectadas en algunos experimentos pero no en otros pueden ser vistos como dudosas Algunas de las candidatas de resonancias de particulas que podrian ser bolas de gluones aunque la evidencia no es definitiva son las siguientes X 3020 observada por BaBaR es un candidato para un estado excitado de 2 1 or 1 estados de bolas de gluones con una masa de en torno a 3 02 GeV c 4 f0 500 s las propiedades de esta particula son consistentes posiblemente con una bola de gluones de 1000 MeV o 1500 MeV de masa 11 f0 980 la estructura de esta particula compuesta es consistente con la existencia de una bola de gluones ligera 11 f0 1370 la existencia de esta resonancia esta disputada pero es un candidato de un estado mezclado de una bola de gluones y un meson 11 f0 1500 la existencia de esta resonancia no esta discutida pero su estatus como estado mezcla de meson bola de gluones no esta bien establecido 11 f0 1710 la existencia de esta resonancia no esta discutida pero su estatus como estado mezcla de meson bola de gluones o bola de gluones pura no esta bien establecido 11 Los chorros de gluones en el experimento LEP mostraron un 40 de exceso sobre las expectativas teoricas de clusters electromagneticamente neutrales lo que sugiere particulas eletromagneticamente neutras esperadas en un ambiente rico en gluones donde las bolas de gluones podrian estar presentes 11 Muchos de estos candidatos han sido sujeto de investigaciones activas en los pasados 18 anos 6 El experimento GlueX programado para empezar en 2014 ha sido especificamente disenado para producir evidencias experimentales definitivas de las bolas de gluonesVease tambien EditarMesones exoticos GlueX Gluon Campo de Yang MillsReferencias Editar Frank Close and Phillip R Page Glueballs Scientific American vol 279 no 5 November 1998 pp 80 85 Vincent Mathieu Nikolai Kochelev Vicente Vento 2009 The Physics of Glueballs International Journal of Modern Physics E 18 1 49 Bibcode 2009IJMPE 18 1M arXiv 0810 4453 doi 10 1142 S0218301309012124 Glueball on arxiv org Wolfgang Ochs The Status of Glueballs J Phys G Nuclear and Particle Physics 40 67 2013 DOI 10 1088 0954 3899 40 4 043001 http arxiv org pdf 1301 5183v3 pdf a b Y K Hsiao C Q Geng Identifying Glueball at 3 02 GeV in Baryonic B Decays Version 2 October 9 2013 http arxiv org abs 1302 3331 Wolfgang Ochs The Status of Glueballs J Phys G Nuclear and Particle Physics 40 6 2013 DOI 10 1088 0954 3899 40 4 043001 http arxiv org pdf 1301 5183v3 pdf a b c Walter Taki Search for Glueballs 1996 http www slac stanford edu cgi wrap getdoc ssi96 006 pdf See e g Walaa I Eshraim Stanislaus Janowski Branching ratios of the pseudoscalar glueball with a mass of 2 6 GeV prepared for Proceedings of Confinement X Conference on Quark Confinement and the Hadron Spectrum Munich Germany 8 12 October 2012 pre print published January 15 2013 http arxiv org abs 1301 3345 B Berg Plaquette plaquette correlations in the su 2 lattice gauge theory Phys Lett B97 401 1980 Colin J Morningstar Mike Peardon 1999 Glueball spectrum from an anisotropic lattice study Physical Review D 60 3 034509 Bibcode 1999PhRvD 60c4509M arXiv hep lat 9901004 doi 10 1103 PhysRevD 60 034509 Wolfgang Ochs The status of glueballs Source JOURNAL OF PHYSICS G NUCLEAR AND PARTICLE PHYSICS Volume 40 Issue 4 Article Number 043001 DOI 10 1088 0954 3899 40 4 043001 Published APR 2013 a b c d e f Wolfgang Ochs 2013 The status of glueballs Journal of Physics G 40 4 043001 doi 10 1088 0954 3899 40 4 043001 Datos Q1199270 Multimedia Glueball Obtenido de https es wikipedia org w index php title Bola de gluones amp oldid 128966069, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos