fbpx
Wikipedia

Bacteria

Las bacterias son microorganismos procariotas que presentan un tamaño de unos pocos micrómetros (por lo general entre 0,5 y 5 μm de longitud) y diversas formas, incluyendo esferas (cocos), barras (bacilos), filamentos curvados (vibrios) y helicoidales (espirilos y espiroquetas).[8]​ Las bacterias son células procariotas, por lo que, a diferencia de las células eucariotas (de animales, plantas, hongos, etc.), no tienen el núcleo definido ni presentan, en general, orgánulos membranosos internos. Generalmente poseen una pared celular y esta se compone de peptidoglicano (también llamado mureína). Muchas bacterias disponen de flagelos o de otros sistemas de desplazamiento y son móviles. Del estudio de las bacterias se encarga la bacteriología, una rama de la microbiología.

 
Bacterias
Rango temporal: 4100–0Ma [1][2][3] HádicoReciente

Escherichia coli aumentada 15 000 veces.
Taxonomía
Dominio: Bacteria
Ehrenberg 1828 sensu Woese, Kandler & Wheelis 1990[4]
Filos[7]

Actinobacteria, Chloroflexi, Firmicutes

Aquificae, Armatimonadetes, Bacteroidetes, Caldiserica, Chlamydiae, Cyanobacteria, Coprothermobacterota, Deinococcus-Thermus, Dictyoglomi, Elusimicrobia, Fibrobacteres, Fusobacteria, Gemmatimonadetes, Planctomycetes, Proteobacteria,[n 1]Spirochaetes, Synergistetes, Thermodesulfobacteria, Thermotogae, Verrucomicrobia, Patescibacteria

Acetothermia, Aerophobetes, Atribacteria, Calescamantes, Calditrichaeota, Cloacimonetes, Dormibacteraeota, Eremiobacteraeota, Fervidibacteria, Fermentibacteria, Hydrogenedentes, Latescibacteria, Marinimicrobia, Margulisbacteria, Omnitrophica, Poribacteria, Pyropristinus, Zixibacteria, Delphibacteria, Aureabacteria, Firestonebacteria, Delongbacteria, Edwardsbacteria, Desantisbacteria, Desulfobacterota, Sumerlaeota, Riflebacteria, Goldbacteria, Eisenbacteria, Rateibacteria, Lindowbacteria, Schekmanbacteria, Muirbacteria, Wallbacteria, Krumholzibacteriota

Aunque el término bacteria incluía tradicionalmente a todos los procariotas, actualmente la taxonomía y la nomenclatura científica los divide en dos grupos. Estos dominios evolutivos se denominan Bacteria y Archaea (arqueas).[4]​ La división se justifica en las grandes diferencias que presentan ambos grupos a nivel bioquímico y genético. La presencia frecuente de pared de peptidoglicano junto con su composición en lípidos de membrana son la principal diferencia que presentan frente a las arqueas.

Las bacterias son los organismos más abundantes del planeta. Son ubicuas, se encuentran en todos los hábitats terrestres y acuáticos; crecen hasta en los más extremos como en los manantiales de aguas calientes y ácidas, en desechos radioactivos,[9]​ en las profundidades tanto del mar como de la corteza terrestre. Algunas bacterias pueden incluso sobrevivir en las condiciones extremas del espacio exterior. Se estima que se pueden encontrar en torno a 40 millones de células bacterianas en un gramo de tierra y un millón de células bacterianas en un mililitro de agua dulce. En total, se calcula que hay aproximadamente 5×1030 bacterias en el mundo.[10]

Las bacterias son imprescindibles para el reciclaje de los elementos, pues muchos pasos importantes de los ciclos biogeoquímicos dependen de estas. Como ejemplo cabe citar la fijación del nitrógeno atmosférico. Sin embargo, solamente la mitad de los filos conocidos de bacterias tienen especies que se pueden cultivar en el laboratorio,[11]​ por lo que una gran parte (se supone que cerca del 90 %) de las especies de bacterias existentes todavía no ha sido descrita.

En el cuerpo humano hay aproximadamente diez veces más células bacterianas que células humanas, con una gran cantidad de bacterias en la piel y en el tracto digestivo.[12]​ Aunque el efecto protector del sistema inmunológico hace que la gran mayoría de estas bacterias sea inofensiva o beneficiosa, algunas bacterias patógenas pueden causar enfermedades infecciosas, incluyendo cólera, difteria, escarlatina, lepra, sífilis, tifus, etc. Las enfermedades bacterianas mortales más comunes son las infecciones respiratorias, con una mortalidad solo para la tuberculosis de cerca de un millón y medio de personas en 2018.[13]​ En todo el mundo se utilizan antibióticos para tratar las infecciones bacterianas. Los antibióticos son efectivos contra las bacterias ya que inhiben la formación de la pared celular o detienen otros procesos de su ciclo de vida. También se usan extensamente en la agricultura y la ganadería en ausencia de enfermedad, lo que ocasiona que se esté generalizando la resistencia de las bacterias a los antibióticos.

En la industria, las bacterias son importantes en procesos tales como el tratamiento de aguas residuales, en la producción de mantequilla, queso, vinagre, yogur, etc., y en la fabricación de medicamentos y de otros productos químicos.[14]

Historia de la bacteriología

 
Anton van Leeuwenhoek, la primera persona que observó una bacteria a través de un microscopio.

La existencia de microorganismos fue conjeturada a finales de la Edad Media. En el Canon de medicina (1020), Abū Alī ibn Sīnā (Avicena) planteaba que las secreciones corporales estaban contaminadas por multitud de cuerpos extraños infecciosos antes de que una persona cayera enferma, pero no llegó a identificar a estos cuerpos como la primera causa de las enfermedades. Cuando la peste negra (peste bubónica) alcanzó al-Ándalus en el siglo XIV, Ibn Khatima e Ibn al-Jatib escribieron que las enfermedades infecciosas eran causadas por entidades contagiosas que penetraban en el cuerpo humano.[15][16]​ Estas ideas sobre el contagio como causa de algunas enfermedades se volvió muy popular durante el Renacimiento, sobre todo a través de los escritos de Girolamo Fracastoro.[17]

Las primeras bacterias fueron observadas por el neerlandés Anton van Leeuwenhoek en 1676 usando un microscopio de lente simple diseñado por él mismo.[18]​ Inicialmente las denominó animálculos y publicó sus observaciones en una serie de cartas que envió a la Royal Society de Londres.[19][20][21]​ Marc von Plenciz (s.XVIII) afirmó que las enfermedades contagiosas eran causadas por los pequeños organismos descubiertos por Leeuwenhoek. El nombre de bacteria fue introducido más tarde, en 1828, por Ehrenberg, deriva del griego βακτήριον bacterion, que significa bastón pequeño.[22]​ En 1835 Agostino Bassi, pudo demostrar experimentalmente que la enfermedad del gusano de seda era de origen microbiano, después dedujo que muchas enfermedades como el tifus, la sífilis y el cólera tendrían un origen análogo. En las clasificaciones de los años 1850 se ubicó a las bacterias con el nombre Schizomycetes dentro del reino vegetal y en 1875 se las agrupó junto a las algas verdeazuladas en Schizophyta.[23]

 
Enfermos de cólera.

Louis Pasteur demostró en 1859 que los procesos de fermentación eran causados por el crecimiento de microorganismos, y que dicho crecimiento no era debido a la generación espontánea, como se suponía hasta entonces. (Ni las levaduras, ni los mohos, ni los hongos, organismos normalmente asociados a estos procesos de fermentación, son bacterias). Pasteur, al igual que su contemporáneo y colega Robert Koch, fue uno de los primeros defensores de la teoría microbiana de la enfermedad.[24]​ Robert Koch fue pionero en la microbiología médica, trabajando con diferentes enfermedades infecciosas, como el cólera, el carbunco y la tuberculosis. Koch logró probar la teoría microbiana de la enfermedad tras sus investigaciones en tuberculosis, siendo por ello galardonado con el premio Nobel en Medicina y Fisiología, en el año 1905.[25]​ Estableció lo que se ha denominado desde entonces los postulados de Koch, mediante los cuales se estandarizaban una serie de criterios experimentales para demostrar si un organismo era o no el causante de una determinada enfermedad. Estos postulados se siguen utilizando hoy en día.[26]

Aunque a finales del siglo XIX ya se sabía que las bacterias eran causa de multitud de enfermedades, no existían tratamientos antibacterianos para combatirlas.[27]​ En 1882 Paul Ehrlich, pionero en el uso de tintes y colorantes para detectar e identificar bacterias, descubre la tinción del bacilo de Koch (tinción de Ziehl Neelsen) que poco después es perfeccionada por Ziehl y Neelsen independientemente.[28]​ En 1884 se descubre la tinción Gram. Ehrlich recibió el premio Nobel en 1908 por sus trabajos en el campo de la inmunología y en 1910 desarrolló el primer antibiótico por medio de unos colorantes capaces de teñir y matar selectivamente a las espiroquetas de la especie Treponema pallidum, la bacteria causante de la sífilis.[29]

Un gran avance en el estudio de las bacterias fue el descubrimiento realizado por Carl Woese en 1977, de que las arqueas presentan una línea evolutiva diferente a la de las bacterias.[30]​ Esta nueva taxonomía filogenética se basaba en la secuenciación del ARN ribosómico 16S y dividía a los procariotas en dos grupos evolutivos diferentes, en un sistema de tres dominios: Arquea, Bacteria y Eukarya.[31]

Origen y evolución de las bacterias

 
Árbol filogenético de la vida. Las bacterias se muestran hacia la izquierda.
 
Cladograma que muestra la divergencia temporal entre los principales filos de bacterias, arqueas y los eucariotas.[2][3]

Los seres vivos se dividen actualmente en tres dominios: bacterias (Bacteria), arqueas (Archaea) y eucariotas (Eukarya). En los dominios Archaea y Bacteria se incluyen los organismos procariotas, esto es, aquellos cuyas células no tienen un núcleo celular diferenciado, mientras que en el dominio Eukarya se incluyen las formas de vida más conocidas y complejas (protistas, animales, hongos y plantas).

El término "bacteria" se aplicó tradicionalmente a todos los microorganismos procariotas. Sin embargo, la filogenia molecular ha podido demostrar que los microorganismos procariotas se dividen en dos dominios, originalmente denominados Eubacteria y Archaebacteria, y ahora renombrados como Bacteria y Archaea,[32]​ que evolucionaron independientemente desde un ancestro común. Estos dos dominios, junto con el dominio Eukarya, constituyen la base del sistema de tres dominios, que actualmente es el sistema de clasificación más ampliamente utilizado en bacteriología.[33]

El término Mónera, actualmente en desuso, en la antigua clasificación de los cinco reinos significaba lo mismo que procariota, y así sigue siendo usado en muchos manuales y libros de texto.

Los antepasados de los procariotas modernos fueron los primeros organismos (las primeras células) que se desarrollaron sobre la tierra, hace unos 4.250 millones años.[2][34]​ Durante cerca de 3000 millones de años más, todos los organismos siguieron siendo microscópicos, siendo probablemente bacterias y arqueas las formas de vida dominantes.[35][36]​ Aunque existen fósiles bacterianos, por ejemplo los estromatolitos, al no conservar su morfología distintiva no se pueden emplear para estudiar la historia de la evolución bacteriana, o el origen de una especie bacteriana en particular. Sin embargo, las secuencias genéticas sí se pueden utilizar para reconstruir la filogenia de los seres vivos, y estos estudios sugieren que arqueas y eucariotas están más relacionados entre sí que con las bacterias.[37]

En la actualidad se discute si los primeros procariotas fueron bacterias o arqueas. Algunos investigadores piensan que Bacteria es el dominio más antiguo con Archaea y Eukarya derivando a partir de él,[33]​ mientras que otros consideran que el dominio más antiguo es Archaea.[38][39][40]​ En cambio, otros científicos sostienen que tanto Archaea como Eukarya son relativamente recientes (de hace unos 900 millones de años)[41][42]​ y que evolucionaron a partir de una bacteria Gram-positiva (probablemente una Actinobacteria), que mediante la sustitución de la pared bacteriana de peptidoglicano por otra de glucoproteína daría lugar a un organismo Neomura.[43][44]

Se ha sugerido que el último antepasado común universal de bacterias y arqueas es un termófilo que vivió hace 4250 millones de años durante el eón Hádico.[2]​ La bifurcación entre arqueas y bacterias se produjo hace 4100 millones de años, mientras que los eucariotas son más recientes y surgieron a mediados del Paleoproterozoico. La mayoría de los filos bacterianos se originaron durante el Arcaico. Las bacterias termófilas y las bacterias ultrapequeñas (CPR) se separaron del resto de las bacterias a finales del Hádico y a comienzos del Arcaico. Los grandes clados bacterianos Gracilicutes y Terrabacteria se originaron a mediados del Arcaico hace 3180 millones de años.[1][2][3]

Las bacterias también han estado implicadas en la segunda gran divergencia evolutiva, la que separó Archaea de Eukarya. Se considera que las mitocondrias de las eucariotas proceden de la endosimbiosis de una proteobacteria alfa.[45][46]​ En este caso, el antepasado de las eucariotas, que posiblemente estaba relacionado con las arqueas (el organismo Neomura), ingirió una proteobacteria que, al escapar a la digestión, se desarrolló en el citoplasma y dio lugar a las mitocondrias. Estas se pueden encontrar en todas las eucariotas, aunque a veces en formas muy reducidas, como en los protistas amitocondriales. Después, e independientemente, una segunda endosimbiosis por parte de alguna eucariota mitocondrial con una cianobacteria condujo a la formación de los cloroplastos de algas y plantas. Se conocen incluso algunos grupos de algas que se han originado claramente de acontecimientos posteriores de endosimbiosis por parte de eucariotas heterótrofos que, tras ingerir algas eucariotas, se convirtieron en plastos de segunda generación.[47][48]

Morfología bacteriana

 
Existen bacterias con múltiples morfologías.

Las bacterias presentan una amplia variedad de tamaños y formas. La mayoría presentan un tamaño diez veces menor que el de las células eucariotas, es decir, entre 0,5 y 5 μm. Sin embargo, algunas especies como Thiomargarita namibiensis y Epulopiscium fishelsoni llegan a alcanzar los 0,5 mm, lo cual las hace visibles a simple vista.[49]​ En el otro extremo se encuentran bacterias más pequeñas conocidas, entre las que cabe destacar las pertenecientes al género Mycoplasma, las cuales llegan a medir solo 0,3 μm, es decir, tan pequeñas como los virus más grandes.[50]

La forma de las bacterias es muy variada y, a menudo, una misma especie adopta distintos tipos morfológicos, lo que se conoce como pleomorfismo. De todas formas, podemos distinguir tres tipos fundamentales de bacterias:

  • Coco (del griego kókkos, grano): de forma esférica.
    • Diplococo: cocos en grupos de dos.
    • Tetracoco: cocos en grupos de cuatro.
    • Estreptococo: cocos en cadenas.
    • Estafilococo: cocos en agrupaciones irregulares o en racimo.
  • Bacilo (del latín baculus, varilla): en forma de bastoncillo.
  • Formas helicoidales:
    • Vibrio: ligeramente curvados y en forma de coma, judía, cacahuete o arriñonado.
    • Espirilo: en forma helicoidal rígida o en forma de tirabuzón.
    • Espiroqueta: en forma de tirabuzón (helicoidal flexible).

Algunas especies presentan incluso formas tetraédricas o cúbicas.[51]​ Esta amplia variedad de formas es determinada en última instancia por la composición de la pared celular y el citoesqueleto, siendo de vital importancia, ya que puede influir en la capacidad de la bacteria para adquirir nutrientes, unirse a superficies o moverse en presencia de estímulos.[52][53]

A continuación se citan diferentes especies con diversos patrones de asociación:

 
Rango de tamaños que presentan las células procariotas en relación a otros organismos y biomoléculas.

Las bacterias presentan la capacidad de anclarse a determinadas superficies y formar un agregado celular en forma de capa denominado biopelícula o biofilme, los cuales pueden tener un grosor que va desde unos pocos micrómetros hasta medio metro. Estas biopelículas pueden congregar diversas especies bacterianas, además de protistas y arqueas, y se caracterizan por formar un conglomerado de células y componentes extracelulares, alcanzando así un nivel mayor de organización o estructura secundaria denominada microcolonia, a través de la cual existen multitud de canales que facilitan la difusión de nutrientes.[55][56]​ En ambientes naturales tales como el suelo o la superficie de las plantas, la mayor parte de las bacterias se encuentran ancladas a las superficies en forma de biopelículas.[57]​ Dichas biopelículas deben ser tenidas en cuenta en las infecciones bacterianas crónicas y en los implantes médicos, ya que las bacterias que forman estas estructuras son mucho más difíciles de erradicar que las bacterias individuales.[58]

Por último, cabe destacar un tipo de morfología más compleja aún, observable en algunos microorganismos del grupo de las mixobacterias. Cuando estas bacterias se encuentran en un medio escaso en aminoácidos son capaces de detectar a las células de alrededor, en un proceso conocido como percepción de quórum, en el cual todas las células migran hacia las demás y se agregan, dando lugar a cuerpos fructíferos que pueden alcanzar los 0,5 mm de longitud y contener unas 100 000 células.[59]​ Una vez formada dicha estructura las bacterias son capaces de llevar a cabo diferentes funciones, es decir, se diferencian, alcanzando así un cierto nivel de organización pluricelular. Por ejemplo, entre una y diez células migran a la parte superior del cuerpo fructífero y, una vez allí, se diferencian para dar lugar a un tipo de células latentes denominadas mixosporas, las cuales son más resistentes a la desecación y, en general, a condiciones ambientales adversas.[60]

Estructura de la célula bacteriana

 
Estructura de la célula bacteriana. A-Pili; B-Ribosomas; C-Cápsula; D-Pared celular; E-Flagelo; F-Citoplasma; G-Vacuola; H-Plásmido; I-Nucleoide; J-Membrana citoplasmática.

Las bacterias son organismos relativamente sencillos. Sus dimensiones son muy reducidas, unos 2 μm de ancho por 7-8 μm de longitud en la forma cilíndrica (bacilo) de tamaño medio; aunque son muy frecuentes las especies de 0,5-1,5 μm.

Al tratarse de organismos procariotas, tienen las características básicas correspondientes como la carencia de un núcleo delimitado por una membrana aunque presentan un nucleoide, una estructura elemental que contiene una gran molécula circular de ADN. El citoplasma carece de orgánulos delimitados por membranas y de las formaciones protoplasmáticas propias de las células eucariotas. En el citoplasma se pueden apreciar plásmidos, pequeñas moléculas circulares de ADN que coexisten con el nucleoide, contienen genes y son comúnmente usados por los procariontes en la conjugación. El citoplasma también contiene vacuolas (gránulos que contienen sustancias de reserva) y ribosomas (utilizados en la síntesis de proteínas).

Una membrana citoplasmática compuesta de lípidos rodea el citoplasma y, al igual que las células de las plantas, la mayoría posee una pared celular, que en este caso está compuesta por peptidoglicano (mureína). La mayoría de bacterias, presentan además una segunda membrana lipídica (membrana externa) rodeando a la pared celular. El espacio comprendido entre la membrana citoplasmática y la pared celular (o la membrana externa si esta existe) se denomina espacio periplásmico. Algunas bacterias presentan una cápsula y otras son capaces de desarrollarse como endosporas, estados latentes capaces de resistir condiciones extremas. Entre las formaciones exteriores propias de la célula bacteriana destacan los flagelos y los pili.

Estructuras intracelulares

 
La membrana citoplasmática de las bacterias es similar a la de plantas y animales, si bien generalmente no presenta colesterol.

La membrana citoplasmática bacteriana tiene una estructura similar a la de plantas y animales. Es una bicapa lipídica compuesta fundamentalmente de fosfolípidos en la que se insertan moléculas de proteínas. En las bacterias realiza numerosas funciones entre las que se incluyen las de barrera osmótica, transporte, biosíntesis, transducción de energía, centro de replicación de ADN y punto de anclaje para los flagelos. A diferencia de las membranas eucarióticas, generalmente no contiene esteroles (son excepciones micoplasmas y algunas proteobacterias), aunque puede contener componentes similares denominados hopanoides.

Muchas importantes reacciones bioquímicas que tienen lugar en las células se producen por la existencia de gradientes de concentración a ambos lados de una membrana. Este gradiente crea una diferencia de potencial análoga a la de una batería eléctrica y permite a la célula, por ejemplo, el transporte de electrones y la obtención de energía. La ausencia de membranas internas en las bacterias significa que estas reacciones tienen que producirse a través de la propia membrana citoplasmática, entre el citoplasma y el espacio periplásmico.[61]

Puesto que las bacterias son procariotas no tienen orgánulos citoplasmáticos delimitados por membranas y por parecen presentar pocas estructuras intracelulares. Carecen de núcleo celular, mitocondrias, cloroplastos y de los otros orgánulos presentes en las células eucariotas, tales como el aparato de Golgi y el retículo endoplasmático.[62]​ Algunas bacterias contienen estructuras intracelulares rodeadas por membranas que pueden considerarse primitivos orgánulos, son llamados compartimentos procariotas. Ejemplos son los tilacoides de las cianobacterias, los compartimentos que contienen amonio monooxigenasa en Nitrosomonadaceae y diversas estructuras en Planctomycetes.[63]

Como todos los organismos vivos, las bacterias contienen ribosomas para la síntesis de proteínas, pero estos son diferentes a los de eucariotas.[64]​ La estructura de los ribosomas y el ARN ribosomal de arqueas y bacterias son similares, ambos ribosomas son de tipo 70S mientras que los ribosomas eucariotas son de tipo 80S. Sin embargo, la mayoría de las proteínas ribosomiales, factores de traducción y ARNt arqueanos son más parecidos a los eucarióticos que a los bacterianos.

Muchas bacterias presentan vacuolas, gránulos intracelulares para el almacenaje de sustancias, como por ejemplo glucógeno,[65]polifosfatos,[66]azufre[67]​ o polihidroxialcanoatos.[68]​ Ciertas especies bacterianas fotosintéticas, tales como las cianobacterias, producen vesículas internas de gas que utilizan para regular su flotabilidad y así alcanzar la profundidad con intensidad de luz óptima o unos niveles de nutrientes óptimos.[69]​ Otras estructuras presentes en ciertas especies son los carboxisomas (que contienen enzimas para la fijación de carbono) y los magnetosomas (para la orientación magnética).

 
Elementos del citoesqueleto de Caulobacter crescentus. En la figura, estos elementos procarióticos se relacionan con sus homólogos eucariotas y se hipotetiza su función celular.[70]​ Debe tenerse en cuenta que las funciones en la pareja FtsZ-MreB se invirtieron durante la evolución al convertirse en tubulina-actina.

Las bacterias no tienen un núcleo delimitado por membranas. El material genético está organizado en un único cromosoma situado en el citoplasma, dentro de un cuerpo irregular denominado nucleoide.[71]​ La mayoría de los cromosomas bacterianos son circulares, si bien existen algunos ejemplos de cromosomas lineales, por ejemplo, Borrelia burgdorferi. El nucleoide contiene el cromosoma junto con las proteínas asociadas y ARN. El orden Planctomycetes es una excepción, pues una membrana rodea su nucleoide y tiene varias estructuras celulares delimitadas por membranas.[63]

Anteriormente se pensaba que las células procariotas no poseían citoesqueleto, pero desde entonces se han encontrado homólogos bacterianos de las principales proteínas del citoesqueleto de las eucariotas.[72]​ Estos incluyen las proteínas estructurales FtsZ (que se ensambla en un anillo para mediar durante la división celular bacteriana) y MreB (que determina la anchura de la célula). El citoesqueleto bacteriano desempeña funciones esenciales en la protección, determinación de la forma de la célula bacteriana y en la división celular.[73]

Estructuras extracelulares

Las bacterias disponen de una pared celular que rodea a su membrana citoplasmática. Las paredes celulares bacterianas están hechas de peptidoglicano (llamado antiguamente mureína). Esta sustancia está compuesta por cadenas de polisacárido enlazadas por péptidos inusuales que contienen aminoácidos D.[74]​ Estos aminoácidos no se encuentran en las proteínas, por lo que protegen a la pared de la mayoría de las peptidasas. Las paredes celulares bacterianas son distintas de las que tienen plantas y hongos, compuestas de celulosa y quitina, respectivamente.[75]​ Son también distintas a las paredes celulares de Archaea, que no contienen peptidoglicano. El antibiótico penicilina puede matar a muchas bacterias inhibiendo un paso de la síntesis del peptidoglicano.[75]

Existen dos diferentes tipos de pared celular bacteriana denominadas Gram-positiva y Gram-negativa, respectivamente. Estos nombres provienen de la reacción de la pared celular a la tinción de Gram, un método tradicionalmente empleado para la clasificación de las especies bacterianas.[76]​ Las bacterias Gram-positivas tienen una pared celular gruesa que contiene numerosas capas de peptidoglicano en las que se inserta ácido teicoico. En cambio, las bacterias Gram-negativas tienen una pared relativamente fina, consistente en unas pocas capas de peptidoglicano, rodeada por una segunda membrana lipídica (la membrana externa) que contiene lipopolisacáridos y lipoproteínas.

Las micoplasmas son una excepción, pues carecen de pared celular. La mayoría de las bacterias tienen paredes celulares Gram-negativas; solamente son Gram-positivas Firmicutes y Actinobacteria. Estos dos grupos eran antiguamente conocidos como bacterias Gram-positivas de contenido GC bajo y bacterias Gram-positivas de contenido GC alto, respectivamente.[77]​ Estas diferencias en la estructura de la pared celular dan lugar a diferencias en la susceptibilidad antibiótica. Por ejemplo, la vancomicina puede matar solamente a bacterias Gram-positivas y es ineficaz contra patógenos Gram-negativos, tales como Haemophilus influenzae o Pseudomonas aeruginosa.[78]​ Dentro del filo Actinobacteria cabe hacer una mención especial al género Mycobacterium, el cual, si bien se encuadra dentro de las Gram positivas, no parece serlo desde el punto de vista empírico, ya que su pared no retiene el tinte. Esto se debe a que presentan una pared celular poco común, rica en ácidos micólicos, de carácter hidrófobo y ceroso y bastante gruesa, lo que les confiere una gran resistencia.

 
Helicobacter pylori visto al microscopio electrónico, mostrando numerosos flagelos sobre la superficie celular.

Muchas bacterias tienen una capa S de moléculas de proteína de estructura rígida que cubre la pared celular.[79]​ Esta capa proporciona protección química y física para la superficie celular y puede actuar como una barrera de difusión macromolecular. Las capas S tienen diversas (aunque todavía no bien comprendidas) funciones. Por ejemplo, en el género Campylobacter actúan como factores de virulencia y en la especie Bacillus stearothermophilus contienen enzimas superficiales.[80]

Los flagelos son largos apéndices filamentosos compuestos de proteínas y utilizados para el movimiento. Tienen un diámetro aproximado de 20 nm y una longitud de hasta 20 μm. Los flagelos son impulsados por la energía obtenida de la transferencia de iones. Esta transferencia es impulsada por el gradiente electroquímico que existe entre ambos lados de la membrana citoplasmática.[81]

 
Escherichia coli presenta unas 100-200 fimbrias que utiliza para adherirse a las células epiteliales o al tracto urogenital.

Las fimbrias son filamentos finos de proteínas que se distribuyen sobre la superficie de la célula. Tienen un diámetro aproximado de 2-10 nm y una longitud de hasta varios μm. Cuando se observan a través del microscopio electrónico se asemejan a pelos finos. Las fimbrias ayudan a la adherencia de las bacterias a las superficies sólidas o a otras células y son esenciales en la virulencia de algunos patógenos.[82]​ Los pili son apéndices celulares ligeramente mayores que las fimbrias y se utilizan para la transferencia de material genético entre bacterias en un proceso denominado conjugación bacteriana.[83]

 
Estructuras extracelulares bacterianas: 1-cápsula, 2-glicocalix (capa mucosa), 3-biopelícula.

Muchas bacterias son capaces de acumular material en el exterior para recubrir su superficie. Dependiendo de la rigidez y su relación con la célula se clasifican en cápsulas y glicocalix. La cápsula es una estructura rígida que se une firmemente a la superficie bacteriana, en tanto que el glicocalix es flexible y se une de forma laxa. Estas estructuras protegen a las bacterias pues dificultan que sean fagocitadas por células eucariotas tales como los macrófagos.[84]​ También pueden actuar como antígenos y estar implicadas en el reconocimiento bacteriano, así como ayudar a la adherencia superficial y a la formación de biopelículas.[85]

La formación de estas estructuras extracelulares depende del sistema de secreción bacteriano. Este sistema transfiere proteínas desde el citoplasma al periplasma o al espacio que rodea a la célula. Se conocen muchos tipos de sistemas de secreción, que son a menudo esenciales para la virulencia de los patógenos, por lo que son extensamente estudiados.[86]

Endosporas

Véase también: Esporas bacterianas
 
Bacillus anthracis (teñido púrpura) desarrollándose en el líquido cefalorraquídeo. Cada pequeño segmento es una bacteria.

Ciertos géneros de bacterias Gram-positivas, tales como Bacillus, Clostridium, Sporohalobacter, Anaerobacter y Heliobacterium, pueden formar endosporas.[87]​ Las endosporas son estructuras durmientes altamente resistentes cuya función primaria es sobrevivir cuando las condiciones ambientales son adversas. En casi todos los casos, las endosporas no forman parte de un proceso reproductivo, aunque Anaerobacter puede formar hasta siete endosporas a partir de una célula.[88]​ Las endosporas tienen una base central de citoplasma que contiene ADN y ribosomas, rodeada por una corteza y protegida por una cubierta impermeable y rígida.

Las endosporas no presentan un metabolismo detectable y pueden sobrevivir a condiciones físicas y químicas extremas, tales como altos niveles de luz ultravioleta, rayos gamma, detergentes, desinfectantes, calor, presión y desecación.[89]​ En este estado durmiente, las bacterias pueden seguir viviendo durante millones de años,[90][91]​ e incluso pueden sobrevivir en la radiación y vacío del espacio exterior.[92]​ Las endosporas pueden también causar enfermedades. Por ejemplo, puede contraerse carbunco por la inhalación de endosporas de Bacillus anthracis y tétanos por la contaminación de las heridas con endosporas de Clostridium tetani.[93]

Metabolismo

 
Filamento (una colonia) de cianobacteria fotosintética.

En contraste con los organismos superiores, las bacterias exhiben una gran variedad de tipos metabólicos.[94]​ La distribución de estos tipos metabólicos dentro de un grupo de bacterias se ha utilizado tradicionalmente para definir su taxonomía, pero estos rasgos no corresponden a menudo con las clasificaciones genéticas modernas.[95]​ El metabolismo bacteriano se clasifica con base en tres criterios importantes: el origen del carbono, la fuente de energía y los donadores de electrones. Un criterio adicional para clasificar a los microorganismos que respiran es el receptor de electrones usado en la respiración.[96]

Según la fuente de carbono, las bacterias se pueden clasificar como:

Las bacterias autótrofas típicas son las cianobacterias fotosintéticas, las bacterias verdes del azufre y algunas bacterias púrpura. Pero hay también muchas otras especies quimiolitotrofas, por ejemplo, las bacterias nitrificantes y oxidantes del azufre.[97]

Según la fuente de energía, las bacterias pueden ser:

  • Fototrofas, cuando emplean la luz a través de la fotosíntesis.
  • Quimiotrofas, cuando obtienen energía a partir de sustancias químicas que son oxidadas principalmente a expensas del oxígeno (respiración aerobia) o de otros receptores de electrones alternativos (respiración anaerobia).

Según los donadores de electrones, las bacterias también se pueden clasificar como:

  • Litotrofas, si utilizan como donadores de electrones compuestos inorgánicos.
  • Organotrofas, si utilizan como donadores de electrones compuestos orgánicos.

Los organismos quimiotrofos usan donadores de electrones para la conservación de energía (durante la respiración aerobia, anaerobia y la fermentación) y para las reacciones biosintéticas (por ejemplo, para la fijación del dióxido de carbono), mientras que los organismos fototrofos los utilizan únicamente con propósitos biosintéticos.

 
Regato donde hay Bacterias del hierro que le proporcionan ese color rojizo. Estos microorganismos quimiolitotrofos obtienen la energía que necesitan por oxidación del óxido ferroso a óxido férrico.

Los organismos que respiran usan compuestos químicos como fuente de energía, tomando electrones del sustrato reducido y transfiriéndolos a un receptor terminal de electrones en una reacción redox. Esta reacción desprende energía que se puede utilizar para sintetizar ATP y así mantener activo el metabolismo. En los organismos aerobios, el oxígeno se utiliza como receptor de electrones. En los organismos anaerobios se utilizan como receptores de electrones otros compuestos inorgánicos tales como nitratos, sulfatos o dióxido de carbono. Esto conduce a que se lleven a cabo los importantes procesos biogeoquímicos de la desnitrificación, la reducción del sulfato y la acetogénesis, respectivamente. Otra posibilidad es la fermentación, un proceso de oxidación incompleta, totalmente anaeróbico, siendo el producto final un compuesto orgánico, que al reducirse será el receptor final de los electrones. Ejemplos de productos de fermentación reducidos son el lactato (en la fermentación láctica), etanol (en la fermentación alcohólica), hidrógeno, butirato, etc. La fermentación es posible porque el contenido de energía de los sustratos es mayor que el de los productos, lo que permite que los organismos sinteticen ATP y mantengan activo su metabolismo.[98][99]​ Los organismos anaerobios facultativos pueden elegir entre la fermentación y diversos receptores terminales de electrones dependiendo de las condiciones ambientales en las cuales se encuentren.

Las bacterias litotrofas pueden utilizar compuestos inorgánicos como fuente de energía. Los donadores de electrones inorgánicos más comunes son el hidrógeno, el monóxido de carbono, el amoníaco (que conduce a la nitrificación), el hierro ferroso y otros iones de metales reducidos, así como varios compuestos de azufre reducidos. En determinadas ocasiones, las bacterias metanotrofas pueden usar gas metano como fuente de electrones y como sustrato simultáneamente, para el anabolismo del carbono.[100]​ En la fototrofía y quimiolitotrofía aerobias, se utiliza el oxígeno como receptor terminal de electrones, mientras que bajo condiciones anaeróbicas se utilizan compuestos inorgánicos. La mayoría de los organismos litotrofos son autótrofos, mientras que los organismos organotrofos son heterótrofos.

Además de la fijación del dióxido de carbono mediante la fotosíntesis, algunas bacterias también fijan el gas nitrógeno usando la enzima nitrogenasa. Esta característica es muy importante a nivel ambiental y se puede encontrar en bacterias de casi todos los tipos metabólicos enumerados anteriormente, aunque no es universal.[101]​ El metabolismo microbiano puede desempeñar un papel importante en la biorremediación pues, por ejemplo, algunas especies pueden realizar el tratamiento de las aguas residuales y otras son capaces de degradar los hidrocarburos, sustancias tóxicas e incluso radiactivas. En cambio, las bacterias reductoras de sulfato son en gran parte responsables de la producción de formas altamente tóxicas de mercurio (metil- y dimetil-mercurio) en el ambiente.[102]

Movimiento

 
Los diferentes tipos de disposición de los flagelos bacterianos: A-Monotrico; B-Lofotrico; C-Anfitrico; D-Peritrico.

Algunas bacterias son inmóviles y otras limitan su movimiento a cambios de profundidad. Por ejemplo, cianobacterias y bacterias verdes del azufre contienen vesículas de gas con las que pueden controlar su flotabilidad y así conseguir un óptimo de luz y alimento.[103]​ Las bacterias móviles pueden desplazarse por deslizamiento, mediante contracciones o más comúnmente usando flagelos. Algunas bacterias pueden deslizarse por superficies sólidas segregando una sustancia viscosa, pero el mecanismo que actúa como propulsor es todavía desconocido. En el movimiento mediante contracciones, la bacteria usa su pilus de tipo IV como gancho de ataque, primero lo extiende, anclándolo y después lo contrae con una fuerza notable (>80 pN).[104]

El flagelo bacteriano es un largo apéndice filamentoso helicoidal propulsado por un motor rotatorio (como una hélice) que puede girar en los dos sentidos. El motor utiliza como energía un gradiente electroquímico a través de la membrana. Los flagelos están compuestos por cerca de 20 proteínas, con aproximadamente otras 30 proteínas para su regulación y coordinación.[103]​ Hay que tener en cuenta que, dado el tamaño de la bacteria, el agua les resulta muy viscosa y el mecanismo de propulsión debe ser muy potente y eficiente. Los flagelos bacterianos se encuentran tanto en las bacterias Gram-positivas como Gram-negativas y son completamente diferentes de los eucarióticos y, aunque son superficialmente similares a los arqueanos, se consideran no homólogos.

 
El flagelo bacteriano es un apéndice movido por un motor rotatorio. El rotor puede girar a 6.000-17.000 rpm, pero el apéndice usualmente solo alcanza 200-1000 rpm. 1-filamento, 2-espacio periplásmico, 3-codo, 4-juntura, 5-anillo L, 6-eje, 7-anillo P, 8-pared celular, 9-estátor, 10-anillo MS, 11-anillo C, 12-sistema de secreción de tipo III, 13-membrana externa, 14-membrana citoplasmática, 15-punta.

Según el número y disposición de los flagelos en la superficie de la bacteria se distinguen los siguientes tipos: un solo flagelo (monotrico), un flagelo en cada extremo (anfitrico), grupos de flagelos en uno o en los dos extremos (lofotrico) y flagelos distribuidos sobre toda la superficie de la célula (peritricos). En un grupo único de bacterias, las espiroquetas, se presentan unos flagelos especializados, denominados filamentos axiales, localizados intracelularmente en el espacio periplásmico, entre las dos membranas. Estos producen un movimiento rotatorio que hace que la bacteria gire como un sacacorchos desplazándose hacia delante.[103]

Muchas bacterias (tales como E. coli) tienen dos tipos de movimiento: en línea recta (carrera) y aleatorio. En este último, se realiza un movimiento tridimensional aleatorio al combinar la bacteria carreras cortas con virajes al azar.[105]​ Las bacterias móviles pueden presentar movimientos de atracción o repulsión determinados por diferentes estímulos. Estos comportamientos son denominados taxis, e incluyen diversos tipos como la quimiotaxis, la fototaxis o la magnetotaxis.[106][107]​ En el peculiar grupo de las mixobacterias, las células individuales se mueven juntas formando ondas de células, que terminarán agregándose para formar los cuerpos fructíferos característicos de este género.[108]​ El movimiento de las mixobacterias se produce solamente sobre superficies sólidas, en contraste con E. coli, que es móvil tanto en medios líquidos como sólidos.

Varias especies de Listeria y Shigella se mueven dentro de las células huésped apropiándose de su citoesqueleto, que normalmente movería los orgánulos. La polimerización de actina crea un empuje en un extremo de la bacteria que la mueve a través del citoplasma de la célula huésped.[109]

Reproducción

 
Modelo de divisiones binarias sucesivas en el microorganismo Escherichia coli.

En las bacterias, el aumento en el tamaño de las células (crecimiento) y la reproducción por división celular están íntimamente ligados, como en la mayor parte de los organismos unicelulares. Ocurre por duplicación y se obtienen células con información hereditaria idéntica. [110]​Las bacterias crecen hasta un tamaño fijo y después se reproducen por fisión binaria, una forma de reproducción asexual.[111]​ En condiciones apropiadas, una bacteria Gram-positiva puede dividirse cada 20–30 minutos y una Gram-negativa cada 15–20 minutos, y en alrededor de 16 horas su número puede ascender a unos 5000 millones (cerca del número de personas que habitan la Tierra, que son aproximadamente 7000 millones de personas). Bajo condiciones óptimas, algunas bacterias pueden crecer y dividirse muy rápido, tanto como cada 9,8 minutos.[112]​ En la división celular se producen dos células hijas idénticas. Algunas bacterias, todavía reproduciéndose asexualmente, forman estructuras reproductivas más complejas que facilitan la dispersión de las células hijas recién formadas. Ejemplos incluyen la formación de cuerpos fructíferos (esporangios) en las mixobacterias, la formación de hifas en Streptomyces y la gemación. En la gemación una célula forma una protuberancia que a continuación se separa y produce una nueva célula hija.

Por otro lado, cabe destacar un tipo de reproducción sexual en bacterias, denominada parasexualidad bacteriana. En este caso, las bacterias son capaces de intercambiar material genético en un proceso conocido como conjugación bacteriana. Durante el proceso una bacteria donante y una bacteria receptora llevan a cabo un contacto mediante pelos sexuales huecos o pili, a través de los cuales se transfiere una pequeña cantidad de ADN independiente o plásmido conjugativo. El mejor conocido es el plásmido F de E. coli, que además puede integrarse en el cromosoma bacteriano. En este caso recibe el nombre de episoma, y en la transferencia arrastra parte del cromosoma bacteriano. Se requiere que exista síntesis de ADN para que se produzca la conjugación. La replicación se realiza al mismo tiempo que la transferencia.

Crecimiento

 
Fases del crecimiento bacteriano.

El crecimiento bacteriano sigue tres fases. Cuando una población bacteriana se encuentra en un nuevo ambiente con elevada concentración de nutrientes que le permiten crecer necesita un período de adaptación a dicho ambiente. Esta primera fase se denomina fase de adaptación o fase lag y conlleva un lento crecimiento, donde las células se preparan para comenzar un rápido crecimiento, y una elevada tasa de biosíntesis de las proteínas necesarias para ello, como ribosomas, proteínas de membrana, etc.[113]​ La segunda fase de crecimiento se denomina fase exponencial, ya que se caracteriza por el crecimiento exponencial de las células. La velocidad de crecimiento durante esta fase se conoce como la tasa de crecimiento k y el tiempo que tarda cada célula en dividirse como el tiempo de generación g. Durante esta fase, los nutrientes son metabolizados a la máxima velocidad posible, hasta que dichos nutrientes se agoten, dando paso a la siguiente fase. La última fase de crecimiento se denomina fase estacionaria y se produce como consecuencia del agotamiento de los nutrientes en el medio. En esta fase las células reducen drásticamente su actividad metabólica y comienzan a utilizar como fuente energética aquellas proteínas celulares no esenciales. La fase estacionaria es un período de transición desde el rápido crecimiento a un estado de respuesta a estrés, en el cual se activa la expresión de genes involucrados en la reparación del ADN, en el metabolismo antioxidante y en el transporte de nutrientes.[114]

Genética

 
Esquema de la conjugación bacteriana. 1-La célula donante genera un pilus. 2-El pilus se une a la célula receptora y ambas células se aproximan. 3-El plásmido móvil se desarma y una de las cadenas de ADN es transferida a la célula receptora. 4-Ambas células sintetizan la segunda cadena y regeneran un plásmido completo. Además, ambas células generan nuevos pili y son ahora viables como donantes.

La mayoría de las bacterias tienen un único cromosoma circular cuyo tamaño puede ir desde solo 160.000 pares de bases en la bacteria endosimbionte Candidatus Carsonella ruddii[115]​ a los 12.200.000 pares de bases de la bacteria del suelo Sorangium cellulosum.[116]​ Las espiroquetas del género Borrelia (que incluyen, por ejemplo, a Borrelia burgdorferi, la causa de la enfermedad de Lyme) son una notable excepción a esta regla pues contienen un cromosoma lineal.[117]​ Las bacterias pueden tener también plásmidos, pequeñas moléculas de ADN extra-cromosómico que pueden contener genes responsables de la resistencia a los antibióticos o factores de virulencia. Otro tipo de ADN bacteriano proviene de la integración de material genético procedente de bacteriófagos (los virus que infectan bacterias). Existen muchos tipos de bacteriófagos, algunos simplemente infectan y rompen las células huésped bacterianas, mientras que otros se insertan en el cromosoma bacteriano. De esta forma se pueden insertar genes del virus que contribuyan al fenotipo de la bacteria. Por ejemplo, en la evolución de Escherichia coli O157:H7 y Clostridium botulinum, los genes tóxicos aportados por un bacteriófago convirtieron a una inofensiva bacteria ancestral en un patógeno letal.[118][119]

 
Esquema de algunas familias de virus que infectan bacterias.

Las bacterias, como organismos asexuales que son, heredan copias idénticas de genes, es decir, son clones. Sin embargo, pueden evolucionar por selección natural mediante cambios en el ADN debidos a mutaciones y a la recombinación genética. Las mutaciones provienen de errores durante la réplica del ADN o por exposición a agentes mutagénicos. Las tasas de mutación varían ampliamente entre las diversas especies de bacterias e incluso entre diferentes cepas de una misma especie de bacteria.[120]​ Los cambios genéticos pueden producirse al azar o ser seleccionados por estrés, en donde los genes implicados en algún proceso que limita el crecimiento tienen una mayor tasa de mutación.[121]

Las bacterias también pueden transferirse material genético entre células. Esto puede realizarse de tres formas principalmente. En primer lugar, las bacterias pueden recoger ADN exógeno del ambiente en un proceso denominado transformación. Los genes también se pueden transferir por un proceso de transducción mediante el cual un bacteriófago introduce ADN extraño en el cromosoma bacteriano. El tercer método de transferencia de genes es por conjugación bacteriana, en donde el ADN se transfiere a través del contacto directo (por medio de un pilus) entre células. Esta adquisición de genes de otras bacterias o del ambiente se denomina transferencia de genes horizontal y puede ser común en condiciones naturales[122]​ La transferencia de genes es especialmente importante en la resistencia a los antibióticos, pues permite una rápida diseminación de los genes responsables de dicha resistencia entre diferentes patógenos.[123]

Interacciones con otros organismos

A pesar de su aparente simplicidad, las bacterias pueden formar asociaciones complejas con otros organismos. Estas asociaciones se pueden clasificar como parasitismo, mutualismo y comensalismo.

Comensales

Debido a su pequeño tamaño, las bacterias comensales son ubicuas y crecen sobre animales y plantas exactamente igual a como crecerían sobre cualquier otra superficie. Así, por ejemplo, grandes poblaciones de estos organismos son las causantes del mal olor corporal y su crecimiento puede verse aumentado con el calor y el sudor.

Mutualistas

Ciertas bacterias forman asociaciones íntimas con otros organismos, que les son imprescindibles para su supervivencia. Una de estas asociaciones mutualistas es la transferencia de hidrógeno entre especies. Se produce entre grupos de bacterias anaerobias que consumen ácidos orgánicos tales como ácido butírico o ácido propiónico y producen hidrógeno, y las arqueas metanógenas que consumen dicho hidrógeno.[124]​ Las bacterias en esta asociación no pueden consumir los ácidos orgánicos cuando el hidrógeno se acumula a su alrededor. Solamente la asociación íntima con las arqueas mantiene una concentración de hidrógeno lo bastante baja para permitir que las bacterias crezcan.

En el suelo, los microorganismos que habitan la rizosfera (la zona que incluye la superficie de la raíz y la tierra que se adhiere a ella) realizan la fijación de nitrógeno, convirtiendo el nitrógeno atmosférico (en estado gaseoso) en compuestos nitrogenados.[125]​ Esto proporciona a muchas plantas, que no pueden fijar el nitrógeno por sí mismas, una forma fácilmente absorbible de nitrógeno.

Muchas otras bacterias se encuentran como simbiontes en seres humanos y en otros organismos. Por ejemplo, en el tracto digestivo proliferan unas mil especies bacterianas. Sintetizan vitaminas tales como ácido fólico, vitamina K y biotina. También fermentan los carbohidratos complejos indigeribles y convierten los azúcares de la leche en ácido láctico (por ejemplo, Lactobacillus).[126][127][128][129]​ Además, la presencia de esta flora intestinal inhibe el crecimiento de bacterias potencialmente patógenas (generalmente por exclusión competitiva). Muchas veces estas bacterias beneficiosas se venden como suplementos dietéticos probióticos.[130]

Patógenos

 
Micrografía electrónica con colores realzados que muestra a la especie Salmonella enterica (células rojas) invadiendo células humanas en cultivo.

Solo una pequeña fracción de las bacterias causan enfermedades en los seres humanos: de las 15.919 especies registradas en la base de datos de NCBI, solo 538 son patógenas.[131]​ Aun así son una de las principales causas de enfermedad y mortalidad humana, causando infecciones tales como el tétanos, la fiebre tifoidea, la difteria, la sífilis, el cólera, intoxicaciones alimentarias, la lepra y la tuberculosis. Hay casos en los que la etiología o causa de una enfermedad conocida se descubre solamente después de muchos años, como fue el caso de la úlcera péptica y Helicobacter pylori. Las enfermedades bacterianas son también importantes en la agricultura y en la ganadería, donde existen multitud de enfermedades como por ejemplo la mancha de la hoja, la plaga de fuego, la paratuberculosis, el añublo bacterial de la panícula, la mastitis, la salmonela y el carbunco.

Cada especie de patógeno tiene un espectro característico de interacciones con sus huéspedes humanos. Algunos organismos, tales como Staphylococcus o Streptococcus, pueden causar infecciones de la piel, pulmonía, meningitis e incluso sepsis, una respuesta inflamatoria sistémica que produce shock, vasodilatación masiva y muerte.[132]​ Sin embargo, estos organismos son también parte de la flora humana normal y se encuentran generalmente en la piel o en la nariz sin causar ninguna enfermedad.

Otros organismos causan invariablemente enfermedades en los seres humanos. Por ejemplo, el género Rickettsia, que son parásitos intracelulares obligados capaces de crecer y reproducirse solamente dentro de las células de otros organismos. Una especie de Rickettsia causa el tifus, mientras que otra ocasiona la fiebre de las Montañas Rocosas. Chlamydiae, otro filo de parásitos obligados intracelulares, contiene especies que causan neumonía, infecciones urinarias y pueden estar implicadas en la enfermedad coronaria.[133]​ Finalmente, ciertas especies tales como Pseudomonas aeruginosa, Burkholderia cenocepacia y Mycobacterium avium son patógenos oportunistas y causan enfermedades principalmente en las personas que sufren inmunosupresión o fibrosis quística.[134][135]

Las infecciones bacterianas se pueden tratar con antibióticos, que se clasifican como bactericidas, si matan bacterias, o como bacterioestáticos, si solo detienen el crecimiento bacteriano. Existen muchos tipos de antibióticos y cada tipo inhibe un proceso que difiere en el patógeno con respecto al huésped. Ejemplos de antibióticos de toxicidad selectiva son el cloranfenicol y la puromicina, que inhiben el ribosoma bacteriano, pero no el ribosoma eucariota que es estructuralmente diferente.[136]​ Los antibióticos se utilizan para tratar enfermedades humanas y en la ganadería intensiva para promover el crecimiento animal. Esto último puede contribuir al rápido desarrollo de la resistencia antibiótica de las poblaciones bacterianas.[137]​ Las infecciones se pueden prevenir con medidas antisépticas tales como la esterilización de la piel antes de las inyecciones y con el cuidado apropiado de los catéteres. Los instrumentos quirúrgicos y dentales también son esterilizados para prevenir la contaminación e infección por bacterias. Los desinfectantes tales como la lejía se utilizan para matar bacterias u otros patógenos que se depositan sobre las superficies y así prevenir la contaminación y reducir el riesgo de infección.

La siguiente tabla muestra algunas enfermedades humanas producidas por bacterias:

Enfermedad Agente Principales síntomas
Brucelosis Brucella spp. Fiebre ondulante, adenopatía, endocarditis, neumonía.
Carbunco Bacillus anthracis Fiebre, pápula cutánea, septicemia.
Cólera Vibrio cholerae Diarrea, vómitos, deshidratación.
Difteria Corynebacterium diphtheriae Fiebre, amigdalitis, membrana en la garganta, lesiones en la piel.
Escarlatina Streptococcus pyogenes Fiebre, amigdalitis, eritema.
Erisipela Streptococcus spp. Fiebre, eritema, prurito, dolor.
Fiebre Q Coxiella burnetii Fiebre alta, cefalea intensa, mialgia, confusión, vómitos, diarrea.
Fiebre tifoidea Salmonella typhi, S. paratyphi Fiebre alta, bacteriemia, cefalalgia, estupor, tumefacción de la mucosa nasal, lengua tostada, úlceras en el paladar, hepatoesplenomegalia, diarrea, perforación intestinal.
Legionelosis Legionella pneumophila Fiebre, neumonía
Neumonía Streptococcus pneumoniae, Staphylococcus aureus,
Klebsiella pneumoniae, Mycoplasma spp., Chlamydia spp.
Fiebre alta, expectoración amarillenta o sanguinolenta, dolor torácico.
Tuberculosis Mycobacterium tuberculosis Fiebre, cansancio, sudor nocturno, necrosis pulmonar.
Tétanos Clostridium tetani Fiebre, parálisis.

Clasificación e identificación

 
Cultivo de E. coli, donde cada punto es una colonia.

La clasificación taxonómica busca describir y diferenciar la amplia diversidad de especies bacterianas poniendo nombres y agrupando organismos según sus similitudes. Las bacterias pueden clasificarse con base en diferentes criterios, como estructura celular, metabolismo o con base en diferencias en determinados componentes como ADN, ácidos grasos, pigmentos, antígenos o quinonas.[138]​ Sin embargo, aunque estos criterios permitían la identificación y clasificación de cepas bacterianas, aún no quedaba claro si estas diferencias representaban variaciones entre especies diferentes o entre distintas cepas de la misma especie. Esta incertidumbre se debía a la ausencia de estructuras distintivas en la mayoría de las bacterias y a la existencia de la transferencia horizontal de genes entre especies diferentes,[139]​ la cual da lugar a que bacterias muy relacionadas puedan llegar a presentar morfologías y metabolismos muy diferentes. Por ello, y con el fin de superar esta incertidumbre, la clasificación bacteriana actual se centra en el uso de técnicas moleculares modernas (filogenia molecular), tales como la determinación del contenido de guanina/citosina, la hibridación genoma-genoma o la secuenciación de ADN ribosómico, el cual no se ve involucrado en la transferencia horizontal.[140]

El Comité Internacional de Sistemática de Procariotas (ICSP) es el organismo encargado de la nomenclatura, taxonomía y las normas según las cuales son designados los procariotas.[141]​ El ICSP es responsable de la publicación del Código Internacional de Nomenclatura de Bacterias (lista de nombres aprobados de especies y taxones bacterianos).[142]​ También publica la Revista Internacional de Bacteriología Sistemática (International Journal of Systematic Bacteriology).[143]​ En contraste con la nomenclatura procariótica, no hay una clasificación oficial de los procariotas porque la taxonomía sigue siendo una cuestión de criterio científico. La clasificación más aceptada es la elaborada por la oficina editorial del Manual de Bacteriología Sistemática de Bergey (Bergey's Manual of Systematic Bacteriology) como paso preliminar para organizar el contenido de la publicación.[144]​ Esta clasificación, conocida como "The Taxonomic Outline of Bacteria and Archaea" (TOBA), está disponible en Internet.[145]​ Debido a la reciente introducción de la filogenia molecular y del análisis de las secuencias de genomas, la clasificación bacteriana actual es un campo en continuo cambio y plena expansión.[146][147]

La identificación de bacterias en el laboratorio es particularmente relevante en medicina, donde la determinación de la especie causante de una infección es crucial a la hora de aplicar un correcto tratamiento. Por ello, la necesidad de identificar a los patógenos humanos ha dado lugar a un potente desarrollo de técnicas para la identificación de bacterias.

 
Streptococcus mutans visualizado con la tinción de Gram. Cada pequeño punto de la cadena es una bacteria.

La técnica de tinción de membranas de bacterias de Gram, desarrollada por Hans Christian Gram en 1884,[148]​ ha supuesto un antes y un después en el campo de la medicina, y consiste en teñir con tintes específicos diversas muestras de bacterias en un portaobjetos para saber si se han teñido o no con dicho tinte.[149]

Una vez se han adicionado los tintes específicos en las muestras, y se ha lavado la muestra pasados unos minutos para evitar confusiones, hay que limpiarlas con unas gotas de alcohol etílico. La función del alcohol es la de eliminar el tinte de las bacterias, y es aquí donde se reconocen las bacterias que se han tomado: si la bacteria conserva el tinte, es una Gram positiva, las cuales poseen una pared más gruesa constituida por varias decenas de capas de diversos componentes proteicos; en el caso de que el tinte no se mantenga, la bacteria es una Gram negativa, la cual posee una pared de una composición diferente. La función biológica que posee esta técnica es la de fabricar antibióticos específicos para esas bacterias.

Esta tinción es empleada en microbiología para la visualización de bacterias en muestras clínicas. También se emplea como primer paso en la distinción de diferentes especies de bacterias,[150]​ considerándose bacterias Gram positivas a aquellas que se tornan de color violeta y Gram negativas a las que se tornan de color rojo.[151][152]

En el análisis de muestras clínicas suele ser un estudio fundamental por cumplir varias funciones:

  • Identificación preliminar de la bacteria causante de la infección.
  • Consideración de la calidad de la muestra biológica para el estudio, es decir, permite apreciar el número de células inflamatorias así como de células epiteliales. A mayor número de células inflamatorias en cada campo del microscopio, más probabilidad de que la flora que crezca en los medios de cultivo sea la representativa de la zona infectada. A mayor número de células epiteliales sucede los contrario, mayor probabilidad de contaminación con flora saprofita.
  • Utilidad como control de calidad del aislamiento bacteriano. Las cepas bacterianas identificadas en la tinción de Gram se deben corresponder con aislamientos bacterianos realizados en los cultivos. Si se observan mayor número de formas bacterianas que las aisladas, entonces hay que reconsiderar los medios de cultivos empleados así como la atmósfera de incubación.

Filos y filogenia

 
Probable modelo evolutivo de los principales filos y clados. Los principales supergrupos serían Terrabacteria, Gracilicutes y CPR.

Las relaciones filogenéticas de los seres vivos son motivo de controversia y no hay un acuerdo general entre los diferentes autores. La mayoría de árboles filogenéticos, en especial los de ARNr 16S y 23S, muestran que los grupos basales son filos termófilos como Aquificae y Thermotogae,[153]​ lo que reforzaría el origen termófilo de los dominios Archaea y Bacteria. En cambio, algunos árboles genómicos muestran a Firmicutes (Gram positivos) como el clado más antiguo.[154]​ Según las teorías de Cavalier-Smith la mayor divergencia se encuentra en un grupo fotosintético que denomina Chlorobacteria (Chloroflexi).[42]​ Otros estudios filogenéticos genómicos o proteicos colocan en una posición basal a Planctomycetes, Proteobacteria u otros filos. Finalmente se ha propuesto que hubo una temprana divergencia entre dos supergrupos: Gracilicutes y Terrabacteria;[155]​ demostrando en suma que actualmente no existe un filogenia bacteriana estable como para conocer con certeza la historia evolutiva bacteriana más temprana. Esto debido con toda probabilidad al fenómeno de la transferencia genética horizontal, típica de los organismos procariotas.

Los principales filos bacterianos se pueden organizar dentro de un amplio criterio filogenético en tres conjuntos:

Grupos termófilos

 
Venenivibrio, una bacteria aquifical termófila de aguas termales.

De acuerdo con la mayoría de árboles filogenéticos moleculares, las bacterias termófilas son los más divergentes, formando un grupo parafilético basal, lo que es compatible con las principales teorías sobre el origen y evolución procariota. Son termófilos e hipertermófilos con metabolismo quimiotrofo, respiración anaerobia y estructura Gram negativa (de doble membrana), destacando los siguientes filos:

Gram positivos y relacionados

 
Tinción de Gram de Bacillus anthracis, una bacteria patógena Gram positiva del filo firmicutes.

Los grupos Gram positivos son básicamente Firmicutes y Actinobacteria, los cuales habría engrosado su pared celular como una adaptación a la desecación con pérdida de la membrana externa, desarrollando esteroles, ácido teicoico y formando esporas en varios grupos. El término Posibacteria se ha usado como taxón para agrupar a los Gram positivos y grupos derivados como Tenericutes. El término monodérmico alude a la única membrana celular que poseen los Gram positivos, lo que significa que otros filos como Chloroflexi y Thermomicrobia, al ser monodérmicos, están relacionados con los primeros a pesar de que son Gram variables. Según algunos árboles filogenéticos, los filos monodérmicos forman parte de un superclado denominado Terrabacteria, llamados así por su probable evolución en medios terrestres, y se incluye en él a filos didérmicos como Deinococcus-Thermus que es Gram variable y al grupo Cyanobacteria/Melainabacteria que es Gram negativo. Los Gram positivos y relacionados (Terrabacteria) se presentan en la mayoría de árboles filogenéticos como un grupo parafilético con respecto a Gracilicutes y está conformado por los siguientes filos:

Gracilicutes

 
Las espiroquetas, al igual que otros Gracilicutes, son Gram negativas.

El superclado Gracilicutes o Hydrobacteria está bien consensuado en muchos árboles filogenéticos. Son el mayor grupo de bacterias Gram negativas, didérmicas, en su mayoría quimioheterótrofas, de hábitat acuático o relacionado con animales y plantas como comensal, mutualista o patógeno. Está conformado por varios filos y superfilos:

  • Spirochaetes. Bacterias quimioheterótrofas con forma alargada típicamente enrollada en espiral que se desplazan mediante rotación. Muchas producen enfermedades.
  • Grupo FCB o Sphingobacteria.
    • Fibrobacteres. Pequeño filo de que incluye muchas de las bacterias estomacales que permiten la degradación de la celulosa en los rumiantes.
    • Gemmatimonadetes. Aerobios del suelo y el fango.
    • Bacteroidetes. Un extenso filo de bacterias con amplia distribución en el medio ambiente, incluyendo el suelo, sedimentos, agua de mar y el tracto digestivo de los animales. Es un grupo heterogéneo que incluye aerobios obligados o anaerobios obligados, comensales, parásitos y formas de vida libre.
  • Grupo PVC o Planctobacteria
    • Planctomycetes. Bacterias principalmente acuáticas aerobias encontradas en agua dulce, salobre y marina. Su ciclo biológico implica la alternancia entre células sésiles y flageladas. Se reproducen por gemación.
    • Verrucomicrobia. Comprende bacterias terrestres, acuáticas y algunas asociadas con huéspedes eucariotas.
      • Lentisphaerae. Pequeño grupo de bacterias recientemente descubiertas en aguas marinas y hábitats terrestres anaerobios. Se consideran derivados o relacionados con Verrucomicrobia a nivel de filo.
    • Chlamydiae. Un pequeño grupo de parásitos intracelulares obligados de las células eucariotas.
  • Elusimicrobia. Se encuentra disperso por mar, tierra y como endosimbionte de insectos.
  • Proteobacteria (bacterias púrpuras y relacionadas). Es un grupo muy diverso y extenso. La mayoría son heterótrofas, otras son fermentadoras como las enterobacterias y muchas causan enfermedades como las ricketsias que son parásitos intracelulares. Los rizobios son endosimbiontes fijadores de nitrógeno en las plantas, las bacterias púrpuras son fototrofas con bacterioclorofila y las mixobacterias forman agregados multicelulares. Algunos autores consideran que son derivados o relacionados con Proteobacteria los siguientes filos:
  • Fusobacteria. No siempre se le incluye en Gracilicutes. Son bacterias heterótrofas anaerobias causantes de infecciones en humanos. Constituyen uno de los principales tipos de flora del aparato digestivo.

Grupo CPR y otros filos candidatos

Recientemente, los análisis genómicos de las muestras tomadas del medio ambiente han identificado un gran número de filos candidatos de bacterias ultrapequeñas, cuyos representantes todavía no han sido cultivados. Estas bacterias no habían sido detectadas por los procedimientos tradicionales debido a sus especiales características metabólicas. A modo de ejemplo, una nueva línea filogenética de bacterias conteniendo 35 filos, el grupo CPR, ha sido recientemente identificado. De esta forma, el número de filos del dominio Bacteria se amplía hasta casi 100 y supera ampliamente en diversidad a los organismos de los otros dos dominios.[6][156]​ Sin embargo, En 2018 en una revisión taxonómica para estandarizar la taxonomía bacteriana se encontró que CPR o Patescibacteria comprende un único filo con varios taxones de rango inferior, en vez de una radiación de múltiples filos.[157]

Uso de las bacterias en la tecnología y la industria

Muchas industrias dependen en parte o enteramente de la acción bacteriana. Gran cantidad de sustancias químicas importantes como alcohol etílico, ácido acético, alcohol butílico y acetona son producidas por bacterias específicas. También se emplean bacterias para el curado de tabaco, el curtido de cueros, caucho, algodón, etc. Las bacterias (a menudo Lactobacillus) junto con levaduras y mohos, se han utilizado durante miles de años para la preparación de alimentos fermentados tales como queso, mantequilla, encurtidos, salsa de soja, chucrut, vinagre, vino y yogur.[158][159]

Las bacterias tienen una capacidad notable para degradar una gran variedad de compuestos orgánicos, por lo que se utilizan en el reciclado de basura y en biorremediación. Las bacterias capaces de degradar los hidrocarburos son de uso frecuente en la limpieza de los vertidos de petróleo.[160]​ Así por ejemplo, después del vertido del petrolero Exxon Valdez en 1989, en algunas playas de Alaska se usaron fertilizantes con objeto de promover el crecimiento de estas bacterias naturales. Estos esfuerzos fueron eficaces en las playas en las que la capa de petróleo no era demasiado espesa. Las bacterias también se utilizan para la biorremediación de basuras tóxicas industriales.[161]​ En la industria química, las bacterias son utilizadas en la síntesis de productos químicos enantioméricamente puros para uso farmacéutico o agroquímico.[162]

Las bacterias también pueden ser utilizadas para el control biológico de parásitos en sustitución de los pesticidas. Esto implica comúnmente a la especie Bacillus thuringiensis (también llamado BT), una bacteria de suelo Gram-positiva. Las subespecies de esta bacteria se utilizan como insecticidas específicos para lepidópteros.[163]​ Debido a su especificidad, estos pesticidas se consideran respetuosos con el medio ambiente, con poco o ningún efecto sobre los seres humanos, la fauna y la mayoría de los insectos beneficiosos, como por ejemplo, los polinizadores.[164][165]

 
Cristales de insulina.

Las bacterias son herramientas básicas en los campos de la biología, la genética y la bioquímica moleculares debido a su capacidad para crecer rápidamente y a la facilidad relativa con la que pueden ser manipuladas. Realizando modificaciones en el ADN bacteriano y examinando los fenotipos que resultan, los científicos pueden determinar la función de genes, enzimas y rutas metabólicas, pudiendo trasladar posteriormente estos conocimientos a organismos más complejos.[166]​ La comprensión de la bioquímica celular, que requiere cantidades enormes de datos relacionados con la cinética enzimática y la expresión de genes, permitirá realizar modelos matemáticos de organismos enteros. Esto es factible en algunas bacterias bien estudiadas. Por ejemplo, actualmente está siendo desarrollado y probado el modelo del metabolismo de Escherichia coli.[167][168]​ Esta comprensión del metabolismo y la genética bacteriana permite a la biotecnología la modificación de las bacterias para que produzcan diversas proteínas terapéuticas, tales como insulina, factores de crecimiento y anticuerpos.[169][170]

Galería

Véase también

Notas

  1. Se ha sugerido que Proteobacteria puede ser un superfilo en lugar de un filo.

Referencias

  1. Qiyun Zhu, Uyen Mai, Rob Knight. (2019). Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nature.
  2. Battistuzzi F, Feijao A, Hedges S. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC.
  3. Fabia U. Battistuzzi & S. Blair Hedges 2008. A Major Clade of Prokaryotes with Ancient Adaptations to Life on Land. Oxford Academic.
  4. Woese, C., Kandler, O., Wheelis, M. (1990). «Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya». Proc Natl Acad Sci U S A 87 (12): 4576-9. PMID 2112744. 
  5. Christian Rinke et al 2013. «Insights into the phylogeny and coding potential of microbial dark matter.» Nature, Vol 499, pp. 431-437. 25 de julio de 2013 doi:10.1038/nature12352
  6. Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., ... & Suzuki, Y. (2016). A new view of the tree of life. Nature Microbiology, 1, 16048.
  7. Classification of domains and phyla - Hierarchical classification of prokaryotes (bacteria) LPSN, revisado en octubre de 2015.
  8. Murray, Patrick R. (2009). Microbiología Médica + Student Consult, 6a ed.. Elsevier España. ISBN 978-84-8086-465-7. Consultado el 26 de noviembre de 2019. 
  9. Fredrickson J, Zachara J, Balkwill D, et al (2004). «Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the hanford site, Washington state». Appl Environ Microbiol 70 (7): 4230 - 41. PMID 15240306. 
  10. Whitman, W., Coleman, D., Wiebe, W. (1998). «Prokaryotes: the unseen majority». Proc Natl Acad Sci U S A 95 (12): 6578-83. PMID 9618454. 
  11. Rappé. M., Giovannoni, S. «The uncultured microbial majority». Annu Rev Microbiol 57: 369-94. PMID 14527284. 
  12. Sears C (2005). «A dynamic partnership: Celebrating our gut flora». Anaerobe 11 (5): 247-51. PMID 16701579. 
  13. «Tuberculosis: Key Facts». Organización Mundial de la Salud (en inglés). Consultado el 7 de junio de 2020. 
  14. Ishige, T, Honda, K., Shimizu, S. (2005). «Whole organism biocatalysis». Curr Opin Chem Biol 9 (2): 174-80. PMID 15811802. 
  15. Ibrahim B. Syed, (2002). "Islamic Medicine: 1000 years ahead of its times", Journal of the Islamic Medical Association 2, pp. 2-9.
  16. Ober WB, Aloush N (1982). «The plague at Granada, 1348-1349: Ibn Al-Khatib and ideas of contagion». Bulletin of the New York Academy of Medicine 58 (4): 418-24. PMID 7052179. 
  17. Beretta M (2003). «The revival of Lucretian atomism and contagious diseases during the renaissance». Medicina nei secoli 15 (2): 129-54. PMID 15309812. 
  18. Porter JR (1976). «Antony van Leeuwenhoek: Tercentenary of his discovery of bacteria». Bacteriological reviews 40 (2): 260-9. PMID 786250. Consultado el 19 de agosto de 2007. 
  19. van Leeuwenhoek A (1684). «An abstract of a letter from Mr. Anthony Leevvenhoek at Delft, dated Sep. 17, 1683, Containing Some Microscopical Observations, about Animals in the Scurf of the Teeth, the Substance Call'd Worms in the Nose, the Cuticula Consisting of Scales». Philosophical Transactions (1683–1775) 14: 568-74. Consultado el 19 de agosto de 2007.  (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).
  20. van Leeuwenhoek A (1700). «Part of a Letter from Mr Antony van Leeuwenhoek, concerning the Worms in Sheeps Livers, Gnats, and Animalcula in the Excrements of Frogs». Philosophical Transactions (1683–1775) 22: 509-18. Archivado desde el original el 5 de enero de 2010. Consultado el 19 de agosto de 2007. 
  21. van Leeuwenhoek A (1702). «Part of a Letter from Mr Antony van Leeuwenhoek, F. R. S. concerning Green Weeds Growing in Water, and Some Animalcula Found about Them». Philosophical Transactions (1683–1775) 23: 1304-11. Archivado desde el original el 18 de enero de 2010. Consultado el 19 de agosto de 2007. 
  22. «Etymology of the word "bacteria"». Online Etymology dictionary. Consultado el 23 de noviembre de 2006. 
  23. Jan Sapp 2006, Two faces of the prokaryote concept International Microbiology, Canada, 9:163-172
  24. «Pasteur's Papers on the Germ Theory». LSU Law Center's Medical and Public Health Law Site, Historic Public Health Articles. Consultado el 23 de noviembre de 2006. 
  25. «The Nobel Prize in Physiology or Medicine 1905». Nobelprize.org. Consultado el 22 de noviembre de 2006. 
  26. O'Brien S, Goedert J (1996). «HIV causes AIDS: Koch's postulates fulfilled». Curr Opin Immunol 8 (5): 613-18. PMID 8902385. 
  27. Thurston A (2000). «Of blood, inflammation and gunshot wounds: the history of the control of sepsis». Aust N Z J Surg 70 (12): 855-61. PMID 11167573. 
  28. «Biography of Paul Ehrlich». Nobelprize.org. Consultado el 26 de noviembre de 2006. 
  29. Schwartz R (2004). «Paul Ehrlich's magic bullets». N Engl J Med 350 (11): 1079-80. PMID 15014180. 
  30. Woese C, Fox G (1977). «Phylogenetic structure of the prokaryotic domain: the primary kingdoms». Proc Natl Acad Sci U S A 74 (11): 5088-90. PMID 270744. 
  31. Woese C, Kandler O, Wheelis M (1990). «Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya». Proc Natl Acad Sci U S A 87 (12): 4576-79. PMID 2112744. 
  32. Woese C, Kandler O, Wheelis M (1990). «Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya». Proc Natl Acad Sci U S A 87 (12): 4576-9. PMID 2112744. 
  33. Gupta R (2000). «The natural evolutionary relationships among prokaryotes.». Crit Rev Microbiol 26 (2): 111-31. PMID 10890353. 
  34. Courtland, Rachel (2 de julio de 2008). «Did newborn Earth harbour life?». New Scientist. Consultado el 27 de septiembre de 2014. 
  35. Schopf J (1994). «Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic». Proc Natl Acad Sci U S A 91 (15): 6735-42. PMID 8041691. 
  36. DeLong E, Pace N (2001). «Environmental diversity of bacteria and archaea». Syst Biol 50 (4): 470-78. PMID 12116647. 
  37. Brown J, Doolittle W (1997). «Archaea and the prokaryote-to-eukaryote transition». Microbiol Mol Biol Rev 61 (4): 456-502. PMID 9409149. 
  38. Wang M, Yafremava LS, Caetano-Anollés D, Mittenthal JE, Caetano-Anollés G (2007). «Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world». Genome Res. 17 (11): 1572-85. PMID 17908824. doi:10.1101/gr.6454307. 
  39. Di Giulio M (2003). «The universal ancestor and the ancestor of bacteria were hyperthermophiles». J Mol Evol 57 (6): 721-30. PMID 14745541. 
  40. Battistuzzi F, Feijao A, Hedges S. «A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land.». BMC Evol Biol 4: 44. PMID 15535883. 
  41. Cavalier-Smith T (2006). «Cell evolution and Earth history: stasis and revolution». Philos Trans R Soc Lond B Biol Sci 361 (1470): 969-1006. PMID 16754610.  (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).
  42. Thomas Cavalier-Smith (2006), Rooting the tree of life by transition analyses, Biol Direct. 1: 19. doi: 10.1186/1745-6150 de enero de 19.
  43. T. Cavalier-Smith (2002). «The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa». International Journal of Systematic and Evolutionary Microbiology 52: 297-354. 
  44. Cavalier-Smith T (2002). «The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.». Int J Syst Evol Microbiol 52 (Pt 1): 7-76. PMID 11837318. 
  45. Poole A, Penny D (2007). «Evaluating hypotheses for the origin of eukaryotes». Bioessays 29 (1): 74-84. PMID 17187354. 
  46. Dyall S, Brown M, Johnson P (2004). «Ancient invasions: from endosymbionts to organelles». Science 304 (5668): 253 - 7. PMID 15073369. 
  47. Lang B, Gray M, Burger G. «Mitochondrial genome evolution and the origin of eukaryotes». Annu Rev Genet 33: 351-97. PMID 10690412. 
  48. McFadden G (1999). «Endosymbiosis and evolution of the plant cell». Curr Opin Plant Biol 2 (6): 513-9. PMID 10607659. 
  49. Schulz H, Jorgensen B. «Big bacteria». Annu Rev Microbiol 55: 105-37. PMID 11544351. 
  50. Robertson J, Gomersall M, Gill P. (1975). «Mycoplasma hominis: growth, reproduction, and isolation of small viable cells». J Bacteriol. 124 (2): 1007-18. PMID 1102522. 
  51. Fritz I, Strömpl C, Abraham W (2004). «Phylogenetic relationships of the genera Stella, Labrys and Angulomicrobium within the 'Alphaproteobacteria' and description of Angulomicrobium amanitiforme sp. nov». Int J Syst Evol Microbiol 54 (Pt 3): 651-7. PMID 15143003. 
  52. Cabeen M, Jacobs-Wagner C (2005). «Bacterial cell shape». Nat Rev Microbiol 3 (8): 601-10. PMID 16012516. 
  53. Young K (2006). «The selective value of bacterial shape». Microbiol Mol Biol Rev 70 (3): 660-703. PMID 16959965. 
  54. Douwes K, Schmalzbauer E, Linde H, Reisberger E, Fleischer K, Lehn N, Landthaler M, Vogt T (2003). «Branched filaments no fungus, ovoid bodies no bacteria: Two unusual cases of mycetoma». J Am Acad Dermatol 49 (2 Suppl Case Reports): S170-3. PMID 12894113. 
  55. Donlan R (2002). «Biofilms: microbial life on surfaces». Emerg Infect Dis 8 (9): 881-90. PMID 12194761. 
  56. Branda S, Vik S, Friedman L, Kolter R (2005). «Biofilms: the matrix revisited». Trends Microbiol 13 (1): 20-26. PMID 15639628. 
  57. Davey M, O'toole G (2000). «Microbial biofilms: from ecology to molecular genetics». Microbiol Mol Biol Rev 64 (4): 847-67. PMID 11104821. 
  58. Donlan RM, Costerton JW (2002). «Biofilms: survival mechanisms of clinically relevant microorganisms». Clin Microbiol Rev 15 (2): 167-93. PMID 11932229. 
  59. Shimkets L. «Intercellular signaling during fruiting-body development of Myxococcus xanthus.». Annu Rev Microbiol 53: 525-49. PMID 10547700. 
  60. Kaiser D. «Signaling in myxobacteria». Annu Rev Microbiol 58: 75-98. PMID 15487930. 
  61. Harold F (1972). «Conservation and transformation of energy by bacterial membranes». Bacteriol Rev 36 (2): 172-230. PMID 4261111. 
  62. Berg J., Tymoczko J. and Stryer L. (2002) Biochemistry. W. H. Freeman and Company ISBN 0-7167-4955-6
  63. Fuerst J (2005). «Intracellular compartmentation in planctomycetes». Annu Rev Microbiol 59: 299-328. PMID 15910279. 
  64. Poehlsgaard J, Douthwaite S (2005). «The bacterial ribosome as a target for antibiotics». Nat Rev Microbiol 3 (11): 870-81. PMID 16261170. 
  65. Yeo M, Chater K (2005). «The interplay of glycogen metabolism and differentiation provides an insight into the developmental biology of Streptomyces coelicolor». Microbiology 151 (Pt 3): 855-61. PMID 15758231. 
  66. Shiba T, Tsutsumi K, Ishige K, Noguchi T (2000). «Inorganic polyphosphate and polyphosphate kinase: their novel biological functions and applications». Biochemistry (Mosc) 65 (3): 315-23. PMID 10739474. 
  67. Brune DC. (1995). «Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina». Arch Microbiol 163 (6): 391-99. PMID 7575095. 
  68. Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S. (2005). «Ecological and agricultural significance of bacterial polyhydroxyalkanoates». Crit Rev Microbiol 31 (2): 55-67. PMID 15986831. 
  69. Walsby A (1994). «Gas vesicles». Microbiol Rev 58 (1): 94-144. PMID 8177173. 
  70. Gitai, Z. (2005). «The New Bacterial Cell Biology: Moving Parts and Subcellular Architecture». Cell 120 (5): 577-586. doi:10.1016/j.cell.2005.02.026. 
  71. Thanbichler M, Wang S, Shapiro L (2005). «The bacterial nucleoid: a highly organized and dynamic structure». J Cell Biochem 96 (3): 506-21. PMID 15988757. 
  72. Gitai Z (2005). «The new bacterial cell biology: moving parts and subcellular architecture». Cell 120 (5): 577-86. PMID 15766522. doi:10.1016/j.cell.2005.02.026. 
  73. Shih YL, Rothfield L (2006). «The bacterial cytoskeleton». Microbiol. Mol. Biol. Rev. 70 (3): 729-54. PMID 16959967. doi:10.1128/MMBR.00017-06. 
  74. van Heijenoort J (2001). «Formation of the glycan chains in the synthesis of bacterial peptidoglycan». Glycobiology 11 (3): 25R - 36R. PMID 11320055. 
  75. Koch A (2003). «Bacterial wall as target for attack: past, present, and future research». Clin Microbiol Rev 16 (4): 673 - 87. PMID 14557293. 
  76. Gram, HC (1884). «Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten». Fortschr. Med. 2: 185-189. 
  77. Hugenholtz P (2002). «Exploring prokaryotic diversity in the genomic era». Genome Biol 3 (2): REVIEWS0003. PMID 11864374. 
  78. Walsh F, Amyes S (2004). «Microbiology and drug resistance mechanisms of fully resistant pathogens.». Curr Opin Microbiol 7 (5): 439-44. PMID 15451497. 
  79. Engelhardt H, Peters J (1998). «Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions». J Struct Biol 124 (2 - 3): 276-302. PMID 10049812. 
  80. Beveridge T, Pouwels P, Sára M, Kotiranta A, Lounatmaa K, Kari K, Kerosuo E, Haapasalo M, Egelseer E, Schocher I, Sleytr U, Morelli L, Callegari M, Nomellini J, Bingle W, Smit J, Leibovitz E, Lemaire M, Miras I, Salamitou S, Béguin P, Ohayon H, Gounon P, Matuschek M, Koval S (1997). «Functions of S-layers». FEMS Microbiol Rev 20 (1 - 2): 99 - 149. PMID 9276929. 
  81. Kojima S, Blair D. «The bacterial flagellar motor: structure and function of a complex molecular machine». Int Rev Cytol 233: 93 - 134. PMID 15037363. 
  82. Beachey E (1981). «Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface». J Infect Dis 143 (3): 325 - 45. PMID 7014727. 
  83. Silverman P (1997). «Towards a structural biology of bacterial conjugation». Mol Microbiol 23 (3): 423 - 9. PMID 9044277. 
  84. Stokes R, Norris-Jones R, Brooks D, Beveridge T, Doxsee D, Thorson L (2004). «The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages». Infect Immun 72 (10): 5676 - 86. PMID 15385466. 
  85. Daffé M, Etienne G (1999). «The capsule of Mycobacterium tuberculosis and its implications for pathogenicity». Tuber Lung Dis 79 (3): 153 - 69. PMID 10656114. 
  86. Finlay B, Falkow S (1997). «Common themes in microbial pathogenicity revisited». Microbiol Mol Biol Rev 61 (2): 136 - 69. PMID 9184008. 
  87. Nicholson W, Munakata N, Horneck G, Melosh H, Setlow P (2000). «Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments». Microbiol Mol Biol Rev 64 (3): 548 - 72. PMID 10974126. 
  88. Siunov A, Nikitin D, Suzina N, Dmitriev V, Kuzmin N, Duda V. . Int J Syst Bacteriol. 49 Pt 3: 1119 - 24. PMID 10425769. Archivado desde el original el 16 de junio de 2007. 
  89. Nicholson W, Fajardo-Cavazos P, Rebeil R, Slieman T, Riesenman P, Law J, Xue Y (2002). «Bacterial endospores and their significance in stress resistance». Antonie Van Leeuwenhoek 81 (1 - 4): 27 - 32. PMID 12448702. 
  90. Vreeland R, Rosenzweig W, Powers D (2000). «Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal». Nature 407 (6806): 897 - 900. PMID 11057666. 
  91. Cano R, Borucki M (1995). «Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber». Science 268 (5213): 1060 - 4. PMID 7538699. 
  92. Nicholson W, Schuerger A, Setlow P (2005). «The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight». Mutat Res 571 (1 - 2): 249 - 64. PMID 15748651. 
  93. Hatheway C (1990). «Toxigenic clostridia». Clin Microbiol Rev 3 (1): 66 - 98. PMID 2404569. 
  94. Nealson K (1999). «Post-Viking microbiology: new approaches, new data, new insights». Orig Life Evol Biosph 29 (1): 73-93. PMID 11536899. 
  95. Xu J (2006). «Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances». Mol Ecol 15 (7): 1713-31. PMID 16689892. 
  96. Zillig W (1991). «Comparative biochemistry of Archaea and Bacteria». Curr Opin Genet Dev 1 (4): 544-51. PMID 1822288. 
  97. Hellingwerf K, Crielaard W, Hoff W, Matthijs H, Mur L, van Rotterdam B (1994). «Photobiology of bacteria». Antonie Van Leeuwenhoek 65 (4): 331 - 47. PMID 7832590. 
  98. Zumft W (1997). «Cell biology and molecular basis of denitrification». Microbiol Mol Biol Rev 61 (4): 533 - 616. PMID 9409151. 
  99. Drake H, Daniel S, Küsel K, Matthies C, Kuhner C, Braus-Stromeyer S (1997). «Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities?». Biofactors 6 (1): 13 - 24. PMID 9233536. 
  100. Dalton H (2005). «The Leeuwenhoek Lecture 2000 the natural and unnatural history of methane-oxidizing bacteria». Philos Trans R Soc Lond B Biol Sci 360 (1458): 1207 - 22. PMID 16147517.  (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).
  101. Zehr J, Jenkins B, Short S, Steward G (2003). «Nitrogenase gene diversity and microbial community structure: a cross-system comparison». Environ Microbiol 5 (7): 539 - 54. PMID 12823187. 
  102. Morel, FMM; Kraepiel AML, Amyot M (1998). «The chemical cycle and bioaccumulation of mercury». Annual Review of Ecological Systems 29: 543—566. 
  103. Bardy S, Ng S, Jarrell K (2003). . Microbiology 149 (Pt 2): 295-304. PMID 12624192. Archivado desde el original el 14 de septiembre de 2007. Consultado el 1 de julio de 2007. 
  104. Merz A, So M, Sheetz M (2000). «Pilus retraction powers bacterial twitching motility». Nature 407 (6800): 98-102. PMID 10993081. 
  105. Wu M, Roberts J, Kim S, Koch D, DeLisa M (2006). «Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique». Appl Environ Microbiol 72 (7): 4987-94. PMID 16820497. 
  106. Lux R, Shi W (2004). «Chemotaxis-guided movements in bacteria». Crit Rev Oral Biol Med 15 (4): 207-20. PMID 15284186. 
  107. Frankel R, Bazylinski D, Johnson M, Taylor B (1997). «Magneto-aerotaxis in marine coccoid bacteria». Biophys J 73 (2): 994-1000. PMID 9251816. 
  108. Kaiser D. «Signaling in myxobacteria». Annu Rev Microbiol 58: 75-98. PMID 15487930. 
  109. Goldberg MB (2001). «Actin-based motility of intracellular microbial pathogens». Microbiol Mol Biol Rev 65 (4): 595-626. PMID 11729265. 
  110. Curtis-Barnes, Biología (1994). «7». Como se dividen las células. Medica Panamericana. p. 171. ISBN 950-06-0375-6. 
  111. Koch A (2002). «Control of the bacterial cell cycle by cytoplasmic growth». Crit Rev Microbiol 28 (1): 61 - 77. PMID 12003041. 
  112. Eagon R. «Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes». J Bacteriol 83: 736 - 7. PMID 13888946. 
  113. Prats C, López D, Giró A, Ferrer J, Valls J (2006). «Individual-based modelling of bacterial cultures to study the microscopic causes of the lag phase». J Theor Biol 241 (4): 939-53. PMID 16524598. 
  114. Hecker M, Völker U. «General stress response of Bacillus subtilis and other bacteria». Adv Microb Physiol 44: 35-91. PMID 11407115. 
  115. Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar H, Moran N, Hattori M (2006). «The 160-kilobase genome of the bacterial endosymbiont Carsonella». Science 314 (5797): 267. PMID 17038615. 
  116. Pradella S, Hans A, Spröer C, Reichenbach H, Gerth K, Beyer S (2002). «Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56». Arch Microbiol 178 (6): 484-92. PMID 12420170. 
  117. Hinnebusch J, Tilly K (1993). «Linear plasmids and chromosomes in bacteria». Mol Microbiol 10 (5): 917-22. PMID 7934868. 
  118. Brüssow H, Canchaya C, Hardt W (2004). «Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion». Microbiol Mol Biol Rev 68 (3): 560-602. PMID 15353570. 
  119. Perna N, Mayhew G, Pósfai G, Elliott S, Donnenberg M, Kaper J, Blattner F (1998). «Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7». Infect Immun 66 (8): 3810-7. PMID 9673266. 
  120. Denamur E, Matic I (2006). «Evolution of mutation rates in bacteria». Mol Microbiol 60 (4): 820 - 7. PMID 16677295. 
  121. Wright B (2004). «Stress-directed adaptive mutations and evolution». Mol Microbiol 52 (3): 643 - 50. PMID 15101972. 
  122. Davison J (1999). «Genetic exchange between bacteria in the environment». Plasmid 42 (2): 73 - 91. PMID 10489325. 
  123. Hastings P, Rosenberg S, Slack A (2004). «Antibiotic-induced lateral transfer of antibiotic resistance». Trends Microbiol 12 (9): 401 - 4. PMID 15337159. 
  124. Stams A, de Bok F, Plugge C, van Eekert M, Dolfing J, Schraa G (2006). «Exocellular electron transfer in anaerobic microbial communities». Environ Microbiol 8 (3): 371-82. PMID 16478444. 
  125. Barea J, Pozo M, Azcón R, Azcón-Aguilar C (2005). «Microbial co-operation in the rhizosphere». J Exp Bot 56 (417): 1761-78. PMID 15911555. 
  126. IGER. Ciencias Naturales: Zaculeu. IGER. ISBN 9789929614116. Consultado el 5 de septiembre de 2017. 
  127. O'Hara A, Shanahan F (2006). «The gut flora as a forgotten organ». EMBO Rep 7 (7): 688-93. PMID 16819463. 
  128. Zoetendal E, Vaughan E, de Vos W (2006). «A microbial world within us». Mol Microbiol 59 (6): 1639-50. PMID 16553872. 
  129. Gorbach S (1990). «Lactic acid bacteria and human health». Ann Med 22 (1): 37-41. PMID 2109988. 
  130. Salminen S, Gueimonde M, Isolauri E (2005). «Probiotics that modify disease risk». J Nutr 135 (5): 1294-8. PMID 15867327. 
  131. Erin Gill & Fiona Brinkman 2011, The proportional lack of archaeal pathogens: Do viruses/phages hold the key? Bioessays. 2011 April; 33(4): 248–254.
  132. Fish D. «Optimal antimicrobial therapy for sepsis». Am J Health Syst Pharm. 59 Suppl 1: S13-9. PMID 11885408. 
  133. Belland R, Ouellette S, Gieffers J, Byrne G (2004). «Chlamydia pneumoniae and atherosclerosis». Cell Microbiol 6 (2): 117-27. PMID 14706098. 
  134. Heise E. «Diseases associated with immunosuppression». Environ Health Perspect 43: 9-19. PMID 7037390. 
  135. Saiman, L (2004). «Microbiology of early CF lung disease». Paediatr Respir Rev.volumen=5 Suppl A: S367-369.  PMID 14980298
  136. Yonath A, Bashan A (2004). «Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics». Annu Rev Microbiol 58: 233-51. PMID 15487937. 
  137. Khachatourians G (1998). «Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria». CMAJ 159 (9): 1129-36. PMID 9835883. 
  138. Thomson R, Bertram H (2001). «Laboratory diagnosis of central nervous system infections». Infect Dis Clin North Am 15 (4): 1047-71. PMID 11780267. 
  139. Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbo CL, Case RJ, Doolittle WF (2003). «Lateral gene transfer and the origins of prokaryotic groups.». Annu Rev Genet 37: 283-328. PMID 14616063. 
  140. Olsen G, Woese C, Overbeek R (1994). «The winds of (evolutionary) change: breathing new life into microbiology». J Bacteriol 176 (1): 1-6. PMID 8282683. 
  141. Tindall, BJ, Trüper, HG (28 de noviembre de 2005). (en inglés). ICSP. Archivado desde el original el 19 de agosto de 2007. Consultado el 2 de septiembre de 2008. 
  142. Euzéby, JP (2008). (en inglés). Archivado desde el original el 30 de diciembre de 2010. Consultado el 2 de septiembre de 2008. 
  143. «EMInternational Journal of Systematic Bacteriology (IJS)» (en inglés). Society for General Microbiology. Consultado el 2 de septiembre de 2008. 
  144. «Bergey's Manual Trust» (en inglés). 26 de agosto. Consultado el 2 de septiembre de 2008. 
  145. (en inglés). Universidad Estatal de Míchigan en colaboración con NamesforLife, LLC. 2007. Archivado desde el original el 1 de diciembre de 2008. Consultado el 2 de septiembre de 2008. 
  146. Rappé MS, Giovannoni SJ (2003). "The uncultured microbial majority". Annual Review of Microbiology 57: 369–94. doi:10.1146/annurev.micro.57.030502.090759
  147. Doolittle RF (2005). «Evolutionary aspects of whole-genome biology». Curr Opin Struct Biol 15 (3): 248-253. PMID 11837318. 
  148. Gram, HC (1884). «Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten». Fortschr. Med. 2: 185-189. 
  149. Ryan KJ; Ray CG (editors) (2004). Sherris Medical Microbiology (4th ed. edición). McGraw Hill. pp. 232 - 3. ISBN 0-8385-8529-9. 
  150. Madigan, MT; Martinko J; Parker J (2004). Brock Biology of Microorganisms (10th Edition edición). Lippincott Williams & Wilkins. ISBN 0-13-066271-2. 
  151. Beveridge, T.J.; Davies, J.A. «Cellular responses of Bacillus subtilis and Escherichia coli to the Gram stain» (PDF). J. Bacteriol. 156 (2): 846-858. PMID 6195148. Consultado el 2007 de febrero de 17. 
  152. Davies, J.A.; G.K. Anderson, T.J. Beveridge, H.C. Clark. «Chemical mechanism of the Gram stain and synthesis of a new electron-opaque marker for electron microscopy which replaces the iodine mordant of the stain» (PDF). J. Bacteriol. 156 (2): 837-845. PMID 6195147. Consultado el 2007 de febrero de 17. 
  153. Cheryl P. Andam & J. Peter Gogarten 2011. Biased gene transfer in microbial evolution. Figure 1 --| Phylogenetic analysis of bacterial tyrosyl-tRNA synthetase amino acid sequences and the corresponding concatenated 16S–23S ribosomal RNA phylogeny. Nature Reviews Microbiology 9, 543-555 doi:10.1038/nrmicro2593
  154. Gupta, R. S. (2005). Molecular Sequences and the Early History of Life. In "Microbial Phylogeny and Evolution: Concepts and Controversies" (J. Sapp, Ed.), Oxford University Press, New York. Web: Branching Order of Bacterial Phyla.
  155. Boussau, Bastien et al 2008. Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of aquificales in the phylogeny of Bacteria. BMC Evolutionary Biology, 8:272 doi:10.1186/1471-2148-8-272
  156. Brown, C. T., Hug, L. A., Thomas, B. C., Sharon, I., Castelle, C. J., Singh, A., ... & Banfield, J. F. (2015). Unusual biology across a group comprising more than 15% of domain Bacteria. Nature, 523(7559), 208-211.
  157. Donovan H. Parks, Maria Chuvochina, David W. Waite, Christian Rinke, Adam Skarshewski, Pierre-Alain Chaumeil, Philip Hugenholtz (2018). A proposal for a standardized bacterial taxonomy based on genome phylogeny. Biorxiv.
  158. Johnson M, Lucey J (2006). «Major technological advances and trends in cheese». J Dairy Sci 89 (4): 1174-8. PMID 16537950. 
  159. Hagedorn S, Kaphammer B. «Microbial biocatalysis in the generation of flavor and fragrance chemicals». Annu Rev Microbiol 48: 773-800. PMID 7826026. 
  160. Cohen Y (2002). «Bioremediation of oil by marine microbial mats». Int Microbiol 5 (4): 189-93. PMID 12497184. 
  161. Neves L, Miyamura T, Moraes D, Penna T, Converti A. «Biofiltration methods for the removal of phenolic residues». Appl Biochem Biotechnol. 129–132: 130-52. PMID 16915636. 
  162. Liese A, Filho M (1999). «Production of fine chemicals using biocatalysis». Curr Opin Biotechnol 10 (6): 595-603. PMID 10600695. 
  163. Aronson A, Shai Y (2001). «Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action». FEMS Microbiol Lett 195 (1): 1-8. PMID 11166987. 
  164. Bozsik A (2006). «Susceptibility of adult Coccinella septempunctata (Coleoptera: Coccinellidae) to insecticides with different modes of action». Pest Manag Sci 62 (7): 651-4. PMID 16649191. 
  165. Chattopadhyay A, Bhatnagar N, Bhatnagar R (2004). «Bacterial insecticidal toxins». Crit Rev Microbiol 30 (1): 33-54. PMID 15116762. 
  166. Serres M, Gopal S, Nahum L, Liang P, Gaasterland T, Riley M (2001). «A functional update of the Escherichia coli K-12 genome». Genome Biol 2 (9): RESEARCH0035. PMID 11574054. 
  167. Almaas E, Kovács B, Vicsek T, Oltvai Z, Barabási A (2004). «Global organization of metabolic fluxes in the bacterium Escherichia coli». Nature 427 (6977): 839-43. PMID 14985762. 
  168. Reed J, Vo T, Schilling C, Palsson B (2003). «An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR)». Genome Biol 4 (9): R54. PMID 12952533. 
  169. Walsh G (2005). «Therapeutic insulins and their large-scale manufacture». Appl Microbiol Biotechnol 67 (2): 151-9. PMID 15580495. 
  170. Graumann K, Premstaller A (2006). «Manufacturing of recombinant therapeutic proteins in microbial systems». Biotechnol J 1 (2): 164-86. PMID 16892246. 

Enlaces externos

  •   Datos: Q10876
  •   Multimedia: Bacteria
  •   Especies: Bacteria

bacteria, bacterias, microorganismos, procariotas, presentan, tamaño, unos, pocos, micrómetros, general, entre, longitud, diversas, formas, incluyendo, esferas, cocos, barras, bacilos, filamentos, curvados, vibrios, helicoidales, espirilos, espiroquetas, bacte. Las bacterias son microorganismos procariotas que presentan un tamano de unos pocos micrometros por lo general entre 0 5 y 5 mm de longitud y diversas formas incluyendo esferas cocos barras bacilos filamentos curvados vibrios y helicoidales espirilos y espiroquetas 8 Las bacterias son celulas procariotas por lo que a diferencia de las celulas eucariotas de animales plantas hongos etc no tienen el nucleo definido ni presentan en general organulos membranosos internos Generalmente poseen una pared celular y esta se compone de peptidoglicano tambien llamado mureina Muchas bacterias disponen de flagelos o de otros sistemas de desplazamiento y son moviles Del estudio de las bacterias se encarga la bacteriologia una rama de la microbiologia BacteriasRango temporal 4100 0Ma 1 2 3 Had Arcaico Proterozoico Fan Hadico RecienteEscherichia coli aumentada 15 000 veces TaxonomiaDominio BacteriaEhrenberg 1828 sensu Woese Kandler amp Wheelis 1990 4 Filos 7 Monodermicos Gram positivos Actinobacteria Chloroflexi Firmicutes Didermicos Gram negativos Aquificae Armatimonadetes Bacteroidetes Caldiserica Chlamydiae Cyanobacteria Coprothermobacterota Deinococcus Thermus Dictyoglomi Elusimicrobia Fibrobacteres Fusobacteria Gemmatimonadetes Planctomycetes Proteobacteria n 1 Spirochaetes Synergistetes Thermodesulfobacteria Thermotogae Verrucomicrobia Patescibacteria Filos candidatos 5 6 Acetothermia Aerophobetes Atribacteria Calescamantes Calditrichaeota Cloacimonetes Dormibacteraeota Eremiobacteraeota Fervidibacteria Fermentibacteria Hydrogenedentes Latescibacteria Marinimicrobia Margulisbacteria Omnitrophica Poribacteria Pyropristinus Zixibacteria Delphibacteria Aureabacteria Firestonebacteria Delongbacteria Edwardsbacteria Desantisbacteria Desulfobacterota Sumerlaeota Riflebacteria Goldbacteria Eisenbacteria Rateibacteria Lindowbacteria Schekmanbacteria Muirbacteria Wallbacteria Krumholzibacteriota editar datos en Wikidata Aunque el termino bacteria incluia tradicionalmente a todos los procariotas actualmente la taxonomia y la nomenclatura cientifica los divide en dos grupos Estos dominios evolutivos se denominan Bacteria y Archaea arqueas 4 La division se justifica en las grandes diferencias que presentan ambos grupos a nivel bioquimico y genetico La presencia frecuente de pared de peptidoglicano junto con su composicion en lipidos de membrana son la principal diferencia que presentan frente a las arqueas Las bacterias son los organismos mas abundantes del planeta Son ubicuas se encuentran en todos los habitats terrestres y acuaticos crecen hasta en los mas extremos como en los manantiales de aguas calientes y acidas en desechos radioactivos 9 en las profundidades tanto del mar como de la corteza terrestre Algunas bacterias pueden incluso sobrevivir en las condiciones extremas del espacio exterior Se estima que se pueden encontrar en torno a 40 millones de celulas bacterianas en un gramo de tierra y un millon de celulas bacterianas en un mililitro de agua dulce En total se calcula que hay aproximadamente 5 1030 bacterias en el mundo 10 Las bacterias son imprescindibles para el reciclaje de los elementos pues muchos pasos importantes de los ciclos biogeoquimicos dependen de estas Como ejemplo cabe citar la fijacion del nitrogeno atmosferico Sin embargo solamente la mitad de los filos conocidos de bacterias tienen especies que se pueden cultivar en el laboratorio 11 por lo que una gran parte se supone que cerca del 90 de las especies de bacterias existentes todavia no ha sido descrita En el cuerpo humano hay aproximadamente diez veces mas celulas bacterianas que celulas humanas con una gran cantidad de bacterias en la piel y en el tracto digestivo 12 Aunque el efecto protector del sistema inmunologico hace que la gran mayoria de estas bacterias sea inofensiva o beneficiosa algunas bacterias patogenas pueden causar enfermedades infecciosas incluyendo colera difteria escarlatina lepra sifilis tifus etc Las enfermedades bacterianas mortales mas comunes son las infecciones respiratorias con una mortalidad solo para la tuberculosis de cerca de un millon y medio de personas en 2018 13 En todo el mundo se utilizan antibioticos para tratar las infecciones bacterianas Los antibioticos son efectivos contra las bacterias ya que inhiben la formacion de la pared celular o detienen otros procesos de su ciclo de vida Tambien se usan extensamente en la agricultura y la ganaderia en ausencia de enfermedad lo que ocasiona que se este generalizando la resistencia de las bacterias a los antibioticos En la industria las bacterias son importantes en procesos tales como el tratamiento de aguas residuales en la produccion de mantequilla queso vinagre yogur etc y en la fabricacion de medicamentos y de otros productos quimicos 14 Indice 1 Historia de la bacteriologia 2 Origen y evolucion de las bacterias 3 Morfologia bacteriana 4 Estructura de la celula bacteriana 4 1 Estructuras intracelulares 4 2 Estructuras extracelulares 4 3 Endosporas 5 Metabolismo 6 Movimiento 7 Reproduccion 8 Crecimiento 9 Genetica 10 Interacciones con otros organismos 10 1 Comensales 10 2 Mutualistas 10 3 Patogenos 11 Clasificacion e identificacion 12 Filos y filogenia 12 1 Grupos termofilos 12 2 Gram positivos y relacionados 12 3 Gracilicutes 12 4 Grupo CPR y otros filos candidatos 13 Uso de las bacterias en la tecnologia y la industria 14 Galeria 15 Vease tambien 16 Notas 17 Referencias 18 Enlaces externosHistoria de la bacteriologia Editar Anton van Leeuwenhoek la primera persona que observo una bacteria a traves de un microscopio La existencia de microorganismos fue conjeturada a finales de la Edad Media En el Canon de medicina 1020 Abu Ali ibn Sina Avicena planteaba que las secreciones corporales estaban contaminadas por multitud de cuerpos extranos infecciosos antes de que una persona cayera enferma pero no llego a identificar a estos cuerpos como la primera causa de las enfermedades Cuando la peste negra peste bubonica alcanzo al Andalus en el siglo XIV Ibn Khatima e Ibn al Jatib escribieron que las enfermedades infecciosas eran causadas por entidades contagiosas que penetraban en el cuerpo humano 15 16 Estas ideas sobre el contagio como causa de algunas enfermedades se volvio muy popular durante el Renacimiento sobre todo a traves de los escritos de Girolamo Fracastoro 17 Las primeras bacterias fueron observadas por el neerlandes Anton van Leeuwenhoek en 1676 usando un microscopio de lente simple disenado por el mismo 18 Inicialmente las denomino animalculos y publico sus observaciones en una serie de cartas que envio a la Royal Society de Londres 19 20 21 Marc von Plenciz s XVIII afirmo que las enfermedades contagiosas eran causadas por los pequenos organismos descubiertos por Leeuwenhoek El nombre de bacteria fue introducido mas tarde en 1828 por Ehrenberg deriva del griego bakthrion bacterion que significa baston pequeno 22 En 1835 Agostino Bassi pudo demostrar experimentalmente que la enfermedad del gusano de seda era de origen microbiano despues dedujo que muchas enfermedades como el tifus la sifilis y el colera tendrian un origen analogo En las clasificaciones de los anos 1850 se ubico a las bacterias con el nombre Schizomycetes dentro del reino vegetal y en 1875 se las agrupo junto a las algas verdeazuladas en Schizophyta 23 Enfermos de colera Louis Pasteur demostro en 1859 que los procesos de fermentacion eran causados por el crecimiento de microorganismos y que dicho crecimiento no era debido a la generacion espontanea como se suponia hasta entonces Ni las levaduras ni los mohos ni los hongos organismos normalmente asociados a estos procesos de fermentacion son bacterias Pasteur al igual que su contemporaneo y colega Robert Koch fue uno de los primeros defensores de la teoria microbiana de la enfermedad 24 Robert Koch fue pionero en la microbiologia medica trabajando con diferentes enfermedades infecciosas como el colera el carbunco y la tuberculosis Koch logro probar la teoria microbiana de la enfermedad tras sus investigaciones en tuberculosis siendo por ello galardonado con el premio Nobel en Medicina y Fisiologia en el ano 1905 25 Establecio lo que se ha denominado desde entonces los postulados de Koch mediante los cuales se estandarizaban una serie de criterios experimentales para demostrar si un organismo era o no el causante de una determinada enfermedad Estos postulados se siguen utilizando hoy en dia 26 Aunque a finales del siglo XIX ya se sabia que las bacterias eran causa de multitud de enfermedades no existian tratamientos antibacterianos para combatirlas 27 En 1882 Paul Ehrlich pionero en el uso de tintes y colorantes para detectar e identificar bacterias descubre la tincion del bacilo de Koch tincion de Ziehl Neelsen que poco despues es perfeccionada por Ziehl y Neelsen independientemente 28 En 1884 se descubre la tincion Gram Ehrlich recibio el premio Nobel en 1908 por sus trabajos en el campo de la inmunologia y en 1910 desarrollo el primer antibiotico por medio de unos colorantes capaces de tenir y matar selectivamente a las espiroquetas de la especie Treponema pallidum la bacteria causante de la sifilis 29 Un gran avance en el estudio de las bacterias fue el descubrimiento realizado por Carl Woese en 1977 de que las arqueas presentan una linea evolutiva diferente a la de las bacterias 30 Esta nueva taxonomia filogenetica se basaba en la secuenciacion del ARN ribosomico 16S y dividia a los procariotas en dos grupos evolutivos diferentes en un sistema de tres dominios Arquea Bacteria y Eukarya 31 Origen y evolucion de las bacterias EditarVease tambien Cronologia de la historia evolutiva de la vida Arbol filogenetico de la vida Las bacterias se muestran hacia la izquierda Cladograma que muestra la divergencia temporal entre los principales filos de bacterias arqueas y los eucariotas 2 3 Los seres vivos se dividen actualmente en tres dominios bacterias Bacteria arqueas Archaea y eucariotas Eukarya En los dominios Archaea y Bacteria se incluyen los organismos procariotas esto es aquellos cuyas celulas no tienen un nucleo celular diferenciado mientras que en el dominio Eukarya se incluyen las formas de vida mas conocidas y complejas protistas animales hongos y plantas El termino bacteria se aplico tradicionalmente a todos los microorganismos procariotas Sin embargo la filogenia molecular ha podido demostrar que los microorganismos procariotas se dividen en dos dominios originalmente denominados Eubacteria y Archaebacteria y ahora renombrados como Bacteria y Archaea 32 que evolucionaron independientemente desde un ancestro comun Estos dos dominios junto con el dominio Eukarya constituyen la base del sistema de tres dominios que actualmente es el sistema de clasificacion mas ampliamente utilizado en bacteriologia 33 El termino Monera actualmente en desuso en la antigua clasificacion de los cinco reinos significaba lo mismo que procariota y asi sigue siendo usado en muchos manuales y libros de texto Los antepasados de los procariotas modernos fueron los primeros organismos las primeras celulas que se desarrollaron sobre la tierra hace unos 4 250 millones anos 2 34 Durante cerca de 3000 millones de anos mas todos los organismos siguieron siendo microscopicos siendo probablemente bacterias y arqueas las formas de vida dominantes 35 36 Aunque existen fosiles bacterianos por ejemplo los estromatolitos al no conservar su morfologia distintiva no se pueden emplear para estudiar la historia de la evolucion bacteriana o el origen de una especie bacteriana en particular Sin embargo las secuencias geneticas si se pueden utilizar para reconstruir la filogenia de los seres vivos y estos estudios sugieren que arqueas y eucariotas estan mas relacionados entre si que con las bacterias 37 En la actualidad se discute si los primeros procariotas fueron bacterias o arqueas Algunos investigadores piensan que Bacteria es el dominio mas antiguo con Archaea y Eukarya derivando a partir de el 33 mientras que otros consideran que el dominio mas antiguo es Archaea 38 39 40 En cambio otros cientificos sostienen que tanto Archaea como Eukarya son relativamente recientes de hace unos 900 millones de anos 41 42 y que evolucionaron a partir de una bacteria Gram positiva probablemente una Actinobacteria que mediante la sustitucion de la pared bacteriana de peptidoglicano por otra de glucoproteina daria lugar a un organismo Neomura 43 44 Se ha sugerido que el ultimo antepasado comun universal de bacterias y arqueas es un termofilo que vivio hace 4250 millones de anos durante el eon Hadico 2 La bifurcacion entre arqueas y bacterias se produjo hace 4100 millones de anos mientras que los eucariotas son mas recientes y surgieron a mediados del Paleoproterozoico La mayoria de los filos bacterianos se originaron durante el Arcaico Las bacterias termofilas y las bacterias ultrapequenas CPR se separaron del resto de las bacterias a finales del Hadico y a comienzos del Arcaico Los grandes clados bacterianos Gracilicutes y Terrabacteria se originaron a mediados del Arcaico hace 3180 millones de anos 1 2 3 Las bacterias tambien han estado implicadas en la segunda gran divergencia evolutiva la que separo Archaea de Eukarya Se considera que las mitocondrias de las eucariotas proceden de la endosimbiosis de una proteobacteria alfa 45 46 En este caso el antepasado de las eucariotas que posiblemente estaba relacionado con las arqueas el organismo Neomura ingirio una proteobacteria que al escapar a la digestion se desarrollo en el citoplasma y dio lugar a las mitocondrias Estas se pueden encontrar en todas las eucariotas aunque a veces en formas muy reducidas como en los protistas amitocondriales Despues e independientemente una segunda endosimbiosis por parte de alguna eucariota mitocondrial con una cianobacteria condujo a la formacion de los cloroplastos de algas y plantas Se conocen incluso algunos grupos de algas que se han originado claramente de acontecimientos posteriores de endosimbiosis por parte de eucariotas heterotrofos que tras ingerir algas eucariotas se convirtieron en plastos de segunda generacion 47 48 Morfologia bacteriana Editar Existen bacterias con multiples morfologias Las bacterias presentan una amplia variedad de tamanos y formas La mayoria presentan un tamano diez veces menor que el de las celulas eucariotas es decir entre 0 5 y 5 mm Sin embargo algunas especies como Thiomargarita namibiensis y Epulopiscium fishelsoni llegan a alcanzar los 0 5 mm lo cual las hace visibles a simple vista 49 En el otro extremo se encuentran bacterias mas pequenas conocidas entre las que cabe destacar las pertenecientes al genero Mycoplasma las cuales llegan a medir solo 0 3 mm es decir tan pequenas como los virus mas grandes 50 La forma de las bacterias es muy variada y a menudo una misma especie adopta distintos tipos morfologicos lo que se conoce como pleomorfismo De todas formas podemos distinguir tres tipos fundamentales de bacterias Coco del griego kokkos grano de forma esferica Diplococo cocos en grupos de dos Tetracoco cocos en grupos de cuatro Estreptococo cocos en cadenas Estafilococo cocos en agrupaciones irregulares o en racimo Bacilo del latin baculus varilla en forma de bastoncillo Formas helicoidales Vibrio ligeramente curvados y en forma de coma judia cacahuete o arrinonado Espirilo en forma helicoidal rigida o en forma de tirabuzon Espiroqueta en forma de tirabuzon helicoidal flexible Algunas especies presentan incluso formas tetraedricas o cubicas 51 Esta amplia variedad de formas es determinada en ultima instancia por la composicion de la pared celular y el citoesqueleto siendo de vital importancia ya que puede influir en la capacidad de la bacteria para adquirir nutrientes unirse a superficies o moverse en presencia de estimulos 52 53 A continuacion se citan diferentes especies con diversos patrones de asociacion Neisseria gonorrhoeae en forma diploide por pares Streptococcus en forma de cadenas Staphylococcus en forma de racimos Actinobacteria en forma de filamentos Dichos filamentos suelen rodearse de una vaina que contiene multitud de celulas individuales pudiendo llegar a ramificarse como el genero Nocardia adquiriendo asi el aspecto del micelio de un hongo 54 Rango de tamanos que presentan las celulas procariotas en relacion a otros organismos y biomoleculas Las bacterias presentan la capacidad de anclarse a determinadas superficies y formar un agregado celular en forma de capa denominado biopelicula o biofilme los cuales pueden tener un grosor que va desde unos pocos micrometros hasta medio metro Estas biopeliculas pueden congregar diversas especies bacterianas ademas de protistas y arqueas y se caracterizan por formar un conglomerado de celulas y componentes extracelulares alcanzando asi un nivel mayor de organizacion o estructura secundaria denominada microcolonia a traves de la cual existen multitud de canales que facilitan la difusion de nutrientes 55 56 En ambientes naturales tales como el suelo o la superficie de las plantas la mayor parte de las bacterias se encuentran ancladas a las superficies en forma de biopeliculas 57 Dichas biopeliculas deben ser tenidas en cuenta en las infecciones bacterianas cronicas y en los implantes medicos ya que las bacterias que forman estas estructuras son mucho mas dificiles de erradicar que las bacterias individuales 58 Por ultimo cabe destacar un tipo de morfologia mas compleja aun observable en algunos microorganismos del grupo de las mixobacterias Cuando estas bacterias se encuentran en un medio escaso en aminoacidos son capaces de detectar a las celulas de alrededor en un proceso conocido como percepcion de quorum en el cual todas las celulas migran hacia las demas y se agregan dando lugar a cuerpos fructiferos que pueden alcanzar los 0 5 mm de longitud y contener unas 100 000 celulas 59 Una vez formada dicha estructura las bacterias son capaces de llevar a cabo diferentes funciones es decir se diferencian alcanzando asi un cierto nivel de organizacion pluricelular Por ejemplo entre una y diez celulas migran a la parte superior del cuerpo fructifero y una vez alli se diferencian para dar lugar a un tipo de celulas latentes denominadas mixosporas las cuales son mas resistentes a la desecacion y en general a condiciones ambientales adversas 60 Estructura de la celula bacteriana Editar Estructura de la celula bacteriana A Pili B Ribosomas C Capsula D Pared celular E Flagelo F Citoplasma G Vacuola H Plasmido I Nucleoide J Membrana citoplasmatica Las bacterias son organismos relativamente sencillos Sus dimensiones son muy reducidas unos 2 mm de ancho por 7 8 mm de longitud en la forma cilindrica bacilo de tamano medio aunque son muy frecuentes las especies de 0 5 1 5 mm Al tratarse de organismos procariotas tienen las caracteristicas basicas correspondientes como la carencia de un nucleo delimitado por una membrana aunque presentan un nucleoide una estructura elemental que contiene una gran molecula circular de ADN El citoplasma carece de organulos delimitados por membranas y de las formaciones protoplasmaticas propias de las celulas eucariotas En el citoplasma se pueden apreciar plasmidos pequenas moleculas circulares de ADN que coexisten con el nucleoide contienen genes y son comunmente usados por los procariontes en la conjugacion El citoplasma tambien contiene vacuolas granulos que contienen sustancias de reserva y ribosomas utilizados en la sintesis de proteinas Una membrana citoplasmatica compuesta de lipidos rodea el citoplasma y al igual que las celulas de las plantas la mayoria posee una pared celular que en este caso esta compuesta por peptidoglicano mureina La mayoria de bacterias presentan ademas una segunda membrana lipidica membrana externa rodeando a la pared celular El espacio comprendido entre la membrana citoplasmatica y la pared celular o la membrana externa si esta existe se denomina espacio periplasmico Algunas bacterias presentan una capsula y otras son capaces de desarrollarse como endosporas estados latentes capaces de resistir condiciones extremas Entre las formaciones exteriores propias de la celula bacteriana destacan los flagelos y los pili Estructuras intracelulares Editar La membrana citoplasmatica de las bacterias es similar a la de plantas y animales si bien generalmente no presenta colesterol La membrana citoplasmatica bacteriana tiene una estructura similar a la de plantas y animales Es una bicapa lipidica compuesta fundamentalmente de fosfolipidos en la que se insertan moleculas de proteinas En las bacterias realiza numerosas funciones entre las que se incluyen las de barrera osmotica transporte biosintesis transduccion de energia centro de replicacion de ADN y punto de anclaje para los flagelos A diferencia de las membranas eucarioticas generalmente no contiene esteroles son excepciones micoplasmas y algunas proteobacterias aunque puede contener componentes similares denominados hopanoides Muchas importantes reacciones bioquimicas que tienen lugar en las celulas se producen por la existencia de gradientes de concentracion a ambos lados de una membrana Este gradiente crea una diferencia de potencial analoga a la de una bateria electrica y permite a la celula por ejemplo el transporte de electrones y la obtencion de energia La ausencia de membranas internas en las bacterias significa que estas reacciones tienen que producirse a traves de la propia membrana citoplasmatica entre el citoplasma y el espacio periplasmico 61 Puesto que las bacterias son procariotas no tienen organulos citoplasmaticos delimitados por membranas y por parecen presentar pocas estructuras intracelulares Carecen de nucleo celular mitocondrias cloroplastos y de los otros organulos presentes en las celulas eucariotas tales como el aparato de Golgi y el reticulo endoplasmatico 62 Algunas bacterias contienen estructuras intracelulares rodeadas por membranas que pueden considerarse primitivos organulos son llamados compartimentos procariotas Ejemplos son los tilacoides de las cianobacterias los compartimentos que contienen amonio monooxigenasa en Nitrosomonadaceae y diversas estructuras en Planctomycetes 63 Como todos los organismos vivos las bacterias contienen ribosomas para la sintesis de proteinas pero estos son diferentes a los de eucariotas 64 La estructura de los ribosomas y el ARN ribosomal de arqueas y bacterias son similares ambos ribosomas son de tipo 70S mientras que los ribosomas eucariotas son de tipo 80S Sin embargo la mayoria de las proteinas ribosomiales factores de traduccion y ARNt arqueanos son mas parecidos a los eucarioticos que a los bacterianos Muchas bacterias presentan vacuolas granulos intracelulares para el almacenaje de sustancias como por ejemplo glucogeno 65 polifosfatos 66 azufre 67 o polihidroxialcanoatos 68 Ciertas especies bacterianas fotosinteticas tales como las cianobacterias producen vesiculas internas de gas que utilizan para regular su flotabilidad y asi alcanzar la profundidad con intensidad de luz optima o unos niveles de nutrientes optimos 69 Otras estructuras presentes en ciertas especies son los carboxisomas que contienen enzimas para la fijacion de carbono y los magnetosomas para la orientacion magnetica Elementos del citoesqueleto de Caulobacter crescentus En la figura estos elementos procarioticos se relacionan con sus homologos eucariotas y se hipotetiza su funcion celular 70 Debe tenerse en cuenta que las funciones en la pareja FtsZ MreB se invirtieron durante la evolucion al convertirse en tubulina actina Las bacterias no tienen un nucleo delimitado por membranas El material genetico esta organizado en un unico cromosoma situado en el citoplasma dentro de un cuerpo irregular denominado nucleoide 71 La mayoria de los cromosomas bacterianos son circulares si bien existen algunos ejemplos de cromosomas lineales por ejemplo Borrelia burgdorferi El nucleoide contiene el cromosoma junto con las proteinas asociadas y ARN El orden Planctomycetes es una excepcion pues una membrana rodea su nucleoide y tiene varias estructuras celulares delimitadas por membranas 63 Anteriormente se pensaba que las celulas procariotas no poseian citoesqueleto pero desde entonces se han encontrado homologos bacterianos de las principales proteinas del citoesqueleto de las eucariotas 72 Estos incluyen las proteinas estructurales FtsZ que se ensambla en un anillo para mediar durante la division celular bacteriana y MreB que determina la anchura de la celula El citoesqueleto bacteriano desempena funciones esenciales en la proteccion determinacion de la forma de la celula bacteriana y en la division celular 73 Estructuras extracelulares Editar Las bacterias disponen de una pared celular que rodea a su membrana citoplasmatica Las paredes celulares bacterianas estan hechas de peptidoglicano llamado antiguamente mureina Esta sustancia esta compuesta por cadenas de polisacarido enlazadas por peptidos inusuales que contienen aminoacidos D 74 Estos aminoacidos no se encuentran en las proteinas por lo que protegen a la pared de la mayoria de las peptidasas Las paredes celulares bacterianas son distintas de las que tienen plantas y hongos compuestas de celulosa y quitina respectivamente 75 Son tambien distintas a las paredes celulares de Archaea que no contienen peptidoglicano El antibiotico penicilina puede matar a muchas bacterias inhibiendo un paso de la sintesis del peptidoglicano 75 Paredes celulares bacterianas Arriba Bacteria Gram positiva 1 membrana citoplasmatica 2 pared celular 3 espacio periplasmico Abajo Bacteria Gram negativa 4 membrana citoplasmatica 5 pared celular 6 membrana externa 7 espacio periplasmico Existen dos diferentes tipos de pared celular bacteriana denominadas Gram positiva y Gram negativa respectivamente Estos nombres provienen de la reaccion de la pared celular a la tincion de Gram un metodo tradicionalmente empleado para la clasificacion de las especies bacterianas 76 Las bacterias Gram positivas tienen una pared celular gruesa que contiene numerosas capas de peptidoglicano en las que se inserta acido teicoico En cambio las bacterias Gram negativas tienen una pared relativamente fina consistente en unas pocas capas de peptidoglicano rodeada por una segunda membrana lipidica la membrana externa que contiene lipopolisacaridos y lipoproteinas Las micoplasmas son una excepcion pues carecen de pared celular La mayoria de las bacterias tienen paredes celulares Gram negativas solamente son Gram positivas Firmicutes y Actinobacteria Estos dos grupos eran antiguamente conocidos como bacterias Gram positivas de contenido GC bajo y bacterias Gram positivas de contenido GC alto respectivamente 77 Estas diferencias en la estructura de la pared celular dan lugar a diferencias en la susceptibilidad antibiotica Por ejemplo la vancomicina puede matar solamente a bacterias Gram positivas y es ineficaz contra patogenos Gram negativos tales como Haemophilus influenzae o Pseudomonas aeruginosa 78 Dentro del filo Actinobacteria cabe hacer una mencion especial al genero Mycobacterium el cual si bien se encuadra dentro de las Gram positivas no parece serlo desde el punto de vista empirico ya que su pared no retiene el tinte Esto se debe a que presentan una pared celular poco comun rica en acidos micolicos de caracter hidrofobo y ceroso y bastante gruesa lo que les confiere una gran resistencia Helicobacter pylori visto al microscopio electronico mostrando numerosos flagelos sobre la superficie celular Muchas bacterias tienen una capa S de moleculas de proteina de estructura rigida que cubre la pared celular 79 Esta capa proporciona proteccion quimica y fisica para la superficie celular y puede actuar como una barrera de difusion macromolecular Las capas S tienen diversas aunque todavia no bien comprendidas funciones Por ejemplo en el genero Campylobacter actuan como factores de virulencia y en la especie Bacillus stearothermophilus contienen enzimas superficiales 80 Los flagelos son largos apendices filamentosos compuestos de proteinas y utilizados para el movimiento Tienen un diametro aproximado de 20 nm y una longitud de hasta 20 mm Los flagelos son impulsados por la energia obtenida de la transferencia de iones Esta transferencia es impulsada por el gradiente electroquimico que existe entre ambos lados de la membrana citoplasmatica 81 Escherichia coli presenta unas 100 200 fimbrias que utiliza para adherirse a las celulas epiteliales o al tracto urogenital Las fimbrias son filamentos finos de proteinas que se distribuyen sobre la superficie de la celula Tienen un diametro aproximado de 2 10 nm y una longitud de hasta varios mm Cuando se observan a traves del microscopio electronico se asemejan a pelos finos Las fimbrias ayudan a la adherencia de las bacterias a las superficies solidas o a otras celulas y son esenciales en la virulencia de algunos patogenos 82 Los pili son apendices celulares ligeramente mayores que las fimbrias y se utilizan para la transferencia de material genetico entre bacterias en un proceso denominado conjugacion bacteriana 83 Estructuras extracelulares bacterianas 1 capsula 2 glicocalix capa mucosa 3 biopelicula Muchas bacterias son capaces de acumular material en el exterior para recubrir su superficie Dependiendo de la rigidez y su relacion con la celula se clasifican en capsulas y glicocalix La capsula es una estructura rigida que se une firmemente a la superficie bacteriana en tanto que el glicocalix es flexible y se une de forma laxa Estas estructuras protegen a las bacterias pues dificultan que sean fagocitadas por celulas eucariotas tales como los macrofagos 84 Tambien pueden actuar como antigenos y estar implicadas en el reconocimiento bacteriano asi como ayudar a la adherencia superficial y a la formacion de biopeliculas 85 La formacion de estas estructuras extracelulares depende del sistema de secrecion bacteriano Este sistema transfiere proteinas desde el citoplasma al periplasma o al espacio que rodea a la celula Se conocen muchos tipos de sistemas de secrecion que son a menudo esenciales para la virulencia de los patogenos por lo que son extensamente estudiados 86 Endosporas Editar Vease tambien Esporas bacterianas Bacillus anthracis tenido purpura desarrollandose en el liquido cefalorraquideo Cada pequeno segmento es una bacteria Ciertos generos de bacterias Gram positivas tales como Bacillus Clostridium Sporohalobacter Anaerobacter y Heliobacterium pueden formar endosporas 87 Las endosporas son estructuras durmientes altamente resistentes cuya funcion primaria es sobrevivir cuando las condiciones ambientales son adversas En casi todos los casos las endosporas no forman parte de un proceso reproductivo aunque Anaerobacter puede formar hasta siete endosporas a partir de una celula 88 Las endosporas tienen una base central de citoplasma que contiene ADN y ribosomas rodeada por una corteza y protegida por una cubierta impermeable y rigida Las endosporas no presentan un metabolismo detectable y pueden sobrevivir a condiciones fisicas y quimicas extremas tales como altos niveles de luz ultravioleta rayos gamma detergentes desinfectantes calor presion y desecacion 89 En este estado durmiente las bacterias pueden seguir viviendo durante millones de anos 90 91 e incluso pueden sobrevivir en la radiacion y vacio del espacio exterior 92 Las endosporas pueden tambien causar enfermedades Por ejemplo puede contraerse carbunco por la inhalacion de endosporas de Bacillus anthracis y tetanos por la contaminacion de las heridas con endosporas de Clostridium tetani 93 Metabolismo EditarArticulo principal Metabolismo microbiano Filamento una colonia de cianobacteria fotosintetica En contraste con los organismos superiores las bacterias exhiben una gran variedad de tipos metabolicos 94 La distribucion de estos tipos metabolicos dentro de un grupo de bacterias se ha utilizado tradicionalmente para definir su taxonomia pero estos rasgos no corresponden a menudo con las clasificaciones geneticas modernas 95 El metabolismo bacteriano se clasifica con base en tres criterios importantes el origen del carbono la fuente de energia y los donadores de electrones Un criterio adicional para clasificar a los microorganismos que respiran es el receptor de electrones usado en la respiracion 96 Segun la fuente de carbono las bacterias se pueden clasificar como Heterotrofas cuando usan compuestos organicos Autotrofas cuando el carbono celular se obtiene mediante la fijacion del dioxido de carbono Las bacterias autotrofas tipicas son las cianobacterias fotosinteticas las bacterias verdes del azufre y algunas bacterias purpura Pero hay tambien muchas otras especies quimiolitotrofas por ejemplo las bacterias nitrificantes y oxidantes del azufre 97 Segun la fuente de energia las bacterias pueden ser Fototrofas cuando emplean la luz a traves de la fotosintesis Quimiotrofas cuando obtienen energia a partir de sustancias quimicas que son oxidadas principalmente a expensas del oxigeno respiracion aerobia o de otros receptores de electrones alternativos respiracion anaerobia Segun los donadores de electrones las bacterias tambien se pueden clasificar como Litotrofas si utilizan como donadores de electrones compuestos inorganicos Organotrofas si utilizan como donadores de electrones compuestos organicos Los organismos quimiotrofos usan donadores de electrones para la conservacion de energia durante la respiracion aerobia anaerobia y la fermentacion y para las reacciones biosinteticas por ejemplo para la fijacion del dioxido de carbono mientras que los organismos fototrofos los utilizan unicamente con propositos biosinteticos Regato donde hay Bacterias del hierro que le proporcionan ese color rojizo Estos microorganismos quimiolitotrofos obtienen la energia que necesitan por oxidacion del oxido ferroso a oxido ferrico Los organismos que respiran usan compuestos quimicos como fuente de energia tomando electrones del sustrato reducido y transfiriendolos a un receptor terminal de electrones en una reaccion redox Esta reaccion desprende energia que se puede utilizar para sintetizar ATP y asi mantener activo el metabolismo En los organismos aerobios el oxigeno se utiliza como receptor de electrones En los organismos anaerobios se utilizan como receptores de electrones otros compuestos inorganicos tales como nitratos sulfatos o dioxido de carbono Esto conduce a que se lleven a cabo los importantes procesos biogeoquimicos de la desnitrificacion la reduccion del sulfato y la acetogenesis respectivamente Otra posibilidad es la fermentacion un proceso de oxidacion incompleta totalmente anaerobico siendo el producto final un compuesto organico que al reducirse sera el receptor final de los electrones Ejemplos de productos de fermentacion reducidos son el lactato en la fermentacion lactica etanol en la fermentacion alcoholica hidrogeno butirato etc La fermentacion es posible porque el contenido de energia de los sustratos es mayor que el de los productos lo que permite que los organismos sinteticen ATP y mantengan activo su metabolismo 98 99 Los organismos anaerobios facultativos pueden elegir entre la fermentacion y diversos receptores terminales de electrones dependiendo de las condiciones ambientales en las cuales se encuentren Las bacterias litotrofas pueden utilizar compuestos inorganicos como fuente de energia Los donadores de electrones inorganicos mas comunes son el hidrogeno el monoxido de carbono el amoniaco que conduce a la nitrificacion el hierro ferroso y otros iones de metales reducidos asi como varios compuestos de azufre reducidos En determinadas ocasiones las bacterias metanotrofas pueden usar gas metano como fuente de electrones y como sustrato simultaneamente para el anabolismo del carbono 100 En la fototrofia y quimiolitotrofia aerobias se utiliza el oxigeno como receptor terminal de electrones mientras que bajo condiciones anaerobicas se utilizan compuestos inorganicos La mayoria de los organismos litotrofos son autotrofos mientras que los organismos organotrofos son heterotrofos Ademas de la fijacion del dioxido de carbono mediante la fotosintesis algunas bacterias tambien fijan el gas nitrogeno usando la enzima nitrogenasa Esta caracteristica es muy importante a nivel ambiental y se puede encontrar en bacterias de casi todos los tipos metabolicos enumerados anteriormente aunque no es universal 101 El metabolismo microbiano puede desempenar un papel importante en la biorremediacion pues por ejemplo algunas especies pueden realizar el tratamiento de las aguas residuales y otras son capaces de degradar los hidrocarburos sustancias toxicas e incluso radiactivas En cambio las bacterias reductoras de sulfato son en gran parte responsables de la produccion de formas altamente toxicas de mercurio metil y dimetil mercurio en el ambiente 102 Movimiento EditarVease tambien Flagelo bacteriano Los diferentes tipos de disposicion de los flagelos bacterianos A Monotrico B Lofotrico C Anfitrico D Peritrico Algunas bacterias son inmoviles y otras limitan su movimiento a cambios de profundidad Por ejemplo cianobacterias y bacterias verdes del azufre contienen vesiculas de gas con las que pueden controlar su flotabilidad y asi conseguir un optimo de luz y alimento 103 Las bacterias moviles pueden desplazarse por deslizamiento mediante contracciones o mas comunmente usando flagelos Algunas bacterias pueden deslizarse por superficies solidas segregando una sustancia viscosa pero el mecanismo que actua como propulsor es todavia desconocido En el movimiento mediante contracciones la bacteria usa su pilus de tipo IV como gancho de ataque primero lo extiende anclandolo y despues lo contrae con una fuerza notable gt 80 pN 104 El flagelo bacteriano es un largo apendice filamentoso helicoidal propulsado por un motor rotatorio como una helice que puede girar en los dos sentidos El motor utiliza como energia un gradiente electroquimico a traves de la membrana Los flagelos estan compuestos por cerca de 20 proteinas con aproximadamente otras 30 proteinas para su regulacion y coordinacion 103 Hay que tener en cuenta que dado el tamano de la bacteria el agua les resulta muy viscosa y el mecanismo de propulsion debe ser muy potente y eficiente Los flagelos bacterianos se encuentran tanto en las bacterias Gram positivas como Gram negativas y son completamente diferentes de los eucarioticos y aunque son superficialmente similares a los arqueanos se consideran no homologos El flagelo bacteriano es un apendice movido por un motor rotatorio El rotor puede girar a 6 000 17 000 rpm pero el apendice usualmente solo alcanza 200 1000 rpm 1 filamento 2 espacio periplasmico 3 codo 4 juntura 5 anillo L 6 eje 7 anillo P 8 pared celular 9 estator 10 anillo MS 11 anillo C 12 sistema de secrecion de tipo III 13 membrana externa 14 membrana citoplasmatica 15 punta Segun el numero y disposicion de los flagelos en la superficie de la bacteria se distinguen los siguientes tipos un solo flagelo monotrico un flagelo en cada extremo anfitrico grupos de flagelos en uno o en los dos extremos lofotrico y flagelos distribuidos sobre toda la superficie de la celula peritricos En un grupo unico de bacterias las espiroquetas se presentan unos flagelos especializados denominados filamentos axiales localizados intracelularmente en el espacio periplasmico entre las dos membranas Estos producen un movimiento rotatorio que hace que la bacteria gire como un sacacorchos desplazandose hacia delante 103 Muchas bacterias tales como E coli tienen dos tipos de movimiento en linea recta carrera y aleatorio En este ultimo se realiza un movimiento tridimensional aleatorio al combinar la bacteria carreras cortas con virajes al azar 105 Las bacterias moviles pueden presentar movimientos de atraccion o repulsion determinados por diferentes estimulos Estos comportamientos son denominados taxis e incluyen diversos tipos como la quimiotaxis la fototaxis o la magnetotaxis 106 107 En el peculiar grupo de las mixobacterias las celulas individuales se mueven juntas formando ondas de celulas que terminaran agregandose para formar los cuerpos fructiferos caracteristicos de este genero 108 El movimiento de las mixobacterias se produce solamente sobre superficies solidas en contraste con E coli que es movil tanto en medios liquidos como solidos Varias especies de Listeria y Shigella se mueven dentro de las celulas huesped apropiandose de su citoesqueleto que normalmente moveria los organulos La polimerizacion de actina crea un empuje en un extremo de la bacteria que la mueve a traves del citoplasma de la celula huesped 109 Reproduccion Editar Modelo de divisiones binarias sucesivas en el microorganismo Escherichia coli En las bacterias el aumento en el tamano de las celulas crecimiento y la reproduccion por division celular estan intimamente ligados como en la mayor parte de los organismos unicelulares Ocurre por duplicacion y se obtienen celulas con informacion hereditaria identica 110 Las bacterias crecen hasta un tamano fijo y despues se reproducen por fision binaria una forma de reproduccion asexual 111 En condiciones apropiadas una bacteria Gram positiva puede dividirse cada 20 30 minutos y una Gram negativa cada 15 20 minutos y en alrededor de 16 horas su numero puede ascender a unos 5000 millones cerca del numero de personas que habitan la Tierra que son aproximadamente 7000 millones de personas Bajo condiciones optimas algunas bacterias pueden crecer y dividirse muy rapido tanto como cada 9 8 minutos 112 En la division celular se producen dos celulas hijas identicas Algunas bacterias todavia reproduciendose asexualmente forman estructuras reproductivas mas complejas que facilitan la dispersion de las celulas hijas recien formadas Ejemplos incluyen la formacion de cuerpos fructiferos esporangios en las mixobacterias la formacion de hifas en Streptomyces y la gemacion En la gemacion una celula forma una protuberancia que a continuacion se separa y produce una nueva celula hija Por otro lado cabe destacar un tipo de reproduccion sexual en bacterias denominada parasexualidad bacteriana En este caso las bacterias son capaces de intercambiar material genetico en un proceso conocido como conjugacion bacteriana Durante el proceso una bacteria donante y una bacteria receptora llevan a cabo un contacto mediante pelos sexuales huecos o pili a traves de los cuales se transfiere una pequena cantidad de ADN independiente o plasmido conjugativo El mejor conocido es el plasmido F de E coli que ademas puede integrarse en el cromosoma bacteriano En este caso recibe el nombre de episoma y en la transferencia arrastra parte del cromosoma bacteriano Se requiere que exista sintesis de ADN para que se produzca la conjugacion La replicacion se realiza al mismo tiempo que la transferencia Crecimiento Editar Fases del crecimiento bacteriano El crecimiento bacteriano sigue tres fases Cuando una poblacion bacteriana se encuentra en un nuevo ambiente con elevada concentracion de nutrientes que le permiten crecer necesita un periodo de adaptacion a dicho ambiente Esta primera fase se denomina fase de adaptacion o fase lag y conlleva un lento crecimiento donde las celulas se preparan para comenzar un rapido crecimiento y una elevada tasa de biosintesis de las proteinas necesarias para ello como ribosomas proteinas de membrana etc 113 La segunda fase de crecimiento se denomina fase exponencial ya que se caracteriza por el crecimiento exponencial de las celulas La velocidad de crecimiento durante esta fase se conoce como la tasa de crecimiento k y el tiempo que tarda cada celula en dividirse como el tiempo de generacion g Durante esta fase los nutrientes son metabolizados a la maxima velocidad posible hasta que dichos nutrientes se agoten dando paso a la siguiente fase La ultima fase de crecimiento se denomina fase estacionaria y se produce como consecuencia del agotamiento de los nutrientes en el medio En esta fase las celulas reducen drasticamente su actividad metabolica y comienzan a utilizar como fuente energetica aquellas proteinas celulares no esenciales La fase estacionaria es un periodo de transicion desde el rapido crecimiento a un estado de respuesta a estres en el cual se activa la expresion de genes involucrados en la reparacion del ADN en el metabolismo antioxidante y en el transporte de nutrientes 114 Genetica Editar Esquema de la conjugacion bacteriana 1 La celula donante genera un pilus 2 El pilus se une a la celula receptora y ambas celulas se aproximan 3 El plasmido movil se desarma y una de las cadenas de ADN es transferida a la celula receptora 4 Ambas celulas sintetizan la segunda cadena y regeneran un plasmido completo Ademas ambas celulas generan nuevos pili y son ahora viables como donantes La mayoria de las bacterias tienen un unico cromosoma circular cuyo tamano puede ir desde solo 160 000 pares de bases en la bacteria endosimbionte Candidatus Carsonella ruddii 115 a los 12 200 000 pares de bases de la bacteria del suelo Sorangium cellulosum 116 Las espiroquetas del genero Borrelia que incluyen por ejemplo a Borrelia burgdorferi la causa de la enfermedad de Lyme son una notable excepcion a esta regla pues contienen un cromosoma lineal 117 Las bacterias pueden tener tambien plasmidos pequenas moleculas de ADN extra cromosomico que pueden contener genes responsables de la resistencia a los antibioticos o factores de virulencia Otro tipo de ADN bacteriano proviene de la integracion de material genetico procedente de bacteriofagos los virus que infectan bacterias Existen muchos tipos de bacteriofagos algunos simplemente infectan y rompen las celulas huesped bacterianas mientras que otros se insertan en el cromosoma bacteriano De esta forma se pueden insertar genes del virus que contribuyan al fenotipo de la bacteria Por ejemplo en la evolucion de Escherichia coli O157 H7 y Clostridium botulinum los genes toxicos aportados por un bacteriofago convirtieron a una inofensiva bacteria ancestral en un patogeno letal 118 119 Esquema de algunas familias de virus que infectan bacterias Las bacterias como organismos asexuales que son heredan copias identicas de genes es decir son clones Sin embargo pueden evolucionar por seleccion natural mediante cambios en el ADN debidos a mutaciones y a la recombinacion genetica Las mutaciones provienen de errores durante la replica del ADN o por exposicion a agentes mutagenicos Las tasas de mutacion varian ampliamente entre las diversas especies de bacterias e incluso entre diferentes cepas de una misma especie de bacteria 120 Los cambios geneticos pueden producirse al azar o ser seleccionados por estres en donde los genes implicados en algun proceso que limita el crecimiento tienen una mayor tasa de mutacion 121 Las bacterias tambien pueden transferirse material genetico entre celulas Esto puede realizarse de tres formas principalmente En primer lugar las bacterias pueden recoger ADN exogeno del ambiente en un proceso denominado transformacion Los genes tambien se pueden transferir por un proceso de transduccion mediante el cual un bacteriofago introduce ADN extrano en el cromosoma bacteriano El tercer metodo de transferencia de genes es por conjugacion bacteriana en donde el ADN se transfiere a traves del contacto directo por medio de un pilus entre celulas Esta adquisicion de genes de otras bacterias o del ambiente se denomina transferencia de genes horizontal y puede ser comun en condiciones naturales 122 La transferencia de genes es especialmente importante en la resistencia a los antibioticos pues permite una rapida diseminacion de los genes responsables de dicha resistencia entre diferentes patogenos 123 Interacciones con otros organismos EditarA pesar de su aparente simplicidad las bacterias pueden formar asociaciones complejas con otros organismos Estas asociaciones se pueden clasificar como parasitismo mutualismo y comensalismo Comensales Editar Debido a su pequeno tamano las bacterias comensales son ubicuas y crecen sobre animales y plantas exactamente igual a como crecerian sobre cualquier otra superficie Asi por ejemplo grandes poblaciones de estos organismos son las causantes del mal olor corporal y su crecimiento puede verse aumentado con el calor y el sudor Mutualistas Editar Ciertas bacterias forman asociaciones intimas con otros organismos que les son imprescindibles para su supervivencia Una de estas asociaciones mutualistas es la transferencia de hidrogeno entre especies Se produce entre grupos de bacterias anaerobias que consumen acidos organicos tales como acido butirico o acido propionico y producen hidrogeno y las arqueas metanogenas que consumen dicho hidrogeno 124 Las bacterias en esta asociacion no pueden consumir los acidos organicos cuando el hidrogeno se acumula a su alrededor Solamente la asociacion intima con las arqueas mantiene una concentracion de hidrogeno lo bastante baja para permitir que las bacterias crezcan En el suelo los microorganismos que habitan la rizosfera la zona que incluye la superficie de la raiz y la tierra que se adhiere a ella realizan la fijacion de nitrogeno convirtiendo el nitrogeno atmosferico en estado gaseoso en compuestos nitrogenados 125 Esto proporciona a muchas plantas que no pueden fijar el nitrogeno por si mismas una forma facilmente absorbible de nitrogeno Muchas otras bacterias se encuentran como simbiontes en seres humanos y en otros organismos Por ejemplo en el tracto digestivo proliferan unas mil especies bacterianas Sintetizan vitaminas tales como acido folico vitamina K y biotina Tambien fermentan los carbohidratos complejos indigeribles y convierten los azucares de la leche en acido lactico por ejemplo Lactobacillus 126 127 128 129 Ademas la presencia de esta flora intestinal inhibe el crecimiento de bacterias potencialmente patogenas generalmente por exclusion competitiva Muchas veces estas bacterias beneficiosas se venden como suplementos dieteticos probioticos 130 Patogenos Editar Micrografia electronica con colores realzados que muestra a la especie Salmonella enterica celulas rojas invadiendo celulas humanas en cultivo Solo una pequena fraccion de las bacterias causan enfermedades en los seres humanos de las 15 919 especies registradas en la base de datos de NCBI solo 538 son patogenas 131 Aun asi son una de las principales causas de enfermedad y mortalidad humana causando infecciones tales como el tetanos la fiebre tifoidea la difteria la sifilis el colera intoxicaciones alimentarias la lepra y la tuberculosis Hay casos en los que la etiologia o causa de una enfermedad conocida se descubre solamente despues de muchos anos como fue el caso de la ulcera peptica y Helicobacter pylori Las enfermedades bacterianas son tambien importantes en la agricultura y en la ganaderia donde existen multitud de enfermedades como por ejemplo la mancha de la hoja la plaga de fuego la paratuberculosis el anublo bacterial de la panicula la mastitis la salmonela y el carbunco Cada especie de patogeno tiene un espectro caracteristico de interacciones con sus huespedes humanos Algunos organismos tales como Staphylococcus o Streptococcus pueden causar infecciones de la piel pulmonia meningitis e incluso sepsis una respuesta inflamatoria sistemica que produce shock vasodilatacion masiva y muerte 132 Sin embargo estos organismos son tambien parte de la flora humana normal y se encuentran generalmente en la piel o en la nariz sin causar ninguna enfermedad Otros organismos causan invariablemente enfermedades en los seres humanos Por ejemplo el genero Rickettsia que son parasitos intracelulares obligados capaces de crecer y reproducirse solamente dentro de las celulas de otros organismos Una especie de Rickettsia causa el tifus mientras que otra ocasiona la fiebre de las Montanas Rocosas Chlamydiae otro filo de parasitos obligados intracelulares contiene especies que causan neumonia infecciones urinarias y pueden estar implicadas en la enfermedad coronaria 133 Finalmente ciertas especies tales como Pseudomonas aeruginosa Burkholderia cenocepacia y Mycobacterium avium son patogenos oportunistas y causan enfermedades principalmente en las personas que sufren inmunosupresion o fibrosis quistica 134 135 Las infecciones bacterianas se pueden tratar con antibioticos que se clasifican como bactericidas si matan bacterias o como bacterioestaticos si solo detienen el crecimiento bacteriano Existen muchos tipos de antibioticos y cada tipo inhibe un proceso que difiere en el patogeno con respecto al huesped Ejemplos de antibioticos de toxicidad selectiva son el cloranfenicol y la puromicina que inhiben el ribosoma bacteriano pero no el ribosoma eucariota que es estructuralmente diferente 136 Los antibioticos se utilizan para tratar enfermedades humanas y en la ganaderia intensiva para promover el crecimiento animal Esto ultimo puede contribuir al rapido desarrollo de la resistencia antibiotica de las poblaciones bacterianas 137 Las infecciones se pueden prevenir con medidas antisepticas tales como la esterilizacion de la piel antes de las inyecciones y con el cuidado apropiado de los cateteres Los instrumentos quirurgicos y dentales tambien son esterilizados para prevenir la contaminacion e infeccion por bacterias Los desinfectantes tales como la lejia se utilizan para matar bacterias u otros patogenos que se depositan sobre las superficies y asi prevenir la contaminacion y reducir el riesgo de infeccion La siguiente tabla muestra algunas enfermedades humanas producidas por bacterias Enfermedad Agente Principales sintomasBrucelosis Brucella spp Fiebre ondulante adenopatia endocarditis neumonia Carbunco Bacillus anthracis Fiebre papula cutanea septicemia Colera Vibrio cholerae Diarrea vomitos deshidratacion Difteria Corynebacterium diphtheriae Fiebre amigdalitis membrana en la garganta lesiones en la piel Escarlatina Streptococcus pyogenes Fiebre amigdalitis eritema Erisipela Streptococcus spp Fiebre eritema prurito dolor Fiebre Q Coxiella burnetii Fiebre alta cefalea intensa mialgia confusion vomitos diarrea Fiebre tifoidea Salmonella typhi S paratyphi Fiebre alta bacteriemia cefalalgia estupor tumefaccion de la mucosa nasal lengua tostada ulceras en el paladar hepatoesplenomegalia diarrea perforacion intestinal Legionelosis Legionella pneumophila Fiebre neumoniaNeumonia Streptococcus pneumoniae Staphylococcus aureus Klebsiella pneumoniae Mycoplasma spp Chlamydia spp Fiebre alta expectoracion amarillenta o sanguinolenta dolor toracico Tuberculosis Mycobacterium tuberculosis Fiebre cansancio sudor nocturno necrosis pulmonar Tetanos Clostridium tetani Fiebre paralisis Clasificacion e identificacion EditarArticulo principal Clasificacion cientifica Cultivo de E coli donde cada punto es una colonia La clasificacion taxonomica busca describir y diferenciar la amplia diversidad de especies bacterianas poniendo nombres y agrupando organismos segun sus similitudes Las bacterias pueden clasificarse con base en diferentes criterios como estructura celular metabolismo o con base en diferencias en determinados componentes como ADN acidos grasos pigmentos antigenos o quinonas 138 Sin embargo aunque estos criterios permitian la identificacion y clasificacion de cepas bacterianas aun no quedaba claro si estas diferencias representaban variaciones entre especies diferentes o entre distintas cepas de la misma especie Esta incertidumbre se debia a la ausencia de estructuras distintivas en la mayoria de las bacterias y a la existencia de la transferencia horizontal de genes entre especies diferentes 139 la cual da lugar a que bacterias muy relacionadas puedan llegar a presentar morfologias y metabolismos muy diferentes Por ello y con el fin de superar esta incertidumbre la clasificacion bacteriana actual se centra en el uso de tecnicas moleculares modernas filogenia molecular tales como la determinacion del contenido de guanina citosina la hibridacion genoma genoma o la secuenciacion de ADN ribosomico el cual no se ve involucrado en la transferencia horizontal 140 El Comite Internacional de Sistematica de Procariotas ICSP es el organismo encargado de la nomenclatura taxonomia y las normas segun las cuales son designados los procariotas 141 El ICSP es responsable de la publicacion del Codigo Internacional de Nomenclatura de Bacterias lista de nombres aprobados de especies y taxones bacterianos 142 Tambien publica la Revista Internacional de Bacteriologia Sistematica International Journal of Systematic Bacteriology 143 En contraste con la nomenclatura procariotica no hay una clasificacion oficial de los procariotas porque la taxonomia sigue siendo una cuestion de criterio cientifico La clasificacion mas aceptada es la elaborada por la oficina editorial del Manual de Bacteriologia Sistematica de Bergey Bergey s Manual of Systematic Bacteriology como paso preliminar para organizar el contenido de la publicacion 144 Esta clasificacion conocida como The Taxonomic Outline of Bacteria and Archaea TOBA esta disponible en Internet 145 Debido a la reciente introduccion de la filogenia molecular y del analisis de las secuencias de genomas la clasificacion bacteriana actual es un campo en continuo cambio y plena expansion 146 147 La identificacion de bacterias en el laboratorio es particularmente relevante en medicina donde la determinacion de la especie causante de una infeccion es crucial a la hora de aplicar un correcto tratamiento Por ello la necesidad de identificar a los patogenos humanos ha dado lugar a un potente desarrollo de tecnicas para la identificacion de bacterias Streptococcus mutans visualizado con la tincion de Gram Cada pequeno punto de la cadena es una bacteria La tecnica de tincion de membranas de bacterias de Gram desarrollada por Hans Christian Gram en 1884 148 ha supuesto un antes y un despues en el campo de la medicina y consiste en tenir con tintes especificos diversas muestras de bacterias en un portaobjetos para saber si se han tenido o no con dicho tinte 149 Una vez se han adicionado los tintes especificos en las muestras y se ha lavado la muestra pasados unos minutos para evitar confusiones hay que limpiarlas con unas gotas de alcohol etilico La funcion del alcohol es la de eliminar el tinte de las bacterias y es aqui donde se reconocen las bacterias que se han tomado si la bacteria conserva el tinte es una Gram positiva las cuales poseen una pared mas gruesa constituida por varias decenas de capas de diversos componentes proteicos en el caso de que el tinte no se mantenga la bacteria es una Gram negativa la cual posee una pared de una composicion diferente La funcion biologica que posee esta tecnica es la de fabricar antibioticos especificos para esas bacterias Esta tincion es empleada en microbiologia para la visualizacion de bacterias en muestras clinicas Tambien se emplea como primer paso en la distincion de diferentes especies de bacterias 150 considerandose bacterias Gram positivas a aquellas que se tornan de color violeta y Gram negativas a las que se tornan de color rojo 151 152 En el analisis de muestras clinicas suele ser un estudio fundamental por cumplir varias funciones Identificacion preliminar de la bacteria causante de la infeccion Consideracion de la calidad de la muestra biologica para el estudio es decir permite apreciar el numero de celulas inflamatorias asi como de celulas epiteliales A mayor numero de celulas inflamatorias en cada campo del microscopio mas probabilidad de que la flora que crezca en los medios de cultivo sea la representativa de la zona infectada A mayor numero de celulas epiteliales sucede los contrario mayor probabilidad de contaminacion con flora saprofita Utilidad como control de calidad del aislamiento bacteriano Las cepas bacterianas identificadas en la tincion de Gram se deben corresponder con aislamientos bacterianos realizados en los cultivos Si se observan mayor numero de formas bacterianas que las aisladas entonces hay que reconsiderar los medios de cultivos empleados asi como la atmosfera de incubacion Filos y filogenia Editar Probable modelo evolutivo de los principales filos y clados Los principales supergrupos serian Terrabacteria Gracilicutes y CPR Articulo principal Filogenia bacteriana Las relaciones filogeneticas de los seres vivos son motivo de controversia y no hay un acuerdo general entre los diferentes autores La mayoria de arboles filogeneticos en especial los de ARNr 16S y 23S muestran que los grupos basales son filos termofilos como Aquificae y Thermotogae 153 lo que reforzaria el origen termofilo de los dominios Archaea y Bacteria En cambio algunos arboles genomicos muestran a Firmicutes Gram positivos como el clado mas antiguo 154 Segun las teorias de Cavalier Smith la mayor divergencia se encuentra en un grupo fotosintetico que denomina Chlorobacteria Chloroflexi 42 Otros estudios filogeneticos genomicos o proteicos colocan en una posicion basal a Planctomycetes Proteobacteria u otros filos Finalmente se ha propuesto que hubo una temprana divergencia entre dos supergrupos Gracilicutes y Terrabacteria 155 demostrando en suma que actualmente no existe un filogenia bacteriana estable como para conocer con certeza la historia evolutiva bacteriana mas temprana Esto debido con toda probabilidad al fenomeno de la transferencia genetica horizontal tipica de los organismos procariotas Los principales filos bacterianos se pueden organizar dentro de un amplio criterio filogenetico en tres conjuntos Grupos termofilos Editar Venenivibrio una bacteria aquifical termofila de aguas termales De acuerdo con la mayoria de arboles filogeneticos moleculares las bacterias termofilas son los mas divergentes formando un grupo parafiletico basal lo que es compatible con las principales teorias sobre el origen y evolucion procariota Son termofilos e hipertermofilos con metabolismo quimiotrofo respiracion anaerobia y estructura Gram negativa de doble membrana destacando los siguientes filos Aquificae Pequeno grupo de bacterias quimiolitotrofas termofilas o hipertermofilas Se las encuentra en manantiales calientes pozos sulfurosos y fuentes hidrotermales oceanicas Thermotogae Un filo de hipertermofilos anaerobios obligados heterotrofos fermentativos Dictyoglomi Comprende una sola especie de hipertermofilo quimioorganotrofo y aerobio Thermodesulfobacteria Termofilas reductoras de sulfato Caldiserica Bacteria termofila anaerobia Synergistetes Bacterias anaerobias Aunque pocos generos son termofilos Synergistetes tiene posicion basal en la filogenia bacteriana del ARNr Gram positivos y relacionados Editar Tincion de Gram de Bacillus anthracis una bacteria patogena Gram positiva del filo firmicutes Los grupos Gram positivos son basicamente Firmicutes y Actinobacteria los cuales habria engrosado su pared celular como una adaptacion a la desecacion con perdida de la membrana externa desarrollando esteroles acido teicoico y formando esporas en varios grupos El termino Posibacteria se ha usado como taxon para agrupar a los Gram positivos y grupos derivados como Tenericutes El termino monodermico alude a la unica membrana celular que poseen los Gram positivos lo que significa que otros filos como Chloroflexi y Thermomicrobia al ser monodermicos estan relacionados con los primeros a pesar de que son Gram variables Segun algunos arboles filogeneticos los filos monodermicos forman parte de un superclado denominado Terrabacteria llamados asi por su probable evolucion en medios terrestres y se incluye en el a filos didermicos como Deinococcus Thermus que es Gram variable y al grupo Cyanobacteria Melainabacteria que es Gram negativo Los Gram positivos y relacionados Terrabacteria se presentan en la mayoria de arboles filogeneticos como un grupo parafiletico con respecto a Gracilicutes y esta conformado por los siguientes filos Actinobacteria Un extenso filo de bacterias Gram positivas de contenido GC alto Son comunes en el suelo aunque algunas habitan en plantas y animales incluyendo algunos patogenos Algunas forman colonias en forma de hifas Actinomyces Firmicutes o Endobacteria Es el grupo mas extenso y comprende a las bacterias Gram positivas con contenido GC bajo Se encuentran en diversos habitats incluyendo algunos patogenos notables Una de las familias Heliobacteria obtiene su energia a traves de la fotosintesis y otros tienen una pseudo membrana externa Negativicutes Tenericutes o Mollicutes Son endosimbiontes Gram negativos monodermicos y sin pared celular Se derivan de Firmicutes segun la mayoria de filogenias Deinococcus Thermus o Hadobacteria Pequeno grupo de quimiorganotrofos extremofilos altamente resistentes Unas especies soportan el calor y el frio extremo mientras que otras son resistentes a la radiacion y a las sustancias toxicas Chloroflexi Pequeno filo de bacterias monodermicas Gram variables aerobias facultativas y tipicamente filamentosas Incluye a las bacterias verdes no del azufre las cuales realizan la fotosintesis anoxigenica mediante bacterioclorofila sin produccion de oxigeno y en donde su via de fijacion del carbono tambien difiere de la de otras bacterias fotosinteticas Thermomicrobia Pequeno filo o clase termofilo derivado de Chloroflexi Cyanobacteria algas verde azuladas El grupo mas importante de bacterias fotosinteticas Presentan clorofila y realizan la fotosintesis oxigenica Son unicelulares o coloniales filamentosas Armatimonadetes Pequeno grupo aerobio quimioheterotrofo Gracilicutes Editar Las espiroquetas al igual que otros Gracilicutes son Gram negativas El superclado Gracilicutes o Hydrobacteria esta bien consensuado en muchos arboles filogeneticos Son el mayor grupo de bacterias Gram negativas didermicas en su mayoria quimioheterotrofas de habitat acuatico o relacionado con animales y plantas como comensal mutualista o patogeno Esta conformado por varios filos y superfilos Spirochaetes Bacterias quimioheterotrofas con forma alargada tipicamente enrollada en espiral que se desplazan mediante rotacion Muchas producen enfermedades Grupo FCB o Sphingobacteria Fibrobacteres Pequeno filo de que incluye muchas de las bacterias estomacales que permiten la degradacion de la celulosa en los rumiantes Gemmatimonadetes Aerobios del suelo y el fango Bacteroidetes Un extenso filo de bacterias con amplia distribucion en el medio ambiente incluyendo el suelo sedimentos agua de mar y el tracto digestivo de los animales Es un grupo heterogeneo que incluye aerobios obligados o anaerobios obligados comensales parasitos y formas de vida libre Chlorobi Destacan las bacterias verdes del azufre las cuales son fototrofas mediante bacterioclorofila y anaerobias obligadas Algunas son termofilas que viven en fuentes hidrotermales Se consideran derivados o relacionados con Bacteroidetes a nivel de filo Grupo PVC o Planctobacteria Planctomycetes Bacterias principalmente acuaticas aerobias encontradas en agua dulce salobre y marina Su ciclo biologico implica la alternancia entre celulas sesiles y flageladas Se reproducen por gemacion Verrucomicrobia Comprende bacterias terrestres acuaticas y algunas asociadas con huespedes eucariotas Lentisphaerae Pequeno grupo de bacterias recientemente descubiertas en aguas marinas y habitats terrestres anaerobios Se consideran derivados o relacionados con Verrucomicrobia a nivel de filo Chlamydiae Un pequeno grupo de parasitos intracelulares obligados de las celulas eucariotas Elusimicrobia Se encuentra disperso por mar tierra y como endosimbionte de insectos Proteobacteria bacterias purpuras y relacionadas Es un grupo muy diverso y extenso La mayoria son heterotrofas otras son fermentadoras como las enterobacterias y muchas causan enfermedades como las ricketsias que son parasitos intracelulares Los rizobios son endosimbiontes fijadores de nitrogeno en las plantas las bacterias purpuras son fototrofas con bacterioclorofila y las mixobacterias forman agregados multicelulares Algunos autores consideran que son derivados o relacionados con Proteobacteria los siguientes filos Acidobacteria Pequeno filo de bacterias acidofilas comunes en el suelo Incluye una bacteria fototrofa usando bacterioclorofila Deferribacteres Pequeno grupo de bacterias acuaticas anaerobias Chrysiogenetes Pequeno grupo quimiolitoautotrofo anaerobio con una bioquimica y una forma de vida unicas capaces de respirar arseniato Nitrospirae Grupo de quimiosinteticos oxidantes de nitrogeno y algunos son termofilos Fusobacteria No siempre se le incluye en Gracilicutes Son bacterias heterotrofas anaerobias causantes de infecciones en humanos Constituyen uno de los principales tipos de flora del aparato digestivo Grupo CPR y otros filos candidatos Editar Recientemente los analisis genomicos de las muestras tomadas del medio ambiente han identificado un gran numero de filos candidatos de bacterias ultrapequenas cuyos representantes todavia no han sido cultivados Estas bacterias no habian sido detectadas por los procedimientos tradicionales debido a sus especiales caracteristicas metabolicas A modo de ejemplo una nueva linea filogenetica de bacterias conteniendo 35 filos el grupo CPR ha sido recientemente identificado De esta forma el numero de filos del dominio Bacteria se amplia hasta casi 100 y supera ampliamente en diversidad a los organismos de los otros dos dominios 6 156 Sin embargo En 2018 en una revision taxonomica para estandarizar la taxonomia bacteriana se encontro que CPR o Patescibacteria comprende un unico filo con varios taxones de rango inferior en vez de una radiacion de multiples filos 157 Uso de las bacterias en la tecnologia y la industria EditarMuchas industrias dependen en parte o enteramente de la accion bacteriana Gran cantidad de sustancias quimicas importantes como alcohol etilico acido acetico alcohol butilico y acetona son producidas por bacterias especificas Tambien se emplean bacterias para el curado de tabaco el curtido de cueros caucho algodon etc Las bacterias a menudo Lactobacillus junto con levaduras y mohos se han utilizado durante miles de anos para la preparacion de alimentos fermentados tales como queso mantequilla encurtidos salsa de soja chucrut vinagre vino y yogur 158 159 Las bacterias tienen una capacidad notable para degradar una gran variedad de compuestos organicos por lo que se utilizan en el reciclado de basura y en biorremediacion Las bacterias capaces de degradar los hidrocarburos son de uso frecuente en la limpieza de los vertidos de petroleo 160 Asi por ejemplo despues del vertido del petrolero Exxon Valdez en 1989 en algunas playas de Alaska se usaron fertilizantes con objeto de promover el crecimiento de estas bacterias naturales Estos esfuerzos fueron eficaces en las playas en las que la capa de petroleo no era demasiado espesa Las bacterias tambien se utilizan para la biorremediacion de basuras toxicas industriales 161 En la industria quimica las bacterias son utilizadas en la sintesis de productos quimicos enantiomericamente puros para uso farmaceutico o agroquimico 162 Las bacterias tambien pueden ser utilizadas para el control biologico de parasitos en sustitucion de los pesticidas Esto implica comunmente a la especie Bacillus thuringiensis tambien llamado BT una bacteria de suelo Gram positiva Las subespecies de esta bacteria se utilizan como insecticidas especificos para lepidopteros 163 Debido a su especificidad estos pesticidas se consideran respetuosos con el medio ambiente con poco o ningun efecto sobre los seres humanos la fauna y la mayoria de los insectos beneficiosos como por ejemplo los polinizadores 164 165 Cristales de insulina Las bacterias son herramientas basicas en los campos de la biologia la genetica y la bioquimica moleculares debido a su capacidad para crecer rapidamente y a la facilidad relativa con la que pueden ser manipuladas Realizando modificaciones en el ADN bacteriano y examinando los fenotipos que resultan los cientificos pueden determinar la funcion de genes enzimas y rutas metabolicas pudiendo trasladar posteriormente estos conocimientos a organismos mas complejos 166 La comprension de la bioquimica celular que requiere cantidades enormes de datos relacionados con la cinetica enzimatica y la expresion de genes permitira realizar modelos matematicos de organismos enteros Esto es factible en algunas bacterias bien estudiadas Por ejemplo actualmente esta siendo desarrollado y probado el modelo del metabolismo de Escherichia coli 167 168 Esta comprension del metabolismo y la genetica bacteriana permite a la biotecnologia la modificacion de las bacterias para que produzcan diversas proteinas terapeuticas tales como insulina factores de crecimiento y anticuerpos 169 170 Galeria Editar Mycobacterium tuberculosis Actinobacteria Thermus aquaticus Deinococcus Thermus Oenococcus oeni Firmicutes Bacillus cereus Firmicutes Staphylococcus aureus Firmicutes Campylobacter jejuni Proteobacteria Bordetella bronchiseptica Proteobacteria Vibrio cholerae Proteobacteria Leptospira Spirochaetes Treponema pallidum Spirochaetes Vease tambien EditarBacteriofago Bacteriologia Biotecnologia Extremofilo Microbiologia Nanobio Codigo Internacional de Nomenclatura de Bacterias Categoria Enfermedades bacterianas Microbiota normalNotas Editar Se ha sugerido que Proteobacteria puede ser un superfilo en lugar de un filo Referencias Editar a b Qiyun Zhu Uyen Mai Rob Knight 2019 Phylogenomics of 10 575 genomes reveals evolutionary proximity between domains Bacteria and Archaea Nature a b c d e Battistuzzi F Feijao A Hedges S A genomic timescale of prokaryote evolution insights into the origin of methanogenesis phototrophy and the colonization of land BMC a b c Fabia U Battistuzzi amp S Blair Hedges 2008 A Major Clade of Prokaryotes with Ancient Adaptations to Life on Land Oxford Academic a b Woese C Kandler O Wheelis M 1990 Towards a natural system of organisms proposal for the domains Archaea Bacteria and Eucarya Proc Natl Acad Sci U S A 87 12 4576 9 PMID 2112744 Christian Rinke et al 2013 Insights into the phylogeny and coding potential of microbial dark matter Nature Vol 499 pp 431 437 25 de julio de 2013 doi 10 1038 nature12352 a b Hug L A Baker B J Anantharaman K Brown C T Probst A J Castelle C J amp Suzuki Y 2016 A new view of the tree of life Nature Microbiology 1 16048 Classification of domains and phyla Hierarchical classification of prokaryotes bacteria LPSN revisado en octubre de 2015 Murray Patrick R 2009 Microbiologia Medica Student Consult 6a ed Elsevier Espana ISBN 978 84 8086 465 7 Consultado el 26 de noviembre de 2019 Fredrickson J Zachara J Balkwill D et al 2004 Geomicrobiology of high level nuclear waste contaminated vadose sediments at the hanford site Washington state Appl Environ Microbiol 70 7 4230 41 PMID 15240306 Whitman W Coleman D Wiebe W 1998 Prokaryotes the unseen majority Proc Natl Acad Sci U S A 95 12 6578 83 PMID 9618454 Rappe M Giovannoni S The uncultured microbial majority Annu Rev Microbiol 57 369 94 PMID 14527284 Sears C 2005 A dynamic partnership Celebrating our gut flora Anaerobe 11 5 247 51 PMID 16701579 Tuberculosis Key Facts Organizacion Mundial de la Salud en ingles Consultado el 7 de junio de 2020 Ishige T Honda K Shimizu S 2005 Whole organism biocatalysis Curr Opin Chem Biol 9 2 174 80 PMID 15811802 Ibrahim B Syed 2002 Islamic Medicine 1000 years ahead of its times Journal of the Islamic Medical Association 2 pp 2 9 Ober WB Aloush N 1982 The plague at Granada 1348 1349 Ibn Al Khatib and ideas of contagion Bulletin of the New York Academy of Medicine 58 4 418 24 PMID 7052179 Beretta M 2003 The revival of Lucretian atomism and contagious diseases during the renaissance Medicina nei secoli 15 2 129 54 PMID 15309812 Porter JR 1976 Antony van Leeuwenhoek Tercentenary of his discovery of bacteria Bacteriological reviews 40 2 260 9 PMID 786250 Consultado el 19 de agosto de 2007 van Leeuwenhoek A 1684 An abstract of a letter from Mr Anthony Leevvenhoek at Delft dated Sep 17 1683 Containing Some Microscopical Observations about Animals in the Scurf of the Teeth the Substance Call d Worms in the Nose the Cuticula Consisting of Scales Philosophical Transactions 1683 1775 14 568 74 Consultado el 19 de agosto de 2007 enlace roto disponible en Internet Archive vease el historial la primera version y la ultima van Leeuwenhoek A 1700 Part of a Letter from Mr Antony van Leeuwenhoek concerning the Worms in Sheeps Livers Gnats and Animalcula in the Excrements of Frogs Philosophical Transactions 1683 1775 22 509 18 Archivado desde el original el 5 de enero de 2010 Consultado el 19 de agosto de 2007 van Leeuwenhoek A 1702 Part of a Letter from Mr Antony van Leeuwenhoek F R S concerning Green Weeds Growing in Water and Some Animalcula Found about Them Philosophical Transactions 1683 1775 23 1304 11 Archivado desde el original el 18 de enero de 2010 Consultado el 19 de agosto de 2007 Etymology of the word bacteria Online Etymology dictionary Consultado el 23 de noviembre de 2006 Jan Sapp 2006 Two faces of the prokaryote concept International Microbiology Canada 9 163 172 Pasteur s Papers on the Germ Theory LSU Law Center s Medical and Public Health Law Site Historic Public Health Articles Consultado el 23 de noviembre de 2006 The Nobel Prize in Physiology or Medicine 1905 Nobelprize org Consultado el 22 de noviembre de 2006 O Brien S Goedert J 1996 HIV causes AIDS Koch s postulates fulfilled Curr Opin Immunol 8 5 613 18 PMID 8902385 Thurston A 2000 Of blood inflammation and gunshot wounds the history of the control of sepsis Aust N Z J Surg 70 12 855 61 PMID 11167573 Biography of Paul Ehrlich Nobelprize org Consultado el 26 de noviembre de 2006 Schwartz R 2004 Paul Ehrlich s magic bullets N Engl J Med 350 11 1079 80 PMID 15014180 Woese C Fox G 1977 Phylogenetic structure of the prokaryotic domain the primary kingdoms Proc Natl Acad Sci U S A 74 11 5088 90 PMID 270744 Woese C Kandler O Wheelis M 1990 Towards a natural system of organisms proposal for the domains Archaea Bacteria and Eucarya Proc Natl Acad Sci U S A 87 12 4576 79 PMID 2112744 Woese C Kandler O Wheelis M 1990 Towards a natural system of organisms proposal for the domains Archaea Bacteria and Eucarya Proc Natl Acad Sci U S A 87 12 4576 9 PMID 2112744 a b Gupta R 2000 The natural evolutionary relationships among prokaryotes Crit Rev Microbiol 26 2 111 31 PMID 10890353 Courtland Rachel 2 de julio de 2008 Did newborn Earth harbour life New Scientist Consultado el 27 de septiembre de 2014 Schopf J 1994 Disparate rates differing fates tempo and mode of evolution changed from the Precambrian to the Phanerozoic Proc Natl Acad Sci U S A 91 15 6735 42 PMID 8041691 DeLong E Pace N 2001 Environmental diversity of bacteria and archaea Syst Biol 50 4 470 78 PMID 12116647 Brown J Doolittle W 1997 Archaea and the prokaryote to eukaryote transition Microbiol Mol Biol Rev 61 4 456 502 PMID 9409149 Wang M Yafremava LS Caetano Anolles D Mittenthal JE Caetano Anolles G 2007 Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world Genome Res 17 11 1572 85 PMID 17908824 doi 10 1101 gr 6454307 Di Giulio M 2003 The universal ancestor and the ancestor of bacteria were hyperthermophiles J Mol Evol 57 6 721 30 PMID 14745541 Battistuzzi F Feijao A Hedges S A genomic timescale of prokaryote evolution insights into the origin of methanogenesis phototrophy and the colonization of land BMC Evol Biol 4 44 PMID 15535883 Cavalier Smith T 2006 Cell evolution and Earth history stasis and revolution Philos Trans R Soc Lond B Biol Sci 361 1470 969 1006 PMID 16754610 enlace roto disponible en Internet Archive vease el historial la primera version y la ultima a b Thomas Cavalier Smith 2006 Rooting the tree of life by transition analyses Biol Direct 1 19 doi 10 1186 1745 6150 de enero de 19 T Cavalier Smith 2002 The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa International Journal of Systematic and Evolutionary Microbiology 52 297 354 Cavalier Smith T 2002 The neomuran origin of archaebacteria the negibacterial root of the universal tree and bacterial megaclassification Int J Syst Evol Microbiol 52 Pt 1 7 76 PMID 11837318 Poole A Penny D 2007 Evaluating hypotheses for the origin of eukaryotes Bioessays 29 1 74 84 PMID 17187354 Dyall S Brown M Johnson P 2004 Ancient invasions from endosymbionts to organelles Science 304 5668 253 7 PMID 15073369 Lang B Gray M Burger G Mitochondrial genome evolution and the origin of eukaryotes Annu Rev Genet 33 351 97 PMID 10690412 McFadden G 1999 Endosymbiosis and evolution of the plant cell Curr Opin Plant Biol 2 6 513 9 PMID 10607659 Schulz H Jorgensen B Big bacteria Annu Rev Microbiol 55 105 37 PMID 11544351 Robertson J Gomersall M Gill P 1975 Mycoplasma hominis growth reproduction and isolation of small viable cells J Bacteriol 124 2 1007 18 PMID 1102522 Fritz I Strompl C Abraham W 2004 Phylogenetic relationships of the genera Stella Labrys and Angulomicrobium within the Alphaproteobacteria and description of Angulomicrobium amanitiforme sp nov Int J Syst Evol Microbiol 54 Pt 3 651 7 PMID 15143003 Cabeen M Jacobs Wagner C 2005 Bacterial cell shape Nat Rev Microbiol 3 8 601 10 PMID 16012516 Young K 2006 The selective value of bacterial shape Microbiol Mol Biol Rev 70 3 660 703 PMID 16959965 Douwes K Schmalzbauer E Linde H Reisberger E Fleischer K Lehn N Landthaler M Vogt T 2003 Branched filaments no fungus ovoid bodies no bacteria Two unusual cases of mycetoma J Am Acad Dermatol 49 2 Suppl Case Reports S170 3 PMID 12894113 Donlan R 2002 Biofilms microbial life on surfaces Emerg Infect Dis 8 9 881 90 PMID 12194761 Branda S Vik S Friedman L Kolter R 2005 Biofilms the matrix revisited Trends Microbiol 13 1 20 26 PMID 15639628 Davey M O toole G 2000 Microbial biofilms from ecology to molecular genetics Microbiol Mol Biol Rev 64 4 847 67 PMID 11104821 Donlan RM Costerton JW 2002 Biofilms survival mechanisms of clinically relevant microorganisms Clin Microbiol Rev 15 2 167 93 PMID 11932229 Shimkets L Intercellular signaling during fruiting body development of Myxococcus xanthus Annu Rev Microbiol 53 525 49 PMID 10547700 Kaiser D Signaling in myxobacteria Annu Rev Microbiol 58 75 98 PMID 15487930 Harold F 1972 Conservation and transformation of energy by bacterial membranes Bacteriol Rev 36 2 172 230 PMID 4261111 Berg J Tymoczko J and Stryer L 2002 Biochemistry W H Freeman and Company ISBN 0 7167 4955 6 a b Fuerst J 2005 Intracellular compartmentation in planctomycetes Annu Rev Microbiol 59 299 328 PMID 15910279 Poehlsgaard J Douthwaite S 2005 The bacterial ribosome as a target for antibiotics Nat Rev Microbiol 3 11 870 81 PMID 16261170 Yeo M Chater K 2005 The interplay of glycogen metabolism and differentiation provides an insight into the developmental biology of Streptomyces coelicolor Microbiology 151 Pt 3 855 61 PMID 15758231 Shiba T Tsutsumi K Ishige K Noguchi T 2000 Inorganic polyphosphate and polyphosphate kinase their novel biological functions and applications Biochemistry Mosc 65 3 315 23 PMID 10739474 Brune DC 1995 Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina Arch Microbiol 163 6 391 99 PMID 7575095 Kadouri D Jurkevitch E Okon Y Castro Sowinski S 2005 Ecological and agricultural significance of bacterial polyhydroxyalkanoates Crit Rev Microbiol 31 2 55 67 PMID 15986831 Walsby A 1994 Gas vesicles Microbiol Rev 58 1 94 144 PMID 8177173 Gitai Z 2005 The New Bacterial Cell Biology Moving Parts and Subcellular Architecture Cell 120 5 577 586 doi 10 1016 j cell 2005 02 026 Thanbichler M Wang S Shapiro L 2005 The bacterial nucleoid a highly organized and dynamic structure J Cell Biochem 96 3 506 21 PMID 15988757 Gitai Z 2005 The new bacterial cell biology moving parts and subcellular architecture Cell 120 5 577 86 PMID 15766522 doi 10 1016 j cell 2005 02 026 Shih YL Rothfield L 2006 The bacterial cytoskeleton Microbiol Mol Biol Rev 70 3 729 54 PMID 16959967 doi 10 1128 MMBR 00017 06 van Heijenoort J 2001 Formation of the glycan chains in the synthesis of bacterial peptidoglycan Glycobiology 11 3 25R 36R PMID 11320055 a b Koch A 2003 Bacterial wall as target for attack past present and future research Clin Microbiol Rev 16 4 673 87 PMID 14557293 Gram HC 1884 Uber die isolierte Farbung der Schizomyceten in Schnitt und Trockenpraparaten Fortschr Med 2 185 189 Hugenholtz P 2002 Exploring prokaryotic diversity in the genomic era Genome Biol 3 2 REVIEWS0003 PMID 11864374 Walsh F Amyes S 2004 Microbiology and drug resistance mechanisms of fully resistant pathogens Curr Opin Microbiol 7 5 439 44 PMID 15451497 Engelhardt H Peters J 1998 Structural research on surface layers a focus on stability surface layer homology domains and surface layer cell wall interactions J Struct Biol 124 2 3 276 302 PMID 10049812 Beveridge T Pouwels P Sara M Kotiranta A Lounatmaa K Kari K Kerosuo E Haapasalo M Egelseer E Schocher I Sleytr U Morelli L Callegari M Nomellini J Bingle W Smit J Leibovitz E Lemaire M Miras I Salamitou S Beguin P Ohayon H Gounon P Matuschek M Koval S 1997 Functions of S layers FEMS Microbiol Rev 20 1 2 99 149 PMID 9276929 Kojima S Blair D The bacterial flagellar motor structure and function of a complex molecular machine Int Rev Cytol 233 93 134 PMID 15037363 Beachey E 1981 Bacterial adherence adhesin receptor interactions mediating the attachment of bacteria to mucosal surface J Infect Dis 143 3 325 45 PMID 7014727 Silverman P 1997 Towards a structural biology of bacterial conjugation Mol Microbiol 23 3 423 9 PMID 9044277 Stokes R Norris Jones R Brooks D Beveridge T Doxsee D Thorson L 2004 The glycan rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages Infect Immun 72 10 5676 86 PMID 15385466 Daffe M Etienne G 1999 The capsule of Mycobacterium tuberculosis and its implications for pathogenicity Tuber Lung Dis 79 3 153 69 PMID 10656114 Finlay B Falkow S 1997 Common themes in microbial pathogenicity revisited Microbiol Mol Biol Rev 61 2 136 69 PMID 9184008 Nicholson W Munakata N Horneck G Melosh H Setlow P 2000 Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments Microbiol Mol Biol Rev 64 3 548 72 PMID 10974126 Siunov A Nikitin D Suzina N Dmitriev V Kuzmin N Duda V Phylogenetic status of Anaerobacter polyendosporus an anaerobic polysporogenic bacterium Int J Syst Bacteriol 49 Pt 3 1119 24 PMID 10425769 Archivado desde el original el 16 de junio de 2007 Nicholson W Fajardo Cavazos P Rebeil R Slieman T Riesenman P Law J Xue Y 2002 Bacterial endospores and their significance in stress resistance Antonie Van Leeuwenhoek 81 1 4 27 32 PMID 12448702 Vreeland R Rosenzweig W Powers D 2000 Isolation of a 250 million year old halotolerant bacterium from a primary salt crystal Nature 407 6806 897 900 PMID 11057666 Cano R Borucki M 1995 Revival and identification of bacterial spores in 25 to 40 million year old Dominican amber Science 268 5213 1060 4 PMID 7538699 Nicholson W Schuerger A Setlow P 2005 The solar UV environment and bacterial spore UV resistance considerations for Earth to Mars transport by natural processes and human spaceflight Mutat Res 571 1 2 249 64 PMID 15748651 Hatheway C 1990 Toxigenic clostridia Clin Microbiol Rev 3 1 66 98 PMID 2404569 Nealson K 1999 Post Viking microbiology new approaches new data new insights Orig Life Evol Biosph 29 1 73 93 PMID 11536899 Xu J 2006 Microbial ecology in the age of genomics and metagenomics concepts tools and recent advances Mol Ecol 15 7 1713 31 PMID 16689892 Zillig W 1991 Comparative biochemistry of Archaea and Bacteria Curr Opin Genet Dev 1 4 544 51 PMID 1822288 Hellingwerf K Crielaard W Hoff W Matthijs H Mur L van Rotterdam B 1994 Photobiology of bacteria Antonie Van Leeuwenhoek 65 4 331 47 PMID 7832590 Zumft W 1997 Cell biology and molecular basis of denitrification Microbiol Mol Biol Rev 61 4 533 616 PMID 9409151 Drake H Daniel S Kusel K Matthies C Kuhner C Braus Stromeyer S 1997 Acetogenic bacteria what are the in situ consequences of their diverse metabolic versatilities Biofactors 6 1 13 24 PMID 9233536 Dalton H 2005 The Leeuwenhoek Lecture 2000 the natural and unnatural history of methane oxidizing bacteria Philos Trans R Soc Lond B Biol Sci 360 1458 1207 22 PMID 16147517 enlace roto disponible en Internet Archive vease el historial la primera version y la ultima Zehr J Jenkins B Short S Steward G 2003 Nitrogenase gene diversity and microbial community structure a cross system comparison Environ Microbiol 5 7 539 54 PMID 12823187 Morel FMM Kraepiel AML Amyot M 1998 The chemical cycle and bioaccumulation of mercury Annual Review of Ecological Systems 29 543 566 La referencia utiliza el parametro obsoleto coautores ayuda a b c Bardy S Ng S Jarrell K 2003 Prokaryotic motility structures Microbiology 149 Pt 2 295 304 PMID 12624192 Archivado desde el original el 14 de septiembre de 2007 Consultado el 1 de julio de 2007 Merz A So M Sheetz M 2000 Pilus retraction powers bacterial twitching motility Nature 407 6800 98 102 PMID 10993081 Wu M Roberts J Kim S Koch D DeLisa M 2006 Collective bacterial dynamics revealed using a three dimensional population scale defocused particle tracking technique Appl Environ Microbiol 72 7 4987 94 PMID 16820497 Lux R Shi W 2004 Chemotaxis guided movements in bacteria Crit Rev Oral Biol Med 15 4 207 20 PMID 15284186 Frankel R Bazylinski D Johnson M Taylor B 1997 Magneto aerotaxis in marine coccoid bacteria Biophys J 73 2 994 1000 PMID 9251816 Kaiser D Signaling in myxobacteria Annu Rev Microbiol 58 75 98 PMID 15487930 Goldberg MB 2001 Actin based motility of intracellular microbial pathogens Microbiol Mol Biol Rev 65 4 595 626 PMID 11729265 Curtis Barnes Biologia 1994 7 Como se dividen las celulas Medica Panamericana p 171 ISBN 950 06 0375 6 Koch A 2002 Control of the bacterial cell cycle by cytoplasmic growth Crit Rev Microbiol 28 1 61 77 PMID 12003041 Eagon R Pseudomonas natriegens a marine bacterium with a generation time of less than 10 minutes J Bacteriol 83 736 7 PMID 13888946 Prats C Lopez D Giro A Ferrer J Valls J 2006 Individual based modelling of bacterial cultures to study the microscopic causes of the lag phase J Theor Biol 241 4 939 53 PMID 16524598 Hecker M Volker U General stress response of Bacillus subtilis and other bacteria Adv Microb Physiol 44 35 91 PMID 11407115 Nakabachi A Yamashita A Toh H Ishikawa H Dunbar H Moran N Hattori M 2006 The 160 kilobase genome of the bacterial endosymbiont Carsonella Science 314 5797 267 PMID 17038615 Pradella S Hans A Sproer C Reichenbach H Gerth K Beyer S 2002 Characterisation genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56 Arch Microbiol 178 6 484 92 PMID 12420170 Hinnebusch J Tilly K 1993 Linear plasmids and chromosomes in bacteria Mol Microbiol 10 5 917 22 PMID 7934868 Brussow H Canchaya C Hardt W 2004 Phages and the evolution of bacterial pathogens from genomic rearrangements to lysogenic conversion Microbiol Mol Biol Rev 68 3 560 602 PMID 15353570 Perna N Mayhew G Posfai G Elliott S Donnenberg M Kaper J Blattner F 1998 Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157 H7 Infect Immun 66 8 3810 7 PMID 9673266 Denamur E Matic I 2006 Evolution of mutation rates in bacteria Mol Microbiol 60 4 820 7 PMID 16677295 Wright B 2004 Stress directed adaptive mutations and evolution Mol Microbiol 52 3 643 50 PMID 15101972 Davison J 1999 Genetic exchange between bacteria in the environment Plasmid 42 2 73 91 PMID 10489325 Hastings P Rosenberg S Slack A 2004 Antibiotic induced lateral transfer of antibiotic resistance Trends Microbiol 12 9 401 4 PMID 15337159 Stams A de Bok F Plugge C van Eekert M Dolfing J Schraa G 2006 Exocellular electron transfer in anaerobic microbial communities Environ Microbiol 8 3 371 82 PMID 16478444 Barea J Pozo M Azcon R Azcon Aguilar C 2005 Microbial co operation in the rhizosphere J Exp Bot 56 417 1761 78 PMID 15911555 IGER Ciencias Naturales Zaculeu IGER ISBN 9789929614116 Consultado el 5 de septiembre de 2017 O Hara A Shanahan F 2006 The gut flora as a forgotten organ EMBO Rep 7 7 688 93 PMID 16819463 Zoetendal E Vaughan E de Vos W 2006 A microbial world within us Mol Microbiol 59 6 1639 50 PMID 16553872 Gorbach S 1990 Lactic acid bacteria and human health Ann Med 22 1 37 41 PMID 2109988 Salminen S Gueimonde M Isolauri E 2005 Probiotics that modify disease risk J Nutr 135 5 1294 8 PMID 15867327 Erin Gill amp Fiona Brinkman 2011 The proportional lack of archaeal pathogens Do viruses phages hold the key Bioessays 2011 April 33 4 248 254 Fish D Optimal antimicrobial therapy for sepsis Am J Health Syst Pharm 59 Suppl 1 S13 9 PMID 11885408 Belland R Ouellette S Gieffers J Byrne G 2004 Chlamydia pneumoniae and atherosclerosis Cell Microbiol 6 2 117 27 PMID 14706098 Heise E Diseases associated with immunosuppression Environ Health Perspect 43 9 19 PMID 7037390 Saiman L 2004 Microbiology of early CF lung disease Paediatr Respir Rev volumen 5 Suppl A S367 369 PMID 14980298 Yonath A Bashan A 2004 Ribosomal crystallography initiation peptide bond formation and amino acid polymerization are hampered by antibiotics Annu Rev Microbiol 58 233 51 PMID 15487937 Khachatourians G 1998 Agricultural use of antibiotics and the evolution and transfer of antibiotic resistant bacteria CMAJ 159 9 1129 36 PMID 9835883 Thomson R Bertram H 2001 Laboratory diagnosis of central nervous system infections Infect Dis Clin North Am 15 4 1047 71 PMID 11780267 Boucher Y Douady CJ Papke RT Walsh DA Boudreau ME Nesbo CL Case RJ Doolittle WF 2003 Lateral gene transfer and the origins of prokaryotic groups Annu Rev Genet 37 283 328 PMID 14616063 Olsen G Woese C Overbeek R 1994 The winds of evolutionary change breathing new life into microbiology J Bacteriol 176 1 1 6 PMID 8282683 Tindall BJ Truper HG 28 de noviembre de 2005 The Role of the ICSP International Committee on Systematics of Prokaryotes in the Nomenclature and Taxonomy of Prokaryotes en ingles ICSP Archivado desde el original el 19 de agosto de 2007 Consultado el 2 de septiembre de 2008 Euzeby JP 2008 List of Prokaryotic names with Standing in Nomenclature LPSN en ingles Archivado desde el original el 30 de diciembre de 2010 Consultado el 2 de septiembre de 2008 EMInternational Journal of Systematic Bacteriology IJS en ingles Society for General Microbiology Consultado el 2 de septiembre de 2008 Bergey s Manual Trust en ingles 26 de agosto Consultado el 2 de septiembre de 2008 The Taxonomic Outline of Bacteria and Archaea TOBA release 7 7 en ingles Universidad Estatal de Michigan en colaboracion con NamesforLife LLC 2007 Archivado desde el original el 1 de diciembre de 2008 Consultado el 2 de septiembre de 2008 Rappe MS Giovannoni SJ 2003 The uncultured microbial majority Annual Review of Microbiology 57 369 94 doi 10 1146 annurev micro 57 030502 090759 Doolittle RF 2005 Evolutionary aspects of whole genome biology Curr Opin Struct Biol 15 3 248 253 PMID 11837318 Gram HC 1884 Uber die isolierte Farbung der Schizomyceten in Schnitt und Trockenpraparaten Fortschr Med 2 185 189 Ryan KJ Ray CG editors 2004 Sherris Medical Microbiology 4th ed edicion McGraw Hill pp 232 3 ISBN 0 8385 8529 9 Madigan MT Martinko J Parker J 2004 Brock Biology of Microorganisms 10th Edition edicion Lippincott Williams amp Wilkins ISBN 0 13 066271 2 La referencia utiliza el parametro obsoleto coautores ayuda Beveridge T J Davies J A Cellular responses of Bacillus subtilis and Escherichia coli to the Gram stain PDF J Bacteriol 156 2 846 858 PMID 6195148 Consultado el 2007 de febrero de 17 La referencia utiliza el parametro obsoleto coautores ayuda Davies J A G K Anderson T J Beveridge H C Clark Chemical mechanism of the Gram stain and synthesis of a new electron opaque marker for electron microscopy which replaces the iodine mordant of the stain PDF J Bacteriol 156 2 837 845 PMID 6195147 Consultado el 2007 de febrero de 17 La referencia utiliza el parametro obsoleto coautores ayuda Cheryl P Andam amp J Peter Gogarten 2011 Biased gene transfer in microbial evolution Figure 1 Phylogenetic analysis of bacterial tyrosyl tRNA synthetase amino acid sequences and the corresponding concatenated 16S 23S ribosomal RNA phylogeny Nature Reviews Microbiology 9 543 555 doi 10 1038 nrmicro2593 Gupta R S 2005 Molecular Sequences and the Early History of Life In Microbial Phylogeny and Evolution Concepts and Controversies J Sapp Ed Oxford University Press New York Web Branching Order of Bacterial Phyla Boussau Bastien et al 2008 Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of aquificales in the phylogeny of Bacteria BMC Evolutionary Biology 8 272 doi 10 1186 1471 2148 8 272 Brown C T Hug L A Thomas B C Sharon I Castelle C J Singh A amp Banfield J F 2015 Unusual biology across a group comprising more than 15 of domain Bacteria Nature 523 7559 208 211 Donovan H Parks Maria Chuvochina David W Waite Christian Rinke Adam Skarshewski Pierre Alain Chaumeil Philip Hugenholtz 2018 A proposal for a standardized bacterial taxonomy based on genome phylogeny Biorxiv Johnson M Lucey J 2006 Major technological advances and trends in cheese J Dairy Sci 89 4 1174 8 PMID 16537950 Hagedorn S Kaphammer B Microbial biocatalysis in the generation of flavor and fragrance chemicals Annu Rev Microbiol 48 773 800 PMID 7826026 Cohen Y 2002 Bioremediation of oil by marine microbial mats Int Microbiol 5 4 189 93 PMID 12497184 Neves L Miyamura T Moraes D Penna T Converti A Biofiltration methods for the removal of phenolic residues Appl Biochem Biotechnol 129 132 130 52 PMID 16915636 Liese A Filho M 1999 Production of fine chemicals using biocatalysis Curr Opin Biotechnol 10 6 595 603 PMID 10600695 Aronson A Shai Y 2001 Why Bacillus thuringiensis insecticidal toxins are so effective unique features of their mode of action FEMS Microbiol Lett 195 1 1 8 PMID 11166987 Bozsik A 2006 Susceptibility of adult Coccinella septempunctata Coleoptera Coccinellidae to insecticides with different modes of action Pest Manag Sci 62 7 651 4 PMID 16649191 Chattopadhyay A Bhatnagar N Bhatnagar R 2004 Bacterial insecticidal toxins Crit Rev Microbiol 30 1 33 54 PMID 15116762 Serres M Gopal S Nahum L Liang P Gaasterland T Riley M 2001 A functional update of the Escherichia coli K 12 genome Genome Biol 2 9 RESEARCH0035 PMID 11574054 Almaas E Kovacs B Vicsek T Oltvai Z Barabasi A 2004 Global organization of metabolic fluxes in the bacterium Escherichia coli Nature 427 6977 839 43 PMID 14985762 Reed J Vo T Schilling C Palsson B 2003 An expanded genome scale model of Escherichia coli K 12 iJR904 GSM GPR Genome Biol 4 9 R54 PMID 12952533 Walsh G 2005 Therapeutic insulins and their large scale manufacture Appl Microbiol Biotechnol 67 2 151 9 PMID 15580495 Graumann K Premstaller A 2006 Manufacturing of recombinant therapeutic proteins in microbial systems Biotechnol J 1 2 164 86 PMID 16892246 Enlaces externos Editar Wikimedia Commons alberga una categoria multimedia sobre Bacteria Wikispecies tiene un articulo sobre Bacteria Wikcionario tiene definiciones y otra informacion sobre bacteria Datos Q10876 Multimedia Bacteria Especies BacteriaObtenido de https es wikipedia org w index php title Bacteria amp oldid 137284048, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos