fbpx
Wikipedia

Acetil-CoA carboxilasa

La acetil-CoA carboxilasa ACAC (EC 6.4.1.2) es una enzima que cataliza la reacción de adición de un grupo bicarbonato al acetato para obtener malonato. Esta reacción consume una molécula de ATP.[3]

Acetil-CoA carboxilasa alfa[1]
Estructuras disponibles
PDB

Buscar ortólogos: PDBe, RCSB

 Estructuras enzimáticas
RCSB PDB, PDBe, PDBsum
Identificadores
Símbolos ACACA (HGNC: 84) ACC1
Identificadores
externos
 Bases de datos de enzimas
IntEnz: entrada en IntEnz
BRENDA: entrada en BRENDA
ExPASy: NiceZime view
KEGG: entrada en KEEG
PRIAM: perfil PRIAM
ExplorEnz: entrada en ExplorEnz
MetaCyc: vía metabólica
Número EC 6.4.1.2
Locus Cr. 17 q21
Estructura/Función proteica
Tamaño 2346 (aminoácidos)
Ortólogos
Especies
Entrez
31
UniProt
Q13085 n/a
PubMed (Búsqueda)
PMC (Búsqueda)
Acetil-CoA carboxilasa beta[2]
Estructuras disponibles
PDB

Buscar ortólogos: PDBe, RCSB

 Estructuras enzimáticas
RCSB PDB, PDBe, PDBsum
Identificadores
Símbolos ACACB (HGNC: 85) ACC-beta
Identificadores
externos
 Bases de datos de enzimas
IntEnz: entrada en IntEnz
BRENDA: entrada en BRENDA
ExPASy: NiceZime view
KEGG: entrada en KEEG
PRIAM: perfil PRIAM
ExplorEnz: entrada en ExplorEnz
MetaCyc: vía metabólica
Número EC 6.4.1.2
Locus Cr. 12 q24.11
Estructura/Función proteica
Tamaño 2458 (aminoácidos)
Ortólogos
Especies
Entrez
32
UniProt
O00763 n/a
PubMed (Búsqueda)
PMC (Búsqueda)
Acetil-CoA + HCO3- + ATP Malonil-CoA + ADP + fosfato

Esta enzima regula la biosíntesis de los ácidos grasos y su oxidación.[4]​ Utiliza como cofactor biotina que se une a la enzima mediante un residuo de lisina.[5]​ Adicionalmente utiliza dos átomos de manganeso por subunidad. La enzima se presenta como monómero, homodímero y homotetrámero. Puede formar polímeros filamentosos.[6]

Mecanismo y estructura

Las enzimas carboxilasas dependientes de la biotina llevan a cabo una reacción en dos etapas. La enzima unida a la biotina es primero carboxilada por bicarbonato y ATP, y el grupo carboxilo unido temporalmente a la biotina es transferido a un sustrato aceptor como el piruvato o el acetil-CoA.[7]

Estructuras cristalográficas de la acetil-CoA carboxilasa de la Escherichia coli.
 
Figura 1. Estructura del dominio biotina carboxilasa de la ACAC de la E.Coli.  
 
Figura 2. Estructura del dominio carboxiltransferasa de la ACAC de la E.Coli.  

La primera etapa es mediada por el dominio biotina carboxilasa (BC) (EC 6.3.4.14) común a todas las carboxilasas dependientes de la biotina. El dominio BC puede ser dividido en tres subdominios (N-terminal, central y C-terminal). La región N-terminal proporciona parte del sitio activo; la región central corresponde al dominio de unión del ATP que es común en muchas enzimas dependientes del ATP que participan en la síntesis de macromoléculas. Por último, el subdominio C-terminal participa en la formación del multímero de enzimas.[7]

La segunda etapa de la reacción es realizada por el dominio carboxiltransferasa. Las regiones N- y C-terminal de este dominio comparten estructuras similares con una superhélice β-β-α central. La molécula de coenzima A se asocia con el subdominio N-terminal. En las acetil-CoA carboxilasas bacterianas los subdominios N- y C-terminal son codificados por dos polipéptidos diferentes.[4]

Isozimas

En el ser humano existen dos isozimas de la acetil-CoA carboxilasa llamadas alfa (ACACA) y beta (ACACB). La isozima alfa participa en la biogénesis de los ácidos grasos de cadena larga mientras que la isozima beta participa en la provisión de malonil-CoA y en la regulación de la oxidación de los ácidos grasos.[6][8]

La isozima alfa se expresa en el cerebro, placenta, músculo esquelético, riñones, páncreas y tejidos adiposos. Se expresa en un bajo nivel en los tejidos pulmonares. No se ha detectado en el hígado.[6]​ La isozima beta se expresa predominantemente en el corazón, músculo esquelético e hígado.[8]

Los defectos en ACACA son causa de la deficiencia en acetil-CoA carboxilasa 1, también conocida como deficiencia en ACAC. Es una deficiencia innata en la síntesis de ácidos grasos asociada con daño cerebral severo, miopatía persistente y crecimiento pobre.[6]

Regulación

La regulación de la acetil-CoA carboxilasa es compleja, ya que se tienen que controlar los procesos de inhibición de la beta oxidación y la activación de la biosíntesis de lípidos.

Las ACACA y ACACB son reguladas transcripcionalmente por muchos promotores que median en la abundancia de la ACAC en respuesta al estado nutricional de las células. La activación de la expresión del gen a través de diferentes promotores resulta en splicing alternativo; el significado fisiológico de la isoformas formadas permanece desconocido.[9]​ La sensibilidad al estado nutricional resulta del control de estos promotores por los factores de transcripción como el SREBP1c, controlado por la insulina en el nivel transcripcional, y el ChREBP, que incrementa la expresión en dietas de alto contenido en carbohidratos.[10][11]

 
Figura 3. Regulación de la acetil-CoA carboxilasa.

A través de un ciclo de retroalimentación, el citrato activa alostéricamente a la ACAC.[12]​ El citrato puede incrementar la polimerización de la ACAC para incrementar la actividad enzimática; aunque, no está claro si la polimerización es un mecanismo del citrato para incrementar la actividad de la ACAC o la polimerización es un resultado de los experimentos in vitro. Otros activadores alostéricos incluyen al glutamato y otros ácidos dicarboxílicos.[13]​ Las cadenas largas y cortas de acilos-CoA grasos son inhibidores de la ACAC.[14]

La fosforilación inhibitoria de la enzima puede ser resultado de la unión de las hormonas glucagón y epinefrina a los receptores de la superficie de la célula, pero la mayor causa de fosforilación es debida a un incremento en los niveles de AMP cuando el estatus de energía de la célula es bajo, resultando en la activación de la proteína kinasa activada por AMP (AMPK). AMPK es el principal regulador kinasa de la ACAC, capaz de fosforilar una serie de residuos serina en las dos isozimas.[15]​ En la ACACA, la AMPK fosforila Ser-79, Ser-1200 y Ser-1215. En la ACACB, la AMPK fosforila Ser-218.[16]​ La proteína kinasa A también tiene la habilidad de fosforilar la ACAC, con mucha mayor habilidad relativa para fosforilar la ACACB que la ACACA. De todas formas, el significado fisiológico de la proteína kinasa A en la regulación de la ACAC es todavía desconocido. Los investigadores creen que hay otras ACAC kinasas importantes para su regulación ya que hay muchos otros sitios de fosforilación posibles en la ACAC.[17]

Cuando la insulina se une a sus receptores situados en la membrana celular, activa una fosfatasa que defosforila la enzima causando la eliminación del efecto inhibitorio.

Referencias

  1. «ACACA Gene». Consultado el 22 de octubre de 2011. 
  2. «ACACB Gene». Consultado el 22 de octubre de 2011. 
  3. «ENZYME entry: EC 6.4.1.2». Consultado el 22 de octubre de 2011. 
  4. «PROSITE documentation PDOC50980». Consultado el 22 de octubre de 2011. 
  5. «PROSITE documentation PDOC00167». Consultado el 22 de octubre de 2011. 
  6. «Acetyl-CoA carboxylase 1». Consultado el 22 de octubre de 2011. 
  7. «PROSITE documentation PDOC50979». Consultado el 22 de octubre de 2011. 
  8. «Acetyl-CoA carboxylase 2». Consultado el 22 de octubre de 2011. 
  9. Barber MC, Price NT, Travers MT (marzo de 2005). «Structure and regulation of acetyl-CoA carboxylase genes of metazoa». Biochim. Biophys. Acta 1733 (1): 1-28. PMID 15749055. doi:10.1016/j.bbalip.2004.12.001. 
  10. Field F. J., Born E., Murthy S. and Mathur S. N. (diciembre de 2002). «Polyunsaturated fatty acids decrease the expression of sterol regulatory element binding protein-1 in CaCo-2 cells: effect on fatty acid synthesis and triacylglycerol transport.». Biochem. J. 386 (Pt 3): 855-64. PMC 1223029. PMID 12213084. doi:10.1042/BJ20020731. 
  11. Ishii S, Iizuka K, Miller BC, Uyeda K (octubre de 2004). «Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription». Proc Natl Acad Sci USA 101 (44): 15597-602. PMC 524841. PMID 15496471. doi:10.1073/pnas.0405238101. 
  12. Martin DB, Vagelos PR (junio de 1962). «The Mechanism of Tricarboxylic Acid Cycle Regulation of Fatty Acid Synthesis». J Biol Chem 237: 1787-92. PMID 14470343. 
  13. Boone AN, Chan A, Kulpa JE, Brownsey RW (abril de 2000). «Bimodal Activation of Acetyl-CoA Carboxylase by Glutamate». J Biol Chem 275 (15): 10819-25. PMID 10753875. doi:10.1074/jbc.275.15.10819. 
  14. Faergeman NJ, Knudsen J (abril de 1997). «Role of long chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling». Biochem J. 323 (Pt 1): 1-12. PMC 1218279. PMID 9173866. 
  15. Park SH, Gammon SR, Knippers JD, Paulsen SR, Rubink DS, Winder WW (junio de 2002). «Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle». J. Appl. Physiol. 92 (6): 2475-82. PMID 12015362. doi:10.1152/japplphysiol.00071.2002. 
  16. Hardie DG (febrero de 1992). «Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase». Biochim. Biophys. Acta 1123 (3): 231-8. PMID 1536860. 
  17. Brownsey RW, Boone AN, Elliott JE, Kulpa JE, Lee WM (abril de 2006). «Regulation of acetyl-CoA carboxylase». Biochem. Soc. Trans. 34 (Pt 2): 223-7. PMID 16545081. doi:10.1042/BST20060223. 


  •   Datos: Q21199067

acetil, carboxilasa, acetil, carboxilasa, acac, enzima, cataliza, reacción, adición, grupo, bicarbonato, acetato, para, obtener, malonato, esta, reacción, consume, molécula, alfa, estructuras, disponiblespdbbuscar, ortólogos, pdbe, rcsb, estructuras, enzimátic. La acetil CoA carboxilasa ACAC EC 6 4 1 2 es una enzima que cataliza la reaccion de adicion de un grupo bicarbonato al acetato para obtener malonato Esta reaccion consume una molecula de ATP 3 Acetil CoA carboxilasa alfa 1 Estructuras disponiblesPDBBuscar ortologos PDBe RCSB Estructuras enzimaticasRCSB PDB PDBe PDBsumIdentificadoresSimbolosACACA HGNC 84 ACC1IdentificadoresexternosOMIM 200350EBI ACACAGeneCards Gen ACACAUniProt ACACA Bases de datos de enzimasIntEnz entrada en IntEnz BRENDA entrada en BRENDA ExPASy NiceZime view KEGG entrada en KEEG PRIAM perfil PRIAM ExplorEnz entrada en ExplorEnz MetaCyc via metabolicaNumero EC6 4 1 2LocusCr 17 q21 Ontologia genicaReferencias AmiGO QuickGOEstructura Funcion proteicaTamano2346 aminoacidos OrtologosEspeciesHumano RatonEntrez31UniProtQ13085 n aPubMed Busqueda 1 PMC Busqueda 2 vte editar datos en Wikidata Acetil CoA carboxilasa beta 2 Estructuras disponiblesPDBBuscar ortologos PDBe RCSB Estructuras enzimaticasRCSB PDB PDBe PDBsumIdentificadoresSimbolosACACB HGNC 85 ACC betaIdentificadoresexternosOMIM 601557EBI ACACBGeneCards Gen ACACBUniProt ACACB Bases de datos de enzimasIntEnz entrada en IntEnz BRENDA entrada en BRENDA ExPASy NiceZime view KEGG entrada en KEEG PRIAM perfil PRIAM ExplorEnz entrada en ExplorEnz MetaCyc via metabolicaNumero EC6 4 1 2LocusCr 12 q24 11 Ontologia genicaReferencias AmiGO QuickGOEstructura Funcion proteicaTamano2458 aminoacidos OrtologosEspeciesHumano RatonEntrez32UniProtO00763 n aPubMed Busqueda 3 PMC Busqueda 4 vte editar datos en Wikidata Acetil CoA HCO3 ATP displaystyle rightleftharpoons Malonil CoA ADP fosfatoEsta enzima regula la biosintesis de los acidos grasos y su oxidacion 4 Utiliza como cofactor biotina que se une a la enzima mediante un residuo de lisina 5 Adicionalmente utiliza dos atomos de manganeso por subunidad La enzima se presenta como monomero homodimero y homotetramero Puede formar polimeros filamentosos 6 Indice 1 Mecanismo y estructura 2 Isozimas 3 Regulacion 4 ReferenciasMecanismo y estructura EditarLas enzimas carboxilasas dependientes de la biotina llevan a cabo una reaccion en dos etapas La enzima unida a la biotina es primero carboxilada por bicarbonato y ATP y el grupo carboxilo unido temporalmente a la biotina es transferido a un sustrato aceptor como el piruvato o el acetil CoA 7 Estructuras cristalograficas de la acetil CoA carboxilasa de la Escherichia coli Figura 1 Estructura del dominio biotina carboxilasa de la ACAC de la E Coli Figura 2 Estructura del dominio carboxiltransferasa de la ACAC de la E Coli La primera etapa es mediada por el dominio biotina carboxilasa BC EC 6 3 4 14 comun a todas las carboxilasas dependientes de la biotina El dominio BC puede ser dividido en tres subdominios N terminal central y C terminal La region N terminal proporciona parte del sitio activo la region central corresponde al dominio de union del ATP que es comun en muchas enzimas dependientes del ATP que participan en la sintesis de macromoleculas Por ultimo el subdominio C terminal participa en la formacion del multimero de enzimas 7 La segunda etapa de la reaccion es realizada por el dominio carboxiltransferasa Las regiones N y C terminal de este dominio comparten estructuras similares con una superhelice b b a central La molecula de coenzima A se asocia con el subdominio N terminal En las acetil CoA carboxilasas bacterianas los subdominios N y C terminal son codificados por dos polipeptidos diferentes 4 Isozimas EditarEn el ser humano existen dos isozimas de la acetil CoA carboxilasa llamadas alfa ACACA y beta ACACB La isozima alfa participa en la biogenesis de los acidos grasos de cadena larga mientras que la isozima beta participa en la provision de malonil CoA y en la regulacion de la oxidacion de los acidos grasos 6 8 La isozima alfa se expresa en el cerebro placenta musculo esqueletico rinones pancreas y tejidos adiposos Se expresa en un bajo nivel en los tejidos pulmonares No se ha detectado en el higado 6 La isozima beta se expresa predominantemente en el corazon musculo esqueletico e higado 8 Los defectos en ACACA son causa de la deficiencia en acetil CoA carboxilasa 1 tambien conocida como deficiencia en ACAC Es una deficiencia innata en la sintesis de acidos grasos asociada con dano cerebral severo miopatia persistente y crecimiento pobre 6 Regulacion EditarLa regulacion de la acetil CoA carboxilasa es compleja ya que se tienen que controlar los procesos de inhibicion de la beta oxidacion y la activacion de la biosintesis de lipidos Las ACACA y ACACB son reguladas transcripcionalmente por muchos promotores que median en la abundancia de la ACAC en respuesta al estado nutricional de las celulas La activacion de la expresion del gen a traves de diferentes promotores resulta en splicing alternativo el significado fisiologico de la isoformas formadas permanece desconocido 9 La sensibilidad al estado nutricional resulta del control de estos promotores por los factores de transcripcion como el SREBP1c controlado por la insulina en el nivel transcripcional y el ChREBP que incrementa la expresion en dietas de alto contenido en carbohidratos 10 11 Figura 3 Regulacion de la acetil CoA carboxilasa A traves de un ciclo de retroalimentacion el citrato activa alostericamente a la ACAC 12 El citrato puede incrementar la polimerizacion de la ACAC para incrementar la actividad enzimatica aunque no esta claro si la polimerizacion es un mecanismo del citrato para incrementar la actividad de la ACAC o la polimerizacion es un resultado de los experimentos in vitro Otros activadores alostericos incluyen al glutamato y otros acidos dicarboxilicos 13 Las cadenas largas y cortas de acilos CoA grasos son inhibidores de la ACAC 14 La fosforilacion inhibitoria de la enzima puede ser resultado de la union de las hormonas glucagon y epinefrina a los receptores de la superficie de la celula pero la mayor causa de fosforilacion es debida a un incremento en los niveles de AMP cuando el estatus de energia de la celula es bajo resultando en la activacion de la proteina kinasa activada por AMP AMPK AMPK es el principal regulador kinasa de la ACAC capaz de fosforilar una serie de residuos serina en las dos isozimas 15 En la ACACA la AMPK fosforila Ser 79 Ser 1200 y Ser 1215 En la ACACB la AMPK fosforila Ser 218 16 La proteina kinasa A tambien tiene la habilidad de fosforilar la ACAC con mucha mayor habilidad relativa para fosforilar la ACACB que la ACACA De todas formas el significado fisiologico de la proteina kinasa A en la regulacion de la ACAC es todavia desconocido Los investigadores creen que hay otras ACAC kinasas importantes para su regulacion ya que hay muchos otros sitios de fosforilacion posibles en la ACAC 17 Cuando la insulina se une a sus receptores situados en la membrana celular activa una fosfatasa que defosforila la enzima causando la eliminacion del efecto inhibitorio Referencias Editar ACACA Gene Consultado el 22 de octubre de 2011 ACACB Gene Consultado el 22 de octubre de 2011 ENZYME entry EC 6 4 1 2 Consultado el 22 de octubre de 2011 a b PROSITE documentation PDOC50980 Consultado el 22 de octubre de 2011 PROSITE documentation PDOC00167 Consultado el 22 de octubre de 2011 a b c d Acetyl CoA carboxylase 1 Consultado el 22 de octubre de 2011 a b PROSITE documentation PDOC50979 Consultado el 22 de octubre de 2011 a b Acetyl CoA carboxylase 2 Consultado el 22 de octubre de 2011 Barber MC Price NT Travers MT marzo de 2005 Structure and regulation of acetyl CoA carboxylase genes of metazoa Biochim Biophys Acta 1733 1 1 28 PMID 15749055 doi 10 1016 j bbalip 2004 12 001 Field F J Born E Murthy S and Mathur S N diciembre de 2002 Polyunsaturated fatty acids decrease the expression of sterol regulatory element binding protein 1 in CaCo 2 cells effect on fatty acid synthesis and triacylglycerol transport Biochem J 386 Pt 3 855 64 PMC 1223029 PMID 12213084 doi 10 1042 BJ20020731 Ishii S Iizuka K Miller BC Uyeda K octubre de 2004 Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription Proc Natl Acad Sci USA 101 44 15597 602 PMC 524841 PMID 15496471 doi 10 1073 pnas 0405238101 Martin DB Vagelos PR junio de 1962 The Mechanism of Tricarboxylic Acid Cycle Regulation of Fatty Acid Synthesis J Biol Chem 237 1787 92 PMID 14470343 Boone AN Chan A Kulpa JE Brownsey RW abril de 2000 Bimodal Activation of Acetyl CoA Carboxylase by Glutamate J Biol Chem 275 15 10819 25 PMID 10753875 doi 10 1074 jbc 275 15 10819 Faergeman NJ Knudsen J abril de 1997 Role of long chain fatty acyl CoA esters in the regulation of metabolism and in cell signalling Biochem J 323 Pt 1 1 12 PMC 1218279 PMID 9173866 Park SH Gammon SR Knippers JD Paulsen SR Rubink DS Winder WW junio de 2002 Phosphorylation activity relationships of AMPK and acetyl CoA carboxylase in muscle J Appl Physiol 92 6 2475 82 PMID 12015362 doi 10 1152 japplphysiol 00071 2002 Hardie DG febrero de 1992 Regulation of fatty acid and cholesterol metabolism by the AMP activated protein kinase Biochim Biophys Acta 1123 3 231 8 PMID 1536860 Brownsey RW Boone AN Elliott JE Kulpa JE Lee WM abril de 2006 Regulation of acetyl CoA carboxylase Biochem Soc Trans 34 Pt 2 223 7 PMID 16545081 doi 10 1042 BST20060223 Datos Q21199067 Obtenido de https es wikipedia org w index php title Acetil CoA carboxilasa amp oldid 143003258, wikipedia, wiki, leyendo, leer, libro, biblioteca,

español

, española, descargar, gratis, descargar gratis, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, imagen, música, canción, película, libro, juego, juegos